Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Chin Med ; 51(4): 1041-1066, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37120706

RESUMO

Metastasis of osteosarcoma is an important adverse factor affecting patients' survival, and cancer stemness is the crucial cause of distant metastasis. Capsaicin, the main component of pepper, has been proven in our previous work to inhibit osteosarcoma proliferation and enhance its drug sensitivity to cisplatin at low concentrations. This study aims to further explore the anti-osteosarcoma effect of capsaicin at low concentrations (100[Formula: see text][Formula: see text]M, 24[Formula: see text]h) on stemness and metastasis. The stemness of human osteosarcoma (HOS) cells was decreased significantly by capsaicin treatment. Additionally, the capsaicin treatment's inhibition of cancer stem cells (CSCs) was dose-dependent on both sphere formation and sphere size. Meanwhile, capsaicin inhibited invasion and migration, which might be associated with 25 metastasis-related genes. SOX2 and EZH2 were the most two relevant stemness factors for capsaicin's dose-dependent inhibition of osteosarcoma. The mRNAsi score of HOS stemness inhibited by capsaicin was strongly correlated with most metastasis-related genes of osteosarcoma. Capsaicin downregulated six metastasis-promoting genes and up-regulated three metastasis-inhibiting genes, which significantly affected the overall survival and/or disease-free survival of patients. In addition, the CSC re-adhesion scratch assay demonstrated that capsaicin inhibited the migration ability of osteosarcoma by inhibiting its stemness. Overall, capsaicin exerts a significant inhibitory effect on the stemness expression and metastatic ability of osteosarcoma. Moreover, it can inhibit the migratory ability of osteosarcoma by suppressing its stemness via downregulating SOX2 and EZH2. Therefore, capsaicin is expected to be a potential drug against osteosarcoma metastasis due to its ability to inhibit cancer stemness.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Capsaicina/farmacologia , Capsaicina/uso terapêutico , Capsaicina/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/farmacologia , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição SOXB1/farmacologia
2.
J Gastroenterol Hepatol ; 38(3): 441-450, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36652457

RESUMO

BACKGROUND AND AIM: Whether vitamin D3 (VD3) supplementation is associated with improved liver fibrosis is controversial. METHODS: Liver fibrosis models were treated with VD3, active VD (1,25-OH2 Vitamin D3), or collaboration with GSK126 (Ezh2 inhibitor), respectively. Hepatic stellate cells (HSCs) were co-cultured with hepatocytes and then stimulated with TGF-ß. Autophagy of hepatocytes was determined after the intervention of 1,25-OH2 Vitamin D3 and GSK126. Also, the active status of HSCs and the mechanism with 1,25-OH2 Vitamin D3 and GSK126 intervention were detected. RESULTS: 1,25-OH2 Vitamin D3, but not VD3, is involved in anti-fibrosis and partially improves liver function, which might be associated with related enzymes and receptors (especially CYP2R1), leading to decreased of its biotransformation. GSK126 plays a synergistic role in anti-fibrosis. The co-culture system showed increased hepatocyte autophagy after HSCs activation. Supplementation with 1,25-OH2 Vitamin D3 or combined GSK126 reduced these effects. Further studies showed that 1,25-OH2 Vitamin D3 promoted H3K27 methylation of DKK1 promoter through VDR/Ezh2 due to the weakening for HSCs inhibitory signal. CONCLUSIONS: VD3 bioactive form 1,25-OH2 Vitamin D3 is responsible for the anti-fibrosis, which might have bidirectional effects on HSCs by regulating histone modification. The inhibitor of Ezh2 plays a synergistic role in this process.


Assuntos
Colecalciferol , Proteína Potenciadora do Homólogo 2 de Zeste , Inibidores Enzimáticos , Células Estreladas do Fígado , Cirrose Hepática , Humanos , Colecalciferol/metabolismo , Colecalciferol/farmacologia , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/farmacologia , Células Estreladas do Fígado/metabolismo , Hepatócitos/metabolismo , Fígado/patologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Fator de Crescimento Transformador beta/metabolismo , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA