Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Gastroenterol Hepatol ; 38(3): 441-450, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36652457

RESUMO

BACKGROUND AND AIM: Whether vitamin D3 (VD3) supplementation is associated with improved liver fibrosis is controversial. METHODS: Liver fibrosis models were treated with VD3, active VD (1,25-OH2 Vitamin D3), or collaboration with GSK126 (Ezh2 inhibitor), respectively. Hepatic stellate cells (HSCs) were co-cultured with hepatocytes and then stimulated with TGF-ß. Autophagy of hepatocytes was determined after the intervention of 1,25-OH2 Vitamin D3 and GSK126. Also, the active status of HSCs and the mechanism with 1,25-OH2 Vitamin D3 and GSK126 intervention were detected. RESULTS: 1,25-OH2 Vitamin D3, but not VD3, is involved in anti-fibrosis and partially improves liver function, which might be associated with related enzymes and receptors (especially CYP2R1), leading to decreased of its biotransformation. GSK126 plays a synergistic role in anti-fibrosis. The co-culture system showed increased hepatocyte autophagy after HSCs activation. Supplementation with 1,25-OH2 Vitamin D3 or combined GSK126 reduced these effects. Further studies showed that 1,25-OH2 Vitamin D3 promoted H3K27 methylation of DKK1 promoter through VDR/Ezh2 due to the weakening for HSCs inhibitory signal. CONCLUSIONS: VD3 bioactive form 1,25-OH2 Vitamin D3 is responsible for the anti-fibrosis, which might have bidirectional effects on HSCs by regulating histone modification. The inhibitor of Ezh2 plays a synergistic role in this process.


Assuntos
Colecalciferol , Proteína Potenciadora do Homólogo 2 de Zeste , Inibidores Enzimáticos , Células Estreladas do Fígado , Cirrose Hepática , Humanos , Colecalciferol/metabolismo , Colecalciferol/farmacologia , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/farmacologia , Células Estreladas do Fígado/metabolismo , Hepatócitos/metabolismo , Fígado/patologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Fator de Crescimento Transformador beta/metabolismo , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico
2.
Lab Invest ; 102(2): 185-193, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34802040

RESUMO

Brain tumors are the leading cause of cancer-related death in children. Tazemetostat is an FDA-approved enhancer of zeste homolog (EZH2) inhibitor. To determine its role in difficult-to-treat pediatric brain tumors, we examined EZH2 levels in a panel of 22 PDOX models and confirmed EZH2 mRNA over-expression in 9 GBM (34.6 ± 12.7-fold) and 11 medulloblastoma models (6.2 ± 1.7 in group 3, 6.0 ± 2.4 in group 4) accompanied by elevated H3K27me3 expression. Therapeutic efficacy was evaluated in 4 models (1 GBM, 2 medulloblastomas and 1 ATRT) via systematically administered tazemetostat (250 and 400 mg/kg, gavaged, twice daily) alone and in combination with cisplatin (5 mg/kg, i.p., twice) and/or radiation (2 Gy/day × 5 days). Compared with the untreated controls, tazemetostat significantly (Pcorrected < 0.05) prolonged survival times in IC-L1115ATRT (101% at 400 mg/kg) and IC-2305GBM (32% at 250 mg/kg, 45% at 400 mg/kg) in a dose-dependent manner. The addition of tazemetostat with radiation was evaluated in 3 models, with only one [IC-1078MB (group 4)] showing a substantial, though not statistically significant, prolongation in survival compared to radiation treatment alone. Combining tazemetostat (250 mg/kg) with cisplatin was not superior to cisplatin alone in any model. Analysis of in vivo drug resistance detected predominance of EZH2-negative cells in the remnant PDOX tumors accompanied by decreased H3K27me2 and H3K27me3 expressions. These data supported the use of tazemetostat in a subset of pediatric brain tumors and suggests that EZH2-negative tumor cells may have caused therapy resistance and should be prioritized for the search of new therapeutic targets.


Assuntos
Neoplasias Encefálicas/terapia , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Adolescente , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Benzamidas/administração & dosagem , Benzamidas/farmacologia , Compostos de Bifenilo/administração & dosagem , Compostos de Bifenilo/farmacologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Quimiorradioterapia , Criança , Cisplatino/administração & dosagem , Terapia Combinada/métodos , Avaliação Pré-Clínica de Medicamentos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Inibidores Enzimáticos/administração & dosagem , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Lactente , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Morfolinas/administração & dosagem , Morfolinas/farmacologia , Piridonas/administração & dosagem , Piridonas/farmacologia , Dosagem Radioterapêutica
3.
Sci Rep ; 11(1): 21396, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725436

RESUMO

Both EZH2 and its homolog EZH1 function as histone H3 Lysine 27 (H3K27) methyltransferases and repress the transcription of target genes. Dysregulation of H3K27 trimethylation (H3K27me3) plays an important role in the development and progression of cancers such as hepatocellular carcinoma (HCC). This study investigated the relationship between the expression of EZH1/2 and the level of H3K27me3 in HCC. Additionally, the role of EZH1/2 in cell growth, tumorigenicity, and resistance to sorafenib were also analyzed. Both the lentiviral knockdown and the pharmacological inhibition of EZH1/2 (UNC1999) diminished the level of H3K27me3 and suppressed cell growth in liver cancer cells, compared with EZH1 or EZH2 single knockdown. Although a significant association was observed between EZH2 expression and H3K27me3 levels in HCC samples, overexpression of EZH1 appeared to contribute to enhanced H3K27me3 levels in some EZH2lowH3K27me3high cases. Akt suppression following sorafenib treatment resulted in an increase of the H3K27me3 levels through a decrease in EZH2 phosphorylation at serine 21. The combined use of sorafenib and UNC1999 exhibited synergistic antitumor effects in vitro and in vivo. Combination treatment canceled the sorafenib-induced enhancement in H3K27me3 levels, indicating that activation of EZH2 function is one of the mechanisms of sorafenib-resistance in HCC. In conclusion, sorafenib plus EZH1/2 inhibitors may comprise a novel therapeutic approach in HCC.


Assuntos
Antineoplásicos/uso terapêutico , Benzamidas/uso terapêutico , Carcinoma Hepatocelular/terapia , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Indazóis/uso terapêutico , Neoplasias Hepáticas/terapia , Piperazinas/uso terapêutico , Complexo Repressor Polycomb 2/antagonistas & inibidores , Piridonas/uso terapêutico , Sorafenibe/uso terapêutico , Idoso , Animais , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Feminino , Terapia Genética , Humanos , Neoplasias Hepáticas/genética , Masculino , Camundongos SCID , Pessoa de Meia-Idade , Complexo Repressor Polycomb 2/genética
4.
Theranostics ; 11(14): 6891-6904, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093860

RESUMO

Rationale: Tanshinone, a type of diterpenes derived from salvia miltiorrhiza, is a particularly promising herbal medicine compound for the treatment of cancers including acute myeloid leukemia (AML). However, the therapeutic function and the underlying mechanism of Tanshinone in AML are not clear, and the toxic effect of Tanshinone limits its clinical application. Methods: Our work utilizes human leukemia cell lines, zebrafish transgenics and xenograft models to study the cellular and molecular mechanisms of how Tanshinone affects normal and abnormal hematopoiesis. WISH, Sudan Black and O-Dianisidine Staining were used to determine the expression of hematopoietic genes on zebrafish embryos. RNA-seq analysis showed that differential expression genes and enrichment gene signature with Tan I treatment. The surface plasmon resonance (SPR) method was used with a BIAcore T200 (GE Healthcare) to measure the binding affinities of Tan I. In vitro methyltransferase assay was performed to verify Tan I inhibits the histone enzymatic activity of the PRC2 complex. ChIP-qPCR assay was used to determine the H3K27me3 level of EZH2 target genes. Results: We found that Tanshinone I (Tan I), one of the Tanshinones, can inhibit the proliferation of human leukemia cells in vitro and in the xenograft zebrafish model, as well as the normal and malignant definitive hematopoiesis in zebrafish. Mechanistic studies illustrate that Tan I regulates normal and malignant hematopoiesis through direct binding to EZH2, a well-known histone H3K27 methyltransferase, and inhibiting PRC2 enzymatic activity. Furthermore, we identified MMP9 and ABCG2 as two possible downstream genes of Tan I's effects on EZH2. Conclusions: Together, this study confirmed that Tan I is a novel EZH2 inhibitor and suggested MMP9 and ABCG2 as two potential therapeutic targets for myeloid malignant diseases.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Abietanos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Hematopoese/efeitos dos fármacos , Leucemia/tratamento farmacológico , Leucemia/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Proteínas de Neoplasias/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Animais Geneticamente Modificados , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Imunoprecipitação da Cromatina , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Hematopoese/genética , Histonas/metabolismo , Humanos , Leucemia/enzimologia , Leucemia/genética , Metaloproteinase 9 da Matriz/genética , Proteínas de Neoplasias/genética , Complexo Repressor Polycomb 2/metabolismo , Ligação Proteica , RNA-Seq , Salvia miltiorrhiza/química , Ressonância de Plasmônio de Superfície , Transcriptoma/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
5.
Future Oncol ; 17(17): 2127-2140, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33709777

RESUMO

Epigenetic alterations are major drivers of follicular lymphomagenesis, and these alterations are frequently caused by mutations in or upregulation of EZH2, a histone methyltransferase responsible for PRC2-mediated gene repression. EZH2 hyperactivation increases proliferation of B cells and prevents them from exiting the germinal center, favoring lymphomagenesis. The first FDA-approved EZH2 inhibitor is tazemetostat, which is orally available and targets both mutant and wild-type forms of the protein to induce cell cycle arrest and apoptosis of lymphoma cells in preclinical models. Phase II trials have shown objective response rates of 69% for patients with lymphoma-carrying EZH2 mutations and 35% for those with wild-type EZH2 without major toxicity, leading to tazemetostat approval for this cancer by the US FDA in June 2020.


Lay abstract Follicular lymphoma (FL) is a subtype of B-cell cancer. Initial prognosis of this disease is favorable as first-line treatments provide responses lasting 10 years on average. However, most patients will experience relapse and subsequent treatments are not as efficient nor as well tolerated as the first ones. An important driver of FL is a gene called EZH2 that makes B cells proliferate, either because of mutations that increase its activity or because of a net increase in its concentration in lymphoma cells. Tazemetostat is a drug that was designed to inhibit EZH2 protein and thus lymphoma cell growth. Phase I and II studies have been completed for this drug showing a good safety profile. In Phase II, reponses were seen in 69% of patients who have the EZH2 mutations and 35% of the other patients. The US FDA has approved tazemetostat for patients with FL who have had at least two previous treatments and harbor the EZH2 mutations, or for patients with FL who have no other therapeutic options. However, the drug has not yet been approved in Europe. Randomized trials and long-term follow-up will be of interest to make sure this drug is efficient and safe enough to be given to patients in earlier lines of treatment or in combination with other active agents used to treat patients with FL.


Assuntos
Benzamidas/uso terapêutico , Compostos de Bifenilo/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Linfoma Folicular/tratamento farmacológico , Morfolinas/uso terapêutico , Mutação , Recidiva Local de Neoplasia/tratamento farmacológico , Piridonas/uso terapêutico , Terapia de Salvação , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Avaliação Pré-Clínica de Medicamentos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Humanos , Linfoma Folicular/genética , Linfoma Folicular/patologia , Dose Máxima Tolerável , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Prognóstico , Taxa de Sobrevida
6.
Biochem Biophys Res Commun ; 534: 279-285, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33288199

RESUMO

Emodin, a major component of Chinese herbal rhubarb, delays the progression of chronic renal failure. However, the effect and working mechanisms of Emodin on renal tubulointerstitial fibrosis remains elusive. We hypothesized that emodin inhibits renal tubulointerstitial fibrosis through EZH2, a histone methyltransferase. Our in vivo and in vitro studies demonstrate that emodin reduced extracellular collagen deposition and inhibited Smad3 and CTGF pro-fibrotic signaling pathways, which were correlated with the down-regulation of EZH2 and reduced trimethylation of histone H3 on lysine 27 (H3k27me3) in NRK-49F fibrotic cells and UUO kidneys. Inhibition of EZH2 by 3-DZNeP blocked or attenuated the anti-fibrotic effect of emodin in UUO kidneys and NRK-49F cells. These data indicate that emodin inhibits renal tubulointerstitial fibrosis in obstructed kidneys and this effect is mediated through EZH2.


Assuntos
Emodina/farmacologia , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Insuficiência Renal Crônica/tratamento farmacológico , Animais , Fator de Crescimento do Tecido Conjuntivo/antagonistas & inibidores , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/uso terapêutico , Inibidores Enzimáticos/farmacologia , Fibrose , Técnicas In Vitro , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/antagonistas & inibidores , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia
7.
Lab Invest ; 100(1): 64-71, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31409892

RESUMO

Osteoarthritis (OA) is characterized by cartilage degradation, inflammation, and hypertrophy. Therapies are mainly symptomatic and aim to manage pain. Consequently, medical community is waiting for new treatments able to reduce OA process. This study aims to develop an in vitro simple OA model useful to predict drug ability to reduce cartilage hypertrophy. Human primary OA chondrocytes were incubated with transforming growth factor beta 1 (TGF-ß1). Hypertrophy was evaluated by Runx2, type X collagen, MMP13, and VEGF expression. Cartilage anabolism was investigated by Sox9, aggrecan, type II collagen, and glycosaminoglycan expression. In chondrocytes, TGF-ß1 increased expression of hypertrophic genes and activated canonical WNT pathway, while it decreased dramatically cartilage anabolism, suggesting that this treatment could mimic some OA features in vitro. Additionally, EZH2 inhibition, that has been previously reported to decrease cartilage hypertrophy and reduce OA development in vivo, attenuated COL10A1 and MMP13 upregulation and SOX9 downregulation induced by TGF-ß1 treatment. Similarly, pterosin B (an inhibitor of Sik3), and DMOG (a hypoxia-inducible factor prolyl hydroxylase which mimicks hypoxia), repressed the expression of hypertrophy markers in TGF-ß stimulated chondrocytes. In conclusion, we established an innovative OA model in vitro. This cheap and simple model will be useful to quickly screen new drugs with potential anti-arthritic effects, in complementary to current inflammatory models, and should permit to accelerate development of efficient treatments against OA able to reduce cartilage hypertrophy.


Assuntos
Cartilagem Articular/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Modelos Biológicos , Osteoartrite/tratamento farmacológico , Idoso , Idoso de 80 Anos ou mais , Aminoácidos Dicarboxílicos , Benzamidas , Compostos de Bifenilo , Avaliação Pré-Clínica de Medicamentos , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Humanos , Hipertrofia/tratamento farmacológico , Indanos , Pessoa de Meia-Idade , Morfolinas , Cultura Primária de Células , Piridonas , Fator de Crescimento Transformador beta1 , Via de Sinalização Wnt
8.
Biomed Pharmacother ; 105: 690-696, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29906747

RESUMO

Honey bee larvae products have been widely used as traditional daily supplements and complementary medicine for health promotion. However, there is little scientific evidence about their bioactivities. This study was designed to examine the anti-tumor and anti-metastasis effects of honey bee larvae powder (HLP) and explore the underlying mechanism. A subcutaneous transplantation model (murine breast cancer cell 4T1-LUC) and lung metastasis model (murine melanoma cell B16-F10) were established to evaluate the anti-tumor and anti-metastasis effects of HLP. Honey bee larvae powder extract (HLE) was obtained by 70% ethanol extraction, and its chemical composition was determined according to physiochemical methods. Cell Counting Kit-8 assay was performed to test the cytotoxicity of HLE, and qRT-PCR assays were conducted to examine the mRNA levels of tumor marker EZH2 in HLE-treated tumor cells. In vivo xenograft tumor assays in BALB/c mice revealed dose-dependent suppression of tumor growth and lung metastasis showing an inhibition rate of 37.5% and 70.4% at 6 g/kg HLP-administered group with no toxicity to the animals. In vitro studies indicated that HLE showed no cytotoxicity to cancer cells at doses up to 1000 µg/mL, however, it significantly decreased EZH2 mRNA levels in HLE (1000 µg/mL)-treated B10-F10 cells (28.49%) and 4T1-LUC cells (26.75%). Further studies to elucidate the mechanisms involved and to isolate the active components of honey bee larva may provide more valuable information for its development and application in cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Abelhas/química , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Larva/química , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Mamárias Experimentais/tratamento farmacológico , Melanoma Experimental/tratamento farmacológico , Animais , Antineoplásicos/isolamento & purificação , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste/biossíntese , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Células MCF-7 , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos BALB C , Pós
9.
Eur Rev Med Pharmacol Sci ; 22(7): 2093-2098, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29687868

RESUMO

OBJECTIVE: Epigallocatechin gallate (EGCG), the major chemical constituent of green tea, exhibits remarkable anti-tumor effect properties. In the present work, we aim to explore the effect and underlying mechanism of EGCG on multiple myeloma (MM) cells. MATERIALS AND METHODS: The effects of EGCG on MM cells proliferation and apoptosis were determined by CCK-8 assay and flow cytometry assay. The siRNAs were used to inhibit endogenous expression of EZH2. Enforced expression of EZH2 in U266 cells was accomplished by transfecting EZH2 plasmid. RESULTS: EGCG suppressed proliferation and induced apoptosis in U266 cells, which accompanied by EZH2 inhibition. Moreover, we revealed that enforced expression of EZH2 increased MM cells proliferation and reduced cell apoptosis, whereas EGCG partially reversed the effects of EZH2 on MM cells progression. In addition, qRT-PCR and Western blot showed that EZH2 overexpression increased Bcl-2 expression, and decreased BAX, BAK1 and cytochrome c expression in U266 cells exposed to EGCG. CONCLUSIONS: Our data showed that EGCG inhibited MM cells proliferation and induced apoptosis by targeting EZH2 and modulated mitochondrial apoptosis pathway, indicating EGCG might act as an adjuvant for chemotherapy of MM patients.


Assuntos
Apoptose/efeitos dos fármacos , Catequina/análogos & derivados , Proliferação de Células/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Mieloma Múltiplo/metabolismo , Apoptose/fisiologia , Catequina/química , Catequina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Humanos , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Chá
10.
Leuk Lymphoma ; 59(7): 1574-1585, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29473431

RESUMO

Dysregulation of the histone methyltransferase EZH2 plays a critical role in the development of a variety of malignancies including B-cell lymphomas. As a result, a series of small molecule inhibitors of EZH2 have been developed and studied in the pre-clinical setting. Three EZH2 inhibitors: tazemetostat (EPZ-6438), GSK2816126 and CPI-1205 have moved into phase I/phase II clinical trials in patients with non-Hodgkin lymphoma and genetically defined solid tumors. Early data from the tazemetostat trials indicate an acceptable safety profile and early signs of activity in diffuse large B-cell lymphoma and follicular lymphoma, including patients with EZH2 wild-type and mutant tumors. In this review, we present the rationale, key pre-clinical and early clinical findings of small molecule EZH2 inhibitors for use in lymphoma as well as future challenges and potential opportunities for combination therapies.


Assuntos
Antineoplásicos/farmacologia , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Animais , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ensaios Clínicos como Assunto , Terapia Combinada , Avaliação Pré-Clínica de Medicamentos , Resistencia a Medicamentos Antineoplásicos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Inibidores Enzimáticos/uso terapêutico , Epigênese Genética/efeitos dos fármacos , Humanos , Linfoma de Células B/tratamento farmacológico , Linfoma de Células B/genética , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Terapia de Alvo Molecular , Resultado do Tratamento
11.
Br J Haematol ; 178(6): 936-948, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28653353

RESUMO

The epigenome is often deregulated in cancer and treatment with inhibitors of bromodomain and extra-terminal proteins, the readers of epigenetic acetylation marks, represents a novel therapeutic approach. Here, we have characterized the anti-tumour activity of the novel bromodomain and extra-terminal (BET) inhibitor BAY 1238097 in preclinical lymphoma models. BAY 1238097 showed anti-proliferative activity in a large panel of lymphoma-derived cell lines, with a median 50% inhibitory concentration between 70 and 208 nmol/l. The compound showed strong anti-tumour efficacy in vivo as a single agent in two diffuse large B cell lymphoma models. Gene expression profiling showed BAY 1238097 targeted the NFKB/TLR/JAK/STAT signalling pathways, MYC and E2F1-regulated genes, cell cycle regulation and chromatin structure. The gene expression profiling signatures also highly overlapped with the signatures obtained with other BET Bromodomain inhibitors and partially overlapped with HDAC-inhibitors, mTOR inhibitors and demethylating agents. Notably, BAY 1238097 presented in vitro synergism with EZH2, mTOR and BTK inhibitors. In conclusion, the BET inhibitor BAY 1238097 presented promising anti-lymphoma preclinical activity in vitro and in vivo, mediated by the interference with biological processes driving the lymphoma cells. Our data also indicate the use of combination schemes targeting EZH2, mTOR and BTK alongside BET bromodomains.


Assuntos
Antineoplásicos/uso terapêutico , Benzodiazepinas/uso terapêutico , Linfoma não Hodgkin/tratamento farmacológico , Adenina/análogos & derivados , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Benzodiazepinas/administração & dosagem , Benzodiazepinas/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Sinergismo Farmacológico , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/biossíntese , Everolimo/farmacologia , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Linfoma não Hodgkin/genética , Linfoma não Hodgkin/patologia , Camundongos SCID , Piperidinas , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinas/farmacologia , Células Tumorais Cultivadas/efeitos dos fármacos , Células Tumorais Cultivadas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Cancer Lett ; 400: 325-335, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28323035

RESUMO

Natural products are considered as promising tools for the prevention and treatment of cancer. The enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase unit of polycomb repressor complexes such as PRC2 complex that has oncogenic roles through interference with growth and metastatic potential. Several agents targeting EZH2 has been discovered but they often induce side effects in clinical trials. Recently, EZH2 has emerged as a potential target of natural products with documented anti-cancer effects and this discloses a new scenario for the development of EZH2 inhibitory strategies with agents with low cytotoxic detrimental effects. In fact, several natural products such as curcumin, triptolide, ursolic acid, sulforaphane, davidiin, tanshindiols, gambogic acid, berberine and Alcea rosea have been shown to serve as EZH2 modulators. Mechanisms like inhibition of histone H3K4, H3K27 and H3K36 trimethylation, down-regulation of matrix metalloproteinase expression, competitive binding to the S-adenosylmethionine binding site of EZH2 and modulation of tumor-suppressive microRNAs have been demonstrated to mediate the EZH2-inhibitory activity of the mentioned natural products. This review summarizes the pathways that are regulated by various natural products resulting in the suppression of EZH2, and provides a plausible molecular mechanism for the putative anti-cancer effects of these compounds.


Assuntos
Antineoplásicos/uso terapêutico , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Inibidores Enzimáticos/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Inibidores Enzimáticos/efeitos adversos , Inibidores Enzimáticos/farmacocinética , Meia-Vida , Humanos , Terapia de Alvo Molecular , Neoplasias/enzimologia , Neoplasias/patologia , Transdução de Sinais/efeitos dos fármacos
13.
Pediatr Blood Cancer ; 64(3)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27555605

RESUMO

BACKGROUND: Tazemetostat (EPZ-6438) is a selective inhibitor of the histone methyltransferase EZH2 and currently in clinical development for non-Hodgkin lymphoma and genetically defined tumors. PROCEDURES: Tazemetostat was tested against the Pediatric Preclinical Testing Program (PPTP) solid tumor xenografts using a dose of 400 mg/kg administered twice daily by oral gavage for 28 days. H3K27me3:H3 ratios were determined in control and treated tumors. RESULTS: Tazemetostat induced significant differences in event-free survival (EFS) distribution compared with control in nine of 30 (30%) of the xenografts studied. Significant differences in EFS distribution were observed in five of seven (71%) rhabdoid tumor xenograft lines compared with four of 23 (17%) nonrhabdoid xenograft lines (chi-square [χ2 ] test P = 0.006). Tazemetostat induced tumor growth inhibition meeting criteria for intermediate and high EFS treated-to-control (T/C) activity in two of 25 (8%) and one of 25 (4%) xenografts, respectively. Intermediate and high activity for the EFS T/C metric was observed exclusively among rhabdoid tumor xenografts (three of five rhabdoid tumor vs 0 of 22 nonrhabdoid tumors (χ² test P < 0.001). One rhabdoid tumor xenograft (G401) showed stable disease. For one rhabdoid tumor (G401), delayed tumor regression to tazemetostat was noted following 1 week of tumor growth. Tazemetostat induced significant reduction of H3K27me3 levels in the majority of tumors compared with controls. CONCLUSIONS: Tazemetostat demonstrated significant antitumor activity in rhabdoid tumor models but showed no consistent activity against any other histology. Tazemetostat reduced H3K27me3 levels irrespective of tumor response. Further preclinical testing to evaluate tazemetostat in combination with other anticancer agents is warranted.


Assuntos
Antineoplásicos/farmacologia , Benzamidas/farmacologia , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Neoplasias Experimentais/tratamento farmacológico , Piridonas/farmacologia , Animais , Compostos de Bifenilo , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Camundongos , Camundongos SCID , Morfolinas , Neoplasias Experimentais/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Methods Mol Biol ; 1439: 33-45, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27316986

RESUMO

Understanding inhibitor binding modes is a key aspect of drug development. Early in a drug discovery effort these considerations often impact hit finding strategies and hit prioritization. Multiple inhibitor experiments, where enzyme inhibition is measured in the presence of two simultaneously varied inhibitors, can provide valuable information about inhibitor binding. These experiments utilize the inhibitor concentration dependence of the observed combined inhibition to determine the relationship between two compounds. In this way, it can be determined whether two inhibitors bind exclusively, independently, synergistically, or antagonistically. Novel inhibitors can be tested against each other or reference compounds to assist hit classification and characterization of inhibitor binding. In this chapter, we discuss the utility and design of multiple inhibitor experiments and present a new local curve fitting method for analyzing these data utilizing IC50 replots. The IC50 replot method is analogous to that used for determining mechanisms of inhibition with respect to substrate, as originally proposed by Cheng and Prusoff (Cheng and Prusoff Biochem Pharmacol 22: 3099-3108, 1973). The IC50 replot generated by this method reveals distinct patterns that are diagnostic of the nature of the interaction between two inhibitors. Multiple inhibition of the histone methyltransferase EZH2 by EPZ-5687 and the reaction product S-adenosylhomocysteine is presented as an example of the method.


Assuntos
Benzamidas/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Ensaios Enzimáticos/métodos , Inibidores Enzimáticos/farmacologia , Complexo Repressor Polycomb 2/antagonistas & inibidores , Piridonas/farmacologia , S-Adenosil-Homocisteína/farmacologia , Animais , Sítios de Ligação , Ligação Competitiva , Compostos de Bifenilo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Humanos , Concentração Inibidora 50 , Cinética , Morfolinas , Complexo Repressor Polycomb 2/metabolismo
15.
Bioorg Med Chem Lett ; 26(15): 3813-7, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27289323

RESUMO

Polycomb repressive complex 2 (PRC2) acts as a primary writer for di- and tri-methylation of histone H3 at lysine 27. This protein plays an essential role in silencing gene expression. Enhancer of zeste 2 (EZH2), the catalytic subunit of PRC2, is considered as a promising therapeutic target for cancer. GSK126, a specific inhibitor of EZH2, is undergoing phase I trials for hypermethylation-related cancers. In addition, many derivatives of GSK126 are also commonly used in laboratory investigations. However, studies on the mechanism and drug development of EZH2 are limited by the absence of structural diversity of these inhibitors because they share similar SAM-like scaffolds. In this study, we generated a pharmacophore model based on reported EZH2 inhibitors and performed in silico screenings. Experimental validations led to the identification of two novel EZH2 inhibitors, DCE_42 and DCE_254, with IC50 values of 23 and 11µM, respectively. They also displayed significant anti-proliferation activity against lymphoma cell lines. Thus, we discovered potent EZH2 inhibitors with novel scaffold using combined in silico screening and experimental study. Results from this study can also guide further development of novel specific EZH2 inhibitors.


Assuntos
Antineoplásicos/farmacologia , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
16.
PLoS One ; 9(12): e111840, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25493630

RESUMO

Patients with non-Hodgkin lymphoma (NHL) are treated today with a cocktail of drugs referred to as CHOP (Cyclophosphamide, Hydroxyldaunorubicin, Oncovin, and Prednisone). Subsets of patients with NHL of germinal center origin bear oncogenic mutations in the EZH2 histone methyltransferase. Clinical testing of the EZH2 inhibitor EPZ-6438 has recently begun in patients. We report here that combining EPZ-6438 with CHOP in preclinical cell culture and mouse models results in dramatic synergy for cell killing in EZH2 mutant germinal center NHL cells. Surprisingly, we observe that much of this synergy is due to Prednisolone - a glucocorticoid receptor agonist (GRag) component of CHOP. Dramatic synergy was observed when EPZ-6438 is combined with Prednisolone alone, and a similar effect was observed with Dexamethasone, another GRag. Remarkably, the anti-proliferative effect of the EPZ-6438+GRag combination extends beyond EZH2 mutant-bearing cells to more generally impact germinal center NHL. These preclinical data reveal an unanticipated biological intersection between GR-mediated gene regulation and EZH2-mediated chromatin remodeling. The data also suggest the possibility of a significant and practical benefit of combining EZH2 inhibitors and GRag that warrants further investigation in a clinical setting.


Assuntos
Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Benzamidas/farmacologia , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Linfoma não Hodgkin/tratamento farmacológico , Piridonas/farmacologia , Animais , Compostos de Bifenilo , Linhagem Celular Tumoral , Ciclofosfamida/farmacologia , Dexametasona/farmacologia , Doxorrubicina/farmacologia , Avaliação Pré-Clínica de Medicamentos , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glucocorticoides/farmacologia , Humanos , Linfoma não Hodgkin/metabolismo , Camundongos SCID , Morfolinas , Transplante de Neoplasias , Prednisolona/farmacologia , Prednisona/farmacologia , Distribuição Aleatória , Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/metabolismo , Vincristina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA