Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 311
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 327: 117973, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38403002

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: It has been found that pilose antler peptide has an antidepressant effect on depression. However, the exact molecular mechanism of its antidepressant effect is still unclear. AIM OF THE STUDY: The study sought to determine the impact of monomeric pilose antler peptide (PAP; sequence LVLVEAELRE) on depression as well as investigate potential molecular mechanisms. MATERIALS AND METHODS: Chronic unexpected mild stress (CUMS) was used to establish the model, and the effect of PAP on CUMS mice was detected by the behavioral test. The influence of PAP on neuronal cells and dendritic spine density was observed by immunofluorescence and Golgi staining. FGFR3 and the CaMKII-associated pathway were identified using quantitative real-time polymerase chain reaction, and Western blot analysis was utilized to measure their proteins and gene expression levels. Molecular docking and microscale thermophoresis were applied to detect the binding of PAP and FGFR3. Finally, the effect of FGFR3's overexpression on PAP treatment of depression was detected. RESULTS: PAP alleviated the changes in depressive behavior induced by CUMS, promoted the growth of nerve cells, and the density of dendritic spines was increased to its original state. PAP therapy successfully downregulated the expression of FGFR3 and ERK1/2 while upregulating the expression of CREB, BDNF, and CaMKII. CONCLUSION: Based on the current research, PAP has a therapeutic effect on depression brought on by CUMS by inhibiting FGFR3 expression and enhancing synaptic plasticity.


Assuntos
Depressão , Peptídeos , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos , Camundongos , Animais , Depressão/tratamento farmacológico , Depressão/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Simulação de Acoplamento Molecular , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antidepressivos/metabolismo , Hipocampo/metabolismo , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças
2.
Transl Stroke Res ; 15(2): 476-494, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-36781743

RESUMO

Early brain injury (EBI) is the leading cause of poor prognosis for patients suffering from subarachnoid hemorrhage (SAH), particularly learning and memory deficits in the repair phase. A recent report has involved calcium/calmodulin-dependent protein kinase II (CaMKII) in the pathophysiological process underlying SAH-induced EBI. Alpha-asarone (ASA), a major compound isolated from the Chinese medicinal herb Acorus tatarinowii Schott, was proven to reduce secondary brain injury by decreasing CaMKII over-phosphorylation in rats' model of intracerebral hemorrhage in our previous report. However, the effect of ASA on SAH remains unclear, and the role of CaMKII in both acute and recovery stages of SAH needs further investigation. In this work, we first established a classic SAH rat model by endovascular perforation and intraperitoneally administrated different ASA doses (10, 20, and 40 mg/kg) 2 h after successful modeling. Then, the short- and long-term neurobehavioral performances were blindly evaluated to confirm ASA's efficacy against SAH. Subsequently, we explored ASA's therapeutic mechanism in both acute and recovery stages using histopathological examination, TUNEL staining, flow cytometry, Western-blot, double-immunofluorescence staining, and transmission electron microscopy (TEM) observation. Finally, KN93, a selective CaMKII inhibitor, was applied in oxyhemoglobin-damaged HT22 cells to explore the role of CaMKII in ASA's neuroprotective effect. The results demonstrated that ASA alleviated short- and long-term neurological dysfunction, reduced mortality and seizure rate within 24 h, and prolonged 14-day survival in SAH rats. Histopathological examination showed a reduction of neuronal damage and a restoration of the hippocampal structure after ASA treatment in both acute and recovery phases of SAH. In the acute stage, the Western-blot and flow cytometer analyses showed that ASA restored E/I balance, reduced calcium overload and CaMKII phosphorylation, and inhibited mitochondrion-involved apoptosis, thus preventing neuronal damage and apoptosis underlying EBI post-SAH. In the recovery stage, the TEM observation, double-immunofluorescence staining, and Western-blot analyses indicated that ASA increased the numbers of synapses and enhanced synaptic plasticity in the ipsilateral hippocampi, probably by promoting NR2B/CaMKII interaction and activating subsequent CREB/BDNF/TrkB signaling pathways. Furthermore, KN93 notably reversed ASA's neuroprotective effect on oxyhemoglobin-damaged HT22 cells, confirming CaMKII a potential target for ASA's efficacy against SAH. Our study confirmed for the first time that ASA ameliorated the SAH rats' neurobehavioral deterioration, possibly via modulating CaMKII-involved pathways. These findings provided a promising candidate for the clinical treatment of SAH and shed light on future drug discovery against SAH.


Assuntos
Derivados de Alilbenzenos , Anisóis , Benzenossulfonamidas , Benzilaminas , Lesões Encefálicas , Fármacos Neuroprotetores , Hemorragia Subaracnóidea , Humanos , Ratos , Animais , Ratos Sprague-Dawley , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/patologia , Cálcio/uso terapêutico , Oxiemoglobinas/uso terapêutico , Lesões Encefálicas/etiologia
3.
CNS Neurosci Ther ; 30(4): e14520, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38018559

RESUMO

AIMS: Negative emotions induced by chronic pain are a serious clinical problem. Electroacupuncture (EA) is a clinically proven safe and effective method to manage pain-related negative emotions. However, the circuit mechanisms underlying the effect of EA treatment on negative emotions remain unclear. METHODS: Plantar injection of complete Freund's adjuvant (CFA) was performed to establish a rat model of chronic inflammatory pain-induced anxiety-like behaviors. Adeno-associated virus (AAV) tracing was used to identify excitatory synaptic transmission from the rostral anterior cingulate cortex (rACC) to the dorsal raphe nucleus (DRN). Employing chemogenetic approaches, we examined the role of the rACC-DRN circuit in chronic pain-induced anxiety-like behaviors and investigated whether EA could reverse chronic pain-induced dysfunctions of the rACC-DRN circuit and anxiety-like behaviors. RESULTS: We found that chemogenetic activation of the rACC-DRN circuit alleviated CFA-induced anxiety-like behaviors, while chemogenetic inhibition of the rACC-DRN circuit resulted in short-term CFA-induced anxiety-like behaviors. Further research revealed that the development of CFA-induced anxiety-like behaviors was attributed to the dysfunction of rACC CaMKII neurons projecting to DRN serotonergic neurons (rACCCaMKII-DRN5-HT neurons) but not rACC CaMKII neurons projecting to DRN GABAergic neurons (rACCCaMKII-DRNGABA neurons). This is supported by the findings that chemogenetic activation of the rACCCaMKII-DRN5-HT circuit alleviates anxiety-like behaviors in rats with chronic pain, whereas neither chemogenetic inhibition nor chemogenetic activation of the rACCCaMKII-DRNGABA circuit altered CFA chronic pain-evoked anxiety-like behaviors in rats. More importantly, we found that EA could reverse chronic pain-induced changes in the activity of rACC CaMKII neurons and DRN 5-HTergic neurons and that chemogenetic inhibition of the rACCCaMKII-DRN5-HT circuit blocked the therapeutic effects of EA on chronic pain-induced anxiety-like behaviors. CONCLUSIONS: Our data suggest that the reversal of rACCCaMKII-DRN5-HT circuit dysfunction may be a mechanism underlying the therapeutic effect of EA on chronic pain-induced anxiety-like behaviors.


Assuntos
Ansiolíticos , Dor Crônica , Eletroacupuntura , Ratos , Animais , Ansiolíticos/farmacologia , Dor Crônica/induzido quimicamente , Dor Crônica/terapia , Serotonina , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Ansiedade/tratamento farmacológico , Neurônios Serotoninérgicos , Ácido gama-Aminobutírico/farmacologia
4.
Acupunct Med ; 42(1): 23-31, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38126262

RESUMO

BACKGROUND: This study aimed to investigate the effects of electroacupuncture (EA) on cognitive recovery and synaptic remodeling in a rat model of middle cerebral artery occlusion (MCAO) followed by reperfusion and explore the possible mechanism. METHOD: Focal cerebral ischemia was modeled in healthy adult Sprague-Dawley rats by MCAO. The MCAO rats were classified into four groups: sham, MCAO, MCAO + GB20 (receiving EA at GB20) and MCAO + NA (receiving EA at a "non-acupoint" location not corresponding to any traditional acupuncture point location about 10 mm above the iliac crest). Neurological deficit scores and behavior were assessed before and during the treatment. After intervention for 7 days, the hippocampus was dissected to analyze growth-associated protein (GAP)-43, synaptophysin (SYN) and postsynaptic density protein (PSD)-95 expression levels by Western blotting. Bioinformatic analysis and primary hippocampal neurons with calcium-voltage gated channel subunit alpha 1B (CACNA1B) gene overexpression were used to screen the target genes for EA against MCAO. RESULTS: Significant amelioration of neurological deficits and learning/memory were found in MCAO + GB20 rats compared with MCAO or MCAO + NA rats. Protein levels of GAP-43, SYN and PSD-95 were significantly improved in MCAO + GB20-treated rats together with an increase in the number of synapses in the hippocampal CA1 region. CACNA1B appeared to be a target gene of EA in MCAO. There were increased mRNA levels of CACNA1B, calmodulin (CaM), Ca2+/calmodulin-dependent protein kinase type II (CaMKII) and cyclic adenosine monophosphate response element binding (CREB) and increased phosphorylation of CaM, CaMKII and CREB in the hippocampal region in MCAO + GB20 versus MCAO and MCAO + NA groups. CACNA1B overexpression modulated expression of the CaM-CaMKII-CREB axis. CONCLUSION: EA treatment at GB20 may ameliorate the negative effects of MCAO on cognitive function in rats by enhancing synaptic plasticity. EA treatment at GB20 may exert this neuroprotective effect by regulating the CACNA1B-CaM-CaMKII-CREB axis.


Assuntos
Isquemia Encefálica , Eletroacupuntura , Traumatismo por Reperfusão , Ratos , Animais , Ratos Sprague-Dawley , Calmodulina/metabolismo , Calmodulina/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/farmacologia , Cognição , Transdução de Sinais , Isquemia Encefálica/genética , Isquemia Encefálica/terapia , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/terapia , Plasticidade Neuronal
5.
Behav Brain Res ; 461: 114836, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38145873

RESUMO

Alzheimer's disease (AD) is characterized by cognitive impairment. It is common in the elderly. Etiologically, dysfunction of cholinergic neurotransmitter system is prominent in AD. However, disease modifying drug for AD is still unavailable. We hypothesized that krill oil and modified krill oil containing 20 % lysophosphatidylcholine-docosahexaenoic acid (LPC-DHA, LPC20K) could play a crucial role in AD by improving cognitive functions measured by several behavioral tests. We found that LPC20K could ameliorate short-term, long-term, spatial, and object recognition memory under cholinergic hypofunction states. To find the underlying mechanism involved in the effect of LPC20K on cognitive function, we investigated changes of signaling molecules using Western blotting. Expression levels of protein kinase C zeta (PKCζ) and postsynaptic density protein 95 (PSD-95), and phosphorylation levels of extracellular signal-regulated kinase (ERK), Ca2+/calmodulin-dependent protein kinase Ⅱ (CaMKⅡ), and cAMP response element-binding protein (CREB) were significantly increased in LPC20K-administered group compared to those in the memory impairment group. Moreover, the expression levels of BDNF were temporally increased especially 6 or 9 h after administration of LPC20K compared with the control group. These results suggest that LPC20K could ameliorate memory impairment caused by hypocholinergic state by enhancing the expression levels of PKCζ and PSD-95, and phosphorylation levels of ERK, CaMKⅡ and CREB and increasing BDNF expression levels. Therefore, LPC20K could be used as a dietary supplement against cognitive impairment observed in diseases such as AD with a hypocholinergic state.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Euphausiacea , Humanos , Animais , Idoso , Escopolamina/farmacologia , Euphausiacea/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Aprendizagem em Labirinto , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Colinérgicos/farmacologia , Hipocampo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo
6.
Biol Res ; 56(1): 65, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38041203

RESUMO

BACKGROUND: Impaired pattern separation occurs in the early stage of Alzheimer's disease (AD), and hippocampal dentate gyrus (DG) neurogenesis participates in pattern separation. Here, we investigated whether spatial memory discrimination impairment can be improved by promoting the hippocampal DG granule cell neogenesis-mediated pattern separation in the early stage of AD by electroacupuncture (EA). METHODS: Five familial AD mutations (5 × FAD) mice received EA treatment at Baihui and Shenting points for 4 weeks. During EA, mice were intraperitoneally injected with BrdU (50 mg/kg) twice a day. rAAV containing Wnt5a shRNA was injected into the bilateral DG region, and the viral efficiency was evaluated by detecting Wnt5a mRNA levels. Cognitive behavior tests were conducted to assess the impact of EA treatment on cognitive function. The hippocampal DG area Aß deposition level was detected by immunohistochemistry after the intervention; The number of BrdU+/CaR+ cells and the gene expression level of calretinin (CaR) and prospero homeobox 1(Prox1) in the DG area of the hippocampus was detected to assess neurogenesis by immunofluorescence and western blotting after the intervention; The gene expression levels of FZD2, Wnt5a, DVL2, p-DVL2, CaMKII, and p-CaMKII in the Wnt signaling pathway were detected by Western blotting after the intervention. RESULTS: Cognitive behavioral tests showed that 5 × FAD mice had impaired pattern separation (P < 0.001), which could be improved by EA (P < 0.01). Immunofluorescence and Western blot showed that the expression of Wnt5a in the hippocampus was decreased (P < 0.001), and the neurogenesis in the DG was impaired (P < 0.001) in 5 × FAD mice. EA could increase the expression level of Wnt5a (P < 0.05) and promote the neurogenesis of immature granule cells (P < 0.05) and the development of neuronal dendritic spines (P < 0.05). Interference of Wnt5a expression aggravated the damage of neurogenesis (P < 0.05), weakened the memory discrimination ability (P < 0.05), and inhibited the beneficial effect of EA (P < 0.05) in AD mice. The expression level of Wnt pathway related proteins such as FZD2, DVL2, p-DVL2, CAMKII, p-CAMKII increased after EA, but the effect of EA was inhibited after Wnt5a was knocked down. In addition, EA could reduce the deposition of Aß plaques in the DG without any impact on Wnt5a. CONCLUSION: EA can promote hippocampal DG immature granule cell neogenesis-mediated pattern separation to improve spatial memory discrimination impairment by regulating Wnt5a in 5 × FAD mice.


Assuntos
Doença de Alzheimer , Eletroacupuntura , Camundongos , Animais , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Bromodesoxiuridina , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Hipocampo/metabolismo , Modelos Animais de Doenças , Neurogênese , Giro Denteado/metabolismo
7.
Zhonghua Yi Xue Za Zhi ; 103(36): 2881-2888, 2023 Sep 26.
Artigo em Chinês | MEDLINE | ID: mdl-37726995

RESUMO

Objective: To explore the effect and mechanism of 1, 25(OH)2D3 on myocardial inflammation induced by Coxsackie virus B3 (CVB3) in mice. Methods: Wild type (WT) and 1α-hydroxylase knockout [1(OH)ase-/-] male mice were divided into four groups: WT group, WT+CVB3 group, 1(OH)ase-/-+CVB3 group and 1(OH)ase-/-+CVB3+VD3 group, with 8 mice in each group. The indicators for evaluating myocardial cell injury were examined by different methods. The mRNA levels of pro-inflammatory cytokines [interlenkin (IL)-1ß, IL-6, interferon γ (IFN-γ) and tumor necrosis factor α (TNF-α)] were determined by quantitative real-time PCR. Hematoxylin-eosin (HE) staining was used to observe the myocardial histopathological changes. The apoptosis of myocardial cells was detected by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining and flow cytometry. Fluo-4/AM fluorescence probe was used to detect intracellular calcium ion content. Meanwhile, the expression levels of Ca2+/Calmodulin-dependent protein kinase Ⅱ (CaMKⅡ) protein as well as endoplasmic reticulum stress-related proteins like glucose-related protein 78 (GRP78) and C/EBP homologous protein (CHOP) in the myocardial tissues were detected by Western blot. Results: Compared with WT group, the mRNA levels of pro-inflammatory factors increased in the cardiomyocytes of mice in WT+CVB3 group, including IL-1ß (14.88±3.32 vs 1.03±0.02, P=0.009), IL-6 (7.00±1.09 vs 1.81±0.18, P=0.005), IFN-γ (4.70±1.11 vs 1.34±0.34, P=0.006) and TNF-α (17.20±3.22 vs 1.02±0.12, P<0.001). Similarly, the infiltration of inflammatory cells, and the apoptosis rate of cardiomyocytes elevated (16.66%±1.09% vs 7.85%±1.12%, P=0.012). The level of calcium ions in myocardial cytoplasm was significantly higher in WT+CVB3 group than that in the WT group (2.98±1.05 vs 0.96±0.10, P=0.006). Likewise, the expression levels of pCaMKⅡ(1.97±0.34 vs 1.00±0, P<0.001), GRP78 (1.78±0.19 vs 1.00±0, P=0.005) and CHOP (1.62±0.09 vs 1.00±0, P=0.002) in WT+CVB3 group up-regulated. The above myocardial cell injury markers were more significant in the 1(OH)ase-/-+CVB3 group. In the 1(OH)ase-/-+CVB3+VD3 group, 1, 25(OH)2D3 supplementation significantly improved myocardial cell injury indicators. Meanwhile, the specific inhibitors of CaMKⅡ can also reduce the myocardial injury and apoptosis rate of CVB3-infected mice. Conclusion: 1, 25(OH)2D3 deficiency can aggravate myocardial inflammation through over activation of CaMKⅡ.


Assuntos
Cálcio , Miocardite , Masculino , Animais , Camundongos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Chaperona BiP do Retículo Endoplasmático , Interleucina-6 , Fator de Necrose Tumoral alfa , Inflamação
8.
Brain Behav ; 13(10): e3177, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37548586

RESUMO

BACKGROUND: Central sensitization is one of the important mechanisms underlying neuropathic and radicular pain due to cervical spondylotic radiculopathy (CSR). Recent studies have shown that the calmodulin-dependent protein kinase II (CaMKII)/cAMP-response element binding protein (CREB)/brain-derived neurotrophic factor (BDNF) signaling pathway mediates central sensitization through its involvement in spinal cord synaptic plasticity. Our group has previously found that electroacupuncture (EA) has a good analgesic effect on CSR. However, the central analgesic mechanism of EA for CSR is not yet clear. METHODS: The rats were randomly divided into Blank group, Sham-operated group, CSR group, and EA group. We prepared the CSR rat model using the fish wire extrusion method. The behavioral and mechanical pain thresholds of the rats in each group were measured 5 days after successful modeling and 7 days after the intervention. The first intervention was started 5 days after successful modeling, and the EA group was treated by acupuncture at the bilateral LI4 and LR3 points on the same side as one group, connected to a G6805-I electroacupuncture apparatus with continuous waves at 1.5 Hz. The remaining groups were not subjected to EA intervention. The treatment was administered once a day for 7 consecutive days and then executed. We used WB, immunofluorescence, and qRT-PCR to detect the expression of CaMKII/CREB/BDNF signaling pathway-related factors in the synaptic of rat spinal cord in each group. RESULTS: EA improved pain threshold and motor function in CSR rats, inhibited the expression of BDNF, P-TrkB, CAMKII, and P-CREB in spinal cord synapses, reduced the expression of pain factor c-fos and postsynaptic membrane protein molecule neuroligin2, exerted a modulating effect on spinal cord synaptic plasticity in CSR rats, and suppressed the overactive synaptic efficacy. CONCLUSION: EA mediates central sensitization and exerts analgesic effects on CSR by modulating spinal synaptic plasticity, which may be related to the inhibition of CaMKII/CREB/BDNF signaling pathway.


Assuntos
Eletroacupuntura , Radiculopatia , Ratos , Animais , Ratos Sprague-Dawley , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Radiculopatia/metabolismo , Eletroacupuntura/métodos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Transdução de Sinais , Medula Espinal , Limiar da Dor , Plasticidade Neuronal , Analgésicos
9.
Nature ; 621(7977): 146-153, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648853

RESUMO

Learning and memory are thought to require hippocampal long-term potentiation (LTP), and one of the few central dogmas of molecular neuroscience that has stood undisputed for more than three decades is that LTP induction requires enzymatic activity of the Ca2+/calmodulin-dependent protein kinase II (CaMKII)1-3. However, as we delineate here, the experimental evidence is surprisingly far from conclusive. All previous interventions inhibiting enzymatic CaMKII activity and LTP4-8 also interfere with structural CaMKII roles, in particular binding to the NMDA-type glutamate receptor subunit GluN2B9-14. Thus, we here characterized and utilized complementary sets of new opto-/pharmaco-genetic tools to distinguish between enzymatic and structural CaMKII functions. Several independent lines of evidence demonstrated LTP induction by a structural function of CaMKII rather than by its enzymatic activity. The sole contribution of kinase activity was autoregulation of this structural role via T286 autophosphorylation, which explains why this distinction has been elusive for decades. Directly initiating the structural function in a manner that circumvented this T286 role was sufficient to elicit robust LTP, even when enzymatic CaMKII activity was blocked.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Potenciação de Longa Duração , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/fisiologia , Aprendizagem/fisiologia , Potenciação de Longa Duração/fisiologia , Optogenética , Fosforilação , Ligação Proteica
10.
J Hazard Mater ; 458: 131949, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37392641

RESUMO

The production of plastic is still increasing globally, which has led to an increasing number of plastic particles in the environment. Nanoplastics (NPs) can penetrate the blood-brain barrier and induce neurotoxicity, but in-depth mechanism and effective protection strategies are lacking. Here, C57BL/6 J mice were treated with 60 µg polystyrene NPs (PS-NPs, 80 nm) by intragastric administration for 42 days to establish NPs exposure model. We found that 80 nm PS-NPs could reach and cause neuronal damage in the hippocampus, and alter the expression of neuroplasticity-related molecules (5-HT, AChE, GABA, BDNF and CREB), and even affect the learning and memory ability of mice. Mechanistically, combined with the results of hippocampus transcriptome, gut microbiota 16 s ribosomal RNA and plasma metabolomics, we found that the gut-brain axis mediated circadian rhythm related pathways were involved in the neurotoxicity of NPs, especially Camk2g, Adcyap1 and Per1 may be the key genes. Both melatonin and probiotic can significantly reduce intestinal injury and restore the expression of circadian rhythm-related genes and neuroplasticity molecules, and the intervention effect of melatonin is more effective. Collectively, the results strongly suggest the gut-brain axis mediated hippocampal circadian rhythm changes involved in the neurotoxicity of PS-NPs. Melatonin or probiotics supplementation may have the application value in the prevention of neurotoxicity of PS-NPs.


Assuntos
Melatonina , Nanopartículas , Síndromes Neurotóxicas , Poluentes Químicos da Água , Animais , Camundongos , Camundongos Endogâmicos C57BL , Eixo Encéfalo-Intestino , Poliestirenos , Microplásticos , Plásticos , Ritmo Circadiano , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina
11.
Ecotoxicol Environ Saf ; 263: 115262, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37480693

RESUMO

China has the world's largest reserves of rare earth elements (REEs), but widespread mining and application of REEs has led to an increased risk of potential pollution. Yttrium (Y), the first heavy REEs to be discovered, poses a substantial threat to human health. Unfortunately, little attention has been given to the impact of Y on human reproductive health. In this study, we investigated the toxic effects of YCl3 on mouse testes and four types of testicular cells, including Sertoli, Leydig, spermatogonial and spermatocyte cells. The results showed that YCl3 exposure causes substantial damage to mouse testes and induces apoptosis and autophagy, but not pyroptosis or necrosis, in testicular cells. Genome-wide gene expression analysis revealed that YCl3 induced significant changes in gene expression, with Ca2+ and mitochondria-related genes being the most significantly altered. Mechanistically, YCl3 exposure induced mitochondrial dysfunction in testicular cells, triggering the overproduction of reactive oxygen species (ROS) by impairing the Nrf2 pathway, regulating downstream Ho-1 target protein expression, and increasing Ca2+ levels to activate the CamkII/Ampk signaling pathway. Blocking ROS production or Ca2+ signaling significantly attenuates apoptosis and autophagy, while supplementation with Ca2+ reverses the suppression of apoptosis and autophagy by ROS blockade in testicular cells. Notably, apoptosis and autophagy induced by YCl3 treatment are independent of each other. Thus, our study suggests that YCl3 may impair the antioxidant stress signaling pathway and activate the calcium pathway through the ROS-Ca2+ axis, which promotes testicular cell apoptosis and autophagy independently, thus inducing testicular damage and impairing male reproductive function.


Assuntos
Metais Terras Raras , Ítrio , Humanos , Animais , Camundongos , Masculino , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Espécies Reativas de Oxigênio , Apoptose , Autofagia , DNA Mitocondrial , Genitália Masculina
12.
Theranostics ; 13(10): 3149-3164, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351159

RESUMO

Adolescent cocaine exposure (ACE) increases risk of developing psychiatric problems such as anxiety, which may drive relapse in later life, however, its underlying molecular mechanism remains poorly understood. Methods: ACE male mice model were established by exposing to cocaine during adolescent period. Elevated plus maze (EPM) were used to assess anxiety-like behaviors in mice. Within claustrum, local injection of SCH-23390, a specific antagonist for dopamine receptor 1 (D1R), or D1R knocking-down virus were used to regulate D1R function or expression on CaMKII-positive neurons (D1RCaMKII) in vivo. Electro-acupuncture (EA) treatment was performed at acupoints of Baihui and Yintang during withdrawal period. Results: We found that ACE mice exhibited anxiety-like behaviors, along with more activated CaMKII-positive neurons and increased D1RCaMKII levels in claustrum during adulthood. Inhibiting D1R function or knocking-down D1RCaMKII levels in claustrum efficiently reduced claustrum activation, and ultimately suppressed anxiety-like behaviors in ACE mice during adulthood. EA treatment alleviated ACE-evoked claustrum activation and anxiety-like behaviors by suppressing claustrum D1RCaMKII. Conclusion: Our findings identified a novel role of claustrum in ACE-induced anxiety-like behaviors, and put new insight into the D1RCaMKII in the claustrum. The claustrum D1RCaMKII might be a promising pharmacological target, such as EA treatment, to treat drug-induced anxiety-like behaviors.


Assuntos
Claustrum , Cocaína , Camundongos , Masculino , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Claustrum/metabolismo , Cocaína/metabolismo , Cocaína/farmacologia , Neurônios/metabolismo , Ansiedade/induzido quimicamente , Ansiedade/terapia , Receptores de Dopamina D1/metabolismo
13.
Chem Biol Interact ; 381: 110566, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37257577

RESUMO

The clinical use of doxorubicin (Dox) is narrowed due to its carbonyl reduction to doxorubicinol (Doxol) implicating resistance and cardiotoxicity. Hence, in the present study we have evaluated the cardioprotective effect of AKR1B1 (or aldose reductase, AR) inhibitor NARI-29 (epalrestat (EPS) analogue) and its effect in the Dox-modulated calcium/CaMKII/MuRF1 axis. Initially, the breast cancer patient survival associated with AKR1B1 expression was calculated using Kaplan Meier-plotter (KM-plotter). Further, breast cancer, cardiomyoblast (H9c2), and macrophage (RAW 264.7) cell lines were used to establish the in vitro combination effect of NARI-29 and Dox. To develop the cardiotoxicity model, mice were given Dox 2.5 mg/kg (i.p.), biweekly. The effect of AKR1B1 inhibition using NARI-29 on molecular and cardiac functional changes was measured using echocardiography, fluorescence-imaging, ELISA, immunoblotting, flowcytometry, High-Performance Liquid Chromatography with Fluorescence Detection (HPLC-FD) and cytokine-bead array methods. The bioinformatics data suggested that a high expression of AKR1B1 is associated with significantly low survival of breast cancer patients undergoing chemotherapy; hence, it could be a target for chemo-sensitization and chemo-prevention. Further, in vitro studies showed that AKR1B1 inhibition with NARI-29 has increased the accumulation and sensitized Dox to breast cancer cell lines. However, treatment with NARI-29 has alleviated the Dox-induced toxicity to cardiomyocytes and decreased the secretion of inflammatory cytokines from RAW 264.7 cells. In vivo studies revealed that the NARI-29 (25 and 50 mg/kg) has prevented the functional, histological, biochemical, and molecular alterations induced by Dox treatment. Moreover, we have shown that NARI-29 has prevented the carbonyl reduction of Dox to Doxol in the mouse heart, which reduced the calcium overload, prevented phosphorylation of CaMKII, and reduced the expression of MuRF1 to protect from cardiac injury and apoptosis. Hence in conclusion, AKR1B1 inhibitor NARI-29 could be used as an adjuvant therapeutic agent with Dox to prevent cardiotoxicity and synergize anti-breast cancer activity.


Assuntos
Aldeído Redutase , Cardiotoxicidade , Rodanina , Animais , Camundongos , Aldeído Redutase/metabolismo , Apoptose , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiotoxicidade/metabolismo , Doxorrubicina/efeitos adversos , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Rodanina/análogos & derivados , Rodanina/farmacologia
14.
J Bone Miner Res ; 38(7): 1015-1031, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37129025

RESUMO

Dysregulation of bone homeostasis is closely related to the pathogenesis of osteoporosis. Suppressing bone resorption by osteoclasts to attenuate bone loss has been widely investigated, but far less effort has been poured toward promoting bone formation by osteoblasts. Here, we aimed to explore magnesium ascorbyl phosphate (MAP), a hydrophilic and stable ascorbic acid derivative, as a potential treatment option for bone loss disorder by boosting osteoblastogenesis and bone formation. We found that MAP could promote the proliferation and osteoblastic differentiation of human skeletal stem and progenitor cells (SSPCs) in vitro. Moreover, MAP supplementation by gavage could alleviate bone loss and accelerate bone defect healing through promoting bone formation. Mechanistically, we identified calcium/calmodulin-dependent serine/threonine kinase IIα (CaMKIIα) as the target of MAP, which was found to be directly bound and activated by MAP, then with a concomitant activation in the phosphorylation of ERK1/2 (extracellular regulated kinase 1/2) and CREB (cAMP-response element binding protein) as well as an elevation of C-FOS expression. Further, blocking CaMKII signaling notably abolished these effects of MAP on SSPCs and bone remodeling. Taken together, our data indicated that MAP played an important role in enhancing bone formation through the activation of CaMKII/ERK1/2/CREB/C-FOS signaling pathway and may be used as a novel therapeutic option for bone loss disorders such as osteoporosis. © 2023 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Osteoporose , Humanos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/uso terapêutico , Osteogênese , Transdução de Sinais , Diferenciação Celular , Sistema de Sinalização das MAP Quinases , Osteoblastos/metabolismo , Osteoporose/metabolismo
15.
Phytomedicine ; 115: 154822, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37087789

RESUMO

BACKGROUND: Chronic cerebral hypoperfusion (CCH) is a leading cause of disability and mortality worldwide. Restoring cerebral blood flow (CBF) through vasodilatation is particularly important in the treatment of CCH. Costunolide (Cos) is a natural sesquiterpenoid compound with vasodilatory effect, but its mechanism is unclear. PURPOSE: This study aimed to investigate the vasodilatory mechanism of Cos and provide a new therapeutic regimen for treating CCH. METHODS: The therapeutic effect of Cos on CCH was assessed in a rat model of permanent common carotid artery occlusion. The direct target protein for improving CBF was identified by drug affinity responsive target stability combined with quantitative differential proteomics analysis. The molecular mechanism of Cos acting on its target protein was analyzed by multidisciplinary approaches. The signalling involved was assessed using site-directed pharmacological intervention. RESULTS: Cos has a significant therapeutic effect on ischemic brain injury by restoring CBF. Multifunctional calcium/calmodulin-dependent protein kinase II (CaMKII) was identified as a direct target of the natural small molecule Cos with a therapeutic effect on CCH. Mechanistic studies revealed that the α,ß-unsaturated-γ-lactone ring of Cos covalently binds to the Cys116 residue of CaMKII. It then inhibits the phosphorylation of CaMKII and reduces the calcium concentration in vascular smooth muscle cells, thus playing a role in vasodilation and increasing CBF. Notably, this covalent binding between Cos and CaMKII can exert a long-term vasodilator activity. CONCLUSION: We reported for the first time that Cos reduced ischemia-associated brain damage by covalently binding to the Cys116 residue of CaMKII, inhibiting CaMKII phosphorylation, and exerting long-term vasodilatory activity. This study not only found a new covalent inhibitor against the phosphorylation of CaMKII but also suggested that pharmacologically targeting CaMKII is a promising therapeutic strategy for CCH.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Sesquiterpenos , Ratos , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Fosforilação , Cálcio/metabolismo , Sesquiterpenos/farmacologia , Isquemia , Encéfalo/metabolismo
16.
CNS Neurosci Ther ; 29(5): 1254-1271, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36756710

RESUMO

BACKGROUND: Inflammation often leads to the occurrence of chronic pain, and many miRNAs have been shown to play a key role in the development of inflammatory pain. However, whether miR-26a-5p relieves pain induced by inflammation and its possible mechanism are still unclear. METHODS: The complete Freund's adjuvant (CFA)-induced inflammatory pain mouse model was employed. Intrathecal or subcutaneous injection of miR-26a-5p agomir was performed after modeling to study its antinociceptive effect and the comparison of different administration methods. Bioinformatics analysis of miRNAs was performed to study the downstream mechanisms of miR-26a-5p. HE staining, RT-qPCR, Western blotting, and immunofluorescence were used for further validation. RESULTS: A single intrathecal and subcutaneous injection of miR-26a-5p both reversed mechanical hypersensitivity and thermal latency in the left hind paw of mice with CFA-induced inflammatory pain. HE staining and immunofluorescence studies found that both administrations of miR-26a-5p alleviated inflammation in the periphery and spinal cord. Bioinformatics analysis and dual-luciferase reporter gene analysis identified Wnt5a as a direct downstream target gene of miR-26a-5p. Wnt5a was mainly expressed in neurons and microglia in the spinal cord of mice with inflammatory pain. Intrathecal injection of miR-26a-5p could significantly reduce the expression level of Wnt5a and inhibit the downstream molecules of noncanonical Wnt signaling Camk2/NFAT, inhibiting the release of spinal cord inflammatory factors and alleviating the activation of microglia. In addition, miR-26a-5p could also inhibit lipopolysaccharide (LPS)-stimulated BV2 cell inflammation in vitro through a noncanonical Wnt signaling pathway. CONCLUSIONS: miR-26a-5p is a promising therapy for CFA-induced inflammatory pain. Both intrathecal and subcutaneous injections provide relief for inflammatory pain. miR-26a-5p regulated noncanonical Wnt signaling to be involved in analgesia partly through antineuroinflammation, suggesting a pain-alleviating effect via noncanonical Wnt signaling pathway in the CFA-induced inflammatory pain model in vivo.


Assuntos
Hiperalgesia , MicroRNAs , Camundongos , Animais , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Adjuvante de Freund/toxicidade , Dor/tratamento farmacológico , Dor/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Inflamação/induzido quimicamente , Inflamação/genética
17.
Nutr Neurosci ; 26(12): 1243-1257, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36370050

RESUMO

The seed embryo of Nelumbo nucifera Gaertn. is a famous traditional Chinese medicine and food which is considered conducive to the prevention of Alzheimer's disease (AD). In this study, the effect and mechanism of TASENN (total alkaloids from the seed embryo of Nelumbo nucifera Gaertn.) on AD mice and amyloid-ß (Aß) injured PC12 cells were evaluated. HPLC-UV analysis showed that the extracted TASENN (purity = 95.6%) mainly contains Liensinine, Isoliensinine, and Neferine (purity was 23.01, 28.02, and 44.57%, respectively). In vivo, oral treatment with TASENN (50 mg/kg/day for 28 days) improved the learning and memory functions of APP/PS1 transgenic mice, ameliorated the histopathological changes of cortical and hippocampal neurons, and inhibited neuronal apoptosis. We found that TASENN reduced the phosphorylation of Tau and the formation of neurofibrillary tangles (NFTs) in APP/PS1 mouse brain. Moreover, TASENN down-regulated the expression of APP and BACE1, ameliorated Aß deposition, and inhibited microglial proliferation and aggregation. The elevated protein expression of CaM and p-CaMKII in APP/PS1 mouse brain was also reduced by TASENN. In vitro, TASENN inhibited the apoptosis of PC12 cells injured by Aß25-35 and increased the cell viability. Aß25-35-induced increase of cytosolic free Ca2+ level and high expression of CaM, p-CaMKII, and p-Tau were decreased by TASENN. Our findings indicate that TASENN has a potential therapeutic effect on AD mice and a protective effect on PC12 cells. The anti-AD activity of TASENN may be closely related to its negative regulation of the CaM pathway.


Assuntos
Alcaloides , Doença de Alzheimer , Disfunção Cognitiva , Nelumbo , Camundongos , Animais , Ratos , Nelumbo/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/uso terapêutico , Células PC12 , Ácido Aspártico Endopeptidases/uso terapêutico , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Camundongos Transgênicos , Alcaloides/uso terapêutico , Modelos Animais de Doenças , Precursor de Proteína beta-Amiloide/genética
18.
J Ethnopharmacol ; 302(Pt B): 115937, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36410575

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ayurvedic medicine has been used in the treatment of diabetes mellitus for centuries. In Arabia and some areas of Africa, Commiphora myrrha (CM) has been extensively used as a plant-based remedy. We have previously shown that an aqueous CM resin solution directly stimulates insulin secretion from MIN6 cells, a mouse ß-cell line, and isolated mouse and human islets. However, the signaling pathways involved in CM-induced insulin secretion are completely unknown. Insulin secretion is normally triggered by elevations in intracellular Ca2+ ([Ca2+]i) through voltage gated Ca2+ channels (VGCC) and activation of protein kinases. Protein and lipid kinases such as protein kinase A (PKA), Ca2+-calmodulin dependent protein kinase II (CaMKII), phosphoinositide 3-kinases (PI3Ks), protein kinase C (PKC) and mitogen-activated protein kinase (MAPK), specifically extracellular signal-regulated kinases (ERK1/2), may be involved in receptor-operated insulin secretion. Therefore, we hypothesized that CM may induce insulin secretion by modulating the activity of VGCC and/or one or more of the above kinases. AIM OF THE STUDY: To investigate the possible molecular mechanism of action of CM-induced insulin secretion. The effects of aqueous CM resin extract on [Ca2+]i and protein kinase activation from ß-cells were examined. METHODS: The effect of aqueous CM resin solution on [Ca2+]i was assessed using Ca2+ microfluorimetry. The involvement of VGCC in CM-induced insulin secretion was investigated using static and perifusion insulin secretion experiments in the presence of either EGTA, a Ca2+ chelator, or nifedipine, a blocker of VGCC. The involvement of kinase activation in the stimulatory effect of CM on insulin secretion was examined by using static and perifusion insulin secretion experiments in the presence of known pharmacological inhibitors and/or downregulation of specific kinases. The effects of CM on phosphorylation of PKCζ and ERK1/2 were also assessed using the Wes™ capillary-based protein electrophoresis. RESULTS: Ca2+ microfluorimetry measurements showed that exposing MIN6 cells to CM (0.5-2 mg/mL) was not associated with changes in [Ca2+]i. Similarly, incubating MIN6 cells and mouse islets with EGTA and nifedipine, respectively, did not attenuate the insulin secretion induced by CM. However, incubating mouse and human islets with CM in the presence of staurosporine, a non-selective protein kinase inhibitor, completely blocked the effect of CM on insulin secretion. Exposing mouse islets to CM in the presence of H89, KN62 and LY294002, inhibitors of PKA, CaMKII and PI3K, respectively, did not reduce CM-induced insulin secretion. However, incubating mouse and human islets with CM in the presence of Ro 31-8220, a pan-PKC inhibitor, diminished insulin secretion stimulated by CM, whereas inhibiting the action of typical PKC (with Go6976) and PLCß (with U73122) did not affect CM-stimulated insulin secretion. Similarly, downregulating typical and novel PKC by chronic exposure of mouse islets to phorbol 12-myristate 13-acetate (PMA) was also not associated with a decrease in the stimulatory effect of CM on insulin secretion. Interestingly, CM-induced insulin secretion from mouse islets was inhibited in the presence of the PKCζ inhibitor ZIP and a MAPK inhibitor PD 98059. In addition, Wes™ capillary-based protein electrophoresis indicated that expression of the phosphorylated forms of PKCζ and ERK1/2, a MAPK, was significantly increased following exposure of INS-1832/13 cells, a rat insulinoma cell line, to CM. CONCLUSIONS: Our data indicate that CM directly stimulates insulin secretion through activating known downstream effectors of insulin-stimulus secretion coupling. Indeed, the increase in insulin secretion seen with CM is independent of changes in [Ca2+]i and does not involve activation of VGCC. Instead, the CM stimulatory effect on insulin secretion is completely dependent on protein kinase activation. Our findings indicate that CM could induce insulin exocytosis by stimulating the phosphorylation and activation of PKCζ, which in turn phosphorylates and activates ERK1/2.


Assuntos
Commiphora , Neoplasias Pancreáticas , Humanos , Ratos , Animais , Camundongos , Secreção de Insulina , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Ácido Egtázico , Nifedipino , Proteína Quinase C , Proteínas Quinases Dependentes de AMP Cíclico , Insulina , MAP Quinases Reguladas por Sinal Extracelular , Acetato de Tetradecanoilforbol , Fosfatidilinositol 3-Quinases
19.
Mol Nutr Food Res ; 67(1): e2200597, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36382553

RESUMO

SCOPE: Hepatic steatosis is a major health issue that can be attenuated by a healthy diet. This study investigates the effects and molecular mechanisms of butyrate, a dietary fiber metabolite of gut microbiota, on lipid metabolism in hepatocytes. METHODS AND RESULTS: This study examines the effects of butyrate (0-8 mM) on lipid metabolism in primary hepatocytes. The results show that butyrate (2 mM) consistently inhibits lipogenic genes and activates lipid oxidation-related gene expression in hepatocytes. Furthermore, butyrate modulates lipid metabolism genes, reduces fat droplet accumulation, and activates the calcium/calmodulin-dependent protein kinase II (CaMKII)/histone deacetylase 1 (HDAC1)-cyclic adenosine monophosphate response element binding protein (CREB) signaling pathway in the primary hepatocytes and liver of wild-type (WT) mice, but not in G-protein-coupled receptor 41 (GPR41) knockout and 43 (GPR43) knockout mice. This suggests that butyrate regulated hepatic lipid metabolism requires GPR41 and GPR43. Finally, the study finds that dietary butyrate supplementation (5%) ameliorates hepatic steatosis and abnormal lipid metabolism in the liver of mice fed a high-fat and fiber-deficient diet for 15 weeks. CONCLUSION: This work reveals that butyrate improves hepatic lipid metabolism through the GPR41/43-CaMKII/HDAC1-CREB pathway, providing support for consideration of butyrate as a dietary supplement to prevent the progression of NAFLD induced by the Western-style diet.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Butiratos/farmacologia , Butiratos/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/farmacologia , Dieta , Dieta Hiperlipídica/efeitos adversos , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo
20.
Zhen Ci Yan Jiu ; 47(11): 949-54, 2022 Nov 25.
Artigo em Chinês | MEDLINE | ID: mdl-36453670

RESUMO

OBJECTIVE: To observe the effect of scalp acupuncture on the expression of argarginine vasopressin receptor-1a(V1aR), phosphorylated calmodulin-dependent protein kinase Ⅱ(p-CaMKⅡ), and aquaporin 4(AQP4) at hypothalamus in middle cerebral artery occlusion (MCAO) rats, so as to explore the molecular mechanisms of scalp acupuncture reducing encepha-ledema in acute ischemic stroke. METHODS: A total of 96 male SD rats were randomly divided into normal, model, inhibitor and scalp acupuncture groups, with 24 rats in each group. The MCAO model was established by thread occlusion method. The inhibitor group was intraperitoneally injected with V1aR inhibitor (30 µg/kg),once a day for 7 consecutive days. In the scalp acupuncture group, acupuncture was applied to bilateral "parietal and temporal anterior oblique line", with rapid insertion of 2 needles at 15° to 20°, twisting at 100 r/min for 1 min, and retaining the needles for 30 min, once a day for 7 consecutive days. The neurologic deficit score (NDS) and neurological score (NS) were evaluated before and after intervention. The positive expression of p-CaMKⅡ and AQP4 proteins in hypothalamus was detected by immunohistochemistry. The water content of left brain tissue was determined by BIIiot method. The expression of V1aR mRNA in hypothalamus was detected by real-time PCR. RESULTS: Compared with the normal group, the NDS, NS, hypothalamic V1aR mRNA expression, water content of the brain tissue, and hypothalamic p-CaMKⅡ and AQP4 positive expression levels were significantly increased (P<0.01) in the model group. Compared with the model group, the NDS, NS, hypothalamic V1aR mRNA expression, water content of the brain tissue, and hypothalamic p-CaMKⅡ and AQP4 positive expression levels were significantly decreased (P<0.01) in the inhibitor and scalp acupuncture groups. CONCLUSION: Regulating the signaling pathway of V1aR/CaMKⅡ/AQP4 in hypothalamus may be one of the molecular mechanisms of scalp acupuncture reducing encephaledema in acute ischemic stroke.


Assuntos
Terapia por Acupuntura , AVC Isquêmico , Animais , Masculino , Ratos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Infarto Cerebral , Hipotálamo , Ratos Sprague-Dawley , RNA Mensageiro , Couro Cabeludo , Transdução de Sinais , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA