Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1336854, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370359

RESUMO

Diabetic Peripheral Neuropathy (DPN) poses an escalating threat to public health, profoundly impacting well-being and quality of life. Despite its rising prevalence, the pathogenesis of DPN remains enigmatic, and existing clinical interventions fall short of achieving meaningful reversals of the condition. Notably, neurostimulation techniques have shown promising efficacy in alleviating DPN symptoms, underscoring the imperative to elucidate the neurobiochemical mechanisms underlying DPN. This study employs an integrated multi-omics approach to explore DPN and its response to neurostimulation therapy. Our investigation unveiled a distinctive pattern of vesicular glutamate transporter 2 (VGLUT2) expression in DPN, rigorously confirmed through qPCR and Western blot analyses in DPN C57 mouse model induced by intraperitoneal Streptozotocin (STZ) injection. Additionally, combining microarray and qPCR methodologies, we revealed and substantiated variations in the expression of the Amyloid Precursor Protein (APP) family in STZ-induced DPN mice. Analyzing the transcriptomic dataset generated from neurostimulation therapy for DPN, we intricately explored the differential expression patterns of VGLUT2 and APPs. Through correlation analysis, protein-protein interaction predictions, and functional enrichment analyses, we predicted the key biological processes involving VGLUT2 and the APP family in the pathogenesis of DPN and during neurostimulation therapy. This comprehensive study not only advances our understanding of the pathogenesis of DPN but also provides a theoretical foundation for innovative strategies in neurostimulation therapy for DPN. The integration of multi-omics data facilitates a holistic view of the molecular intricacies of DPN, paving the way for more targeted and effective therapeutic interventions.


Assuntos
Precursor de Proteína beta-Amiloide , Diabetes Mellitus Experimental , Proteína Vesicular 2 de Transporte de Glutamato , Animais , Camundongos , Precursor de Proteína beta-Amiloide/metabolismo , Western Blotting , Diabetes Mellitus Experimental/tratamento farmacológico , Modelos Animais de Doenças , Qualidade de Vida , Estreptozocina , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
2.
Biol Pharm Bull ; 45(9): 1385-1388, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36047209

RESUMO

Docosahexaenoic acid (DHA; 22:6n-3), which is enriched in the neuronal membrane, plays a variety of roles in the brain. Vesicular glutamate transporters (VGLUTs) are responsible for incorporating glutamine into synaptic vesicles. We investigated the influence of DHA on the fatty acid profile and the levels of VGLUT1 and VGLUT2 proteins in differentiated NG108-15 cells, a neuroblastoma-glioma hybrid cell line. NG108-15 cells were plated and 24 h later the medium was replaced with Dulbecco's modified Eagle's medium supplemented with 1% fetal bovine serum, 0.2 mM dibutyryl cAMP, and 100 nM dexamethasone, which was added to induce differentiation. After 6 d, the amount of DHA in the cells was increased by addition of DHA to the medium. VGLUT2 levels were increased by the addition of DHA. These data indicate that DHA affected the levels of VGLUT2 in NG108-15 cells under differentiation-promoting conditions, suggesting that DHA affects brain functions involving VGLUT2.


Assuntos
Ácidos Docosa-Hexaenoicos , Vesículas Sinápticas , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Vesículas Sinápticas/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
3.
Neurosci Bull ; 38(12): 1439-1456, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35644002

RESUMO

The lateral habenula (LHb), which is a critical neuroanatomical hub and a regulator of midbrain monoaminergic centers, is activated by events resulting in negative valence and contributes to the expression of both appetitive and aversive behaviors. However, whole-brain cell-type-specific monosynaptic inputs to the LHb in both sexes remain incompletely elucidated. In this study, we used viral tracing combined with in situ hybridization targeting vesicular glutamate transporter 2 (vGlut2) and glutamic acid decarboxylase 2 (Gad2) to generate a comprehensive whole-brain atlas of inputs to glutamatergic and γ-aminobutyric acid (GABA)ergic neurons in the LHb. We found >30 ipsilateral and contralateral brain regions that projected to the LHb. Of these, there were significantly more monosynaptic LHb-projecting neurons from the lateral septum, anterior hypothalamus, dorsomedial hypothalamus, and ventromedial hypothalamus in females than in males. More interestingly, we found a stronger GABAergic projection from the medial septum to the LHb in males than in females. Our results reveal a comprehensive connectivity atlas of glutamatergic and GABAergic inputs to the LHb in both sexes, which may facilitate a better understanding of sexual dimorphism in physiological and pathological brain functions.


Assuntos
Habenula , Animais , Masculino , Camundongos , Ácido Glutâmico/metabolismo , Habenula/metabolismo , Hipotálamo/metabolismo , Vias Neurais/fisiologia , Caracteres Sexuais , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Feminino
4.
J Comp Neurol ; 530(7): 1112-1125, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34468980

RESUMO

Glutamate is packaged in vesicles via two main vesicular transporter (VGLUT) proteins, VGLUT1 and VGLUT2, which regulate its storage and release from synapses of excitatory neurons. Studies in rodents, primates, ferrets, and tree shrews suggest that these transporters may identify distinct subsets of excitatory projections in visual structures, particularly in thalamocortical pathways where they tend to correlate with modulatory and driver projections, respectively. Despite being a well-studied model of thalamocortical connectivity, little is known about their expression pattern in the cat visual system. To expand current knowledge on their distribution and how they correlated with known driver and modulator projecting sites, we examined the protein expression patterns of VGLUT1 and VGLUT2 in the visual thalamus of the cat (lateral geniculate nucleus and the pulvinar complex). We also studied their expression pattern in relevant visual structures projecting to or receiving significant thalamic projections, such as the primary visual cortex and the superior colliculus. Our results indicate that both VGLUTs are consistently present throughout the cat visual system and show laminar or nuclei specificity in their distribution, which suggests, as in other species, that VGLUT1 and VGLUT2 represent distinct populations of glutamatergic projections.


Assuntos
Furões , Tálamo , Animais , Furões/metabolismo , Hibridização In Situ , Tálamo/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
5.
Endocrinology ; 162(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34270714

RESUMO

Energetic status often affects reproductive function, glucose homeostasis, and feeding in mammals. Malnutrition suppresses pulsatile release of the gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) and increases gluconeogenesis and feeding. The present study aims to examine whether ß-endorphin-µ-opioid receptor (MOR) signaling mediates the suppression of pulsatile GnRH/LH release and an increase in gluconeogenesis/feeding induced by malnutrition. Ovariectomized female rats treated with a negative feedback level of estradiol-17ß (OVX + low E2) receiving 2-deoxy-D-glucose (2DG), an inhibitor of glucose utilization, intravenously (iv) were used as a malnutrition model. An administration of D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), a selective MOR antagonist, into the third ventricle blocked the suppression of the LH pulse and increase in gluconeogenesis/feeding induced by iv 2DG administration. Histological analysis revealed that arcuate Kiss1 (kisspeptin gene)-expressing cells and preoptic Gnrh1 (GnRH gene)-expressing cells co-expressed little Oprm1 (MOR gene), while around 10% of arcuate Slc17a6 (glutamatergic marker gene)-expressing cells co-expressed Oprm1. Further, the CTOP treatment decreased the number of fos-positive cells in the paraventricular nucleus (PVN) in OVX + low E2 rats treated with iv 2DG but failed to affect the number of arcuate fos-expressing Slc17a6-positive cells. Taken together, these results suggest that the central ß-endorphin-MOR signaling mediates the suppression of pulsatile LH release and that the ß-endorphin may indirectly suppress the arcuate kisspeptin neurons, a master regulator for GnRH/LH pulses during malnutrition. Furthermore, the current study suggests that central ß-endorphin-MOR signaling is also involved in gluconeogenesis and an increase in food intake by directly or indirectly acting on the PVN neurons during malnutrition in female rats.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Luteinizante/metabolismo , Antagonistas de Entorpecentes/farmacologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Receptores Opioides mu/metabolismo , beta-Endorfina/metabolismo , Animais , Glicemia/análise , Feminino , Gluconeogênese , Hipotálamo , Kisspeptinas/metabolismo , Ratos , Ratos Wistar , Receptores Opioides mu/biossíntese , Transdução de Sinais , Proteína Vesicular 2 de Transporte de Glutamato/biossíntese
6.
Biochemistry ; 60(32): 2463-2470, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34319067

RESUMO

The role of glutamate in excitatory neurotransmission depends on its transport into synaptic vesicles by the vesicular glutamate transporters (VGLUTs). The three VGLUT isoforms exhibit a complementary distribution in the nervous system, and the knockout of each produces severe, pleiotropic neurological effects. However, the available pharmacology lacks sensitivity and specificity, limiting the analysis of both transport mechanism and physiological role. To develop new molecular probes for the VGLUTs, we raised six mouse monoclonal antibodies to VGLUT2. All six bind to a structured region of VGLUT2, five to the luminal face, and one to the cytosolic. Two are specific to VGLUT2, whereas the other four bind to both VGLUT1 and 2; none detect VGLUT3. Antibody 8E11 recognizes an epitope spanning the three extracellular loops in the C-domain that explains the recognition of both VGLUT1 and 2 but not VGLUT3. 8E11 also inhibits both glutamate transport and the VGLUT-associated chloride conductance. Since the antibody binds outside the substrate recognition site, it acts allosterically to inhibit function, presumably by restricting conformational changes. The isoform specificity also shows that allosteric inhibition provides a mechanism to distinguish between closely related transporters.


Assuntos
Anticorpos Monoclonais/imunologia , Proteínas Vesiculares de Transporte de Glutamato/imunologia , Regulação Alostérica/imunologia , Animais , Cloretos/metabolismo , Epitopos/química , Epitopos/imunologia , Ácido Glutâmico/metabolismo , Células HEK293 , Humanos , Isoformas de Proteínas/imunologia , Proteína Vesicular 1 de Transporte de Glutamato/química , Proteína Vesicular 1 de Transporte de Glutamato/imunologia , Proteína Vesicular 2 de Transporte de Glutamato/química , Proteína Vesicular 2 de Transporte de Glutamato/imunologia , Proteínas Vesiculares de Transporte de Glutamato/química , Xenopus laevis
7.
J Neurosci ; 41(15): 3462-3478, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33664133

RESUMO

Clinical and experimental data from the last nine decades indicate that the preoptic area of the hypothalamus is a critical node in a brain network that controls sleep onset and homeostasis. By contrast, we recently reported that a group of glutamatergic neurons in the lateral and medial preoptic area increases wakefulness, challenging the long-standing notion in sleep neurobiology that the preoptic area is exclusively somnogenic. However, the precise role of these subcortical neurons in the control of behavioral state transitions and cortical dynamics remains unknown. Therefore, in this study, we used conditional expression of excitatory hM3Dq receptors in these preoptic glutamatergic (Vglut2+) neurons and show that their activation initiates wakefulness, decreases non-rapid eye movement (NREM) sleep, and causes a persistent suppression of rapid eye movement (REM) sleep. We also demonstrate, for the first time, that activation of these preoptic glutamatergic neurons causes a high degree of NREM sleep fragmentation, promotes state instability with frequent arousals from sleep, decreases body temperature, and shifts cortical dynamics (including oscillations, connectivity, and complexity) to a more wake-like state. We conclude that a subset of preoptic glutamatergic neurons can initiate, but not maintain, arousals from sleep, and their inactivation may be required for NREM stability and REM sleep generation. Further, these data provide novel empirical evidence supporting the hypothesis that the preoptic area causally contributes to the regulation of both sleep and wakefulness.SIGNIFICANCE STATEMENT Historically, the preoptic area of the hypothalamus has been considered a key site for sleep generation. However, emerging modeling and empirical data suggest that this region might play a dual role in sleep-wake control. We demonstrate that chemogenetic stimulation of preoptic glutamatergic neurons produces brief arousals that fragment sleep, persistently suppresses REM sleep, causes hypothermia, and shifts EEG patterns toward a "lighter" NREM sleep state. We propose that preoptic glutamatergic neurons can initiate, but not maintain, arousal from sleep and gate REM sleep generation, possibly to block REM-like intrusions during NREM-to-wake transitions. In contrast to the long-standing notion in sleep neurobiology that the preoptic area is exclusively somnogenic, we provide further evidence that preoptic neurons also generate wakefulness.


Assuntos
Ácido Glutâmico/metabolismo , Hipotálamo/fisiologia , Neurônios/fisiologia , Sono REM , Vigília , Animais , Ondas Encefálicas , Hipotálamo/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
8.
Cereb Cortex ; 31(7): 3408-3425, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33676368

RESUMO

The synaptic organization of thalamic inputs to motor cortices remains poorly understood in primates. Thus, we compared the regional and synaptic connections of vGluT2-positive thalamocortical glutamatergic terminals in the supplementary motor area (SMA) and the primary motor cortex (M1) between control and MPTP-treated parkinsonian monkeys. In controls, vGluT2-containing fibers and terminal-like profiles invaded layer II-III and Vb of M1 and SMA. A significant reduction of vGluT2 labeling was found in layer Vb, but not in layer II-III, of parkinsonian animals, suggesting a potential thalamic denervation of deep cortical layers in parkinsonism. There was a significant difference in the pattern of synaptic connectivity in layers II-III, but not in layer Vb, between M1 and SMA of control monkeys. However, this difference was abolished in parkinsonian animals. No major difference was found in the proportion of perforated versus macular post-synaptic densities at thalamocortical synapses between control and parkinsonian monkeys in both cortical regions, except for a slight increase in the prevalence of perforated axo-dendritic synapses in the SMA of parkinsonian monkeys. Our findings suggest that disruption of the thalamic innervation of M1 and SMA may underlie pathophysiological changes of the motor thalamocortical loop in the state of parkinsonism.


Assuntos
Córtex Motor/ultraestrutura , Transtornos Parkinsonianos/patologia , Densidade Pós-Sináptica/ultraestrutura , Tálamo/ultraestrutura , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Feminino , Macaca mulatta , Masculino , Vias Neurais/ultraestrutura , Neurotoxinas , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
9.
Cell Rep ; 34(11): 108867, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33730568

RESUMO

The firing activity of dorso-medial-striatal-cholinergic interneurons (dmCINs) is a neural correlate of classical conditioning. Tonically active, they pause in response to salient stimuli, mediating acquisition of predictive cues/outcome associations. Cortical and thalamic inputs are typical of the rather limited knowledge about underlying circuitry contributing to this function. Here, we dissect the midbrain GABA and glutamate-to-dmCIN pathways and evaluate how they influence conditioned behavior. We report that midbrain neurons discriminate auditory cues and encode the association of a predictive stimulus with a footshock. Furthermore, GABA and glutamate cells form selective monosynaptic contacts onto dmCINs and di-synaptic ones via the parafascicular thalamus. Pathway-specific inhibition of each sub-circuit produces differential impairments of fear-conditioned learning. Finally, Vglut2-expressing cells discriminate between CSs although Vgat-positive neurons associate the predictive cue with the outcome. Overall, these data suggest that each component of the network carries information pertinent to sub-domains of the behavioral strategy.


Assuntos
Condicionamento Clássico , Neurônios GABAérgicos/fisiologia , Glutamatos/metabolismo , Aprendizagem , Área Tegmentar Ventral/fisiologia , Estimulação Acústica , Animais , Colina/metabolismo , Sinais (Psicologia) , Aprendizagem por Discriminação , Eletrochoque , Medo , Feminino , Interneurônios/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Sinapses/fisiologia , Tálamo/fisiologia , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
10.
Biomolecules ; 11(2)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669305

RESUMO

This study demonstrates how exposure to psychosocial crowding stress (CS) for 3, 7, and 14 days affects glutamate synapse functioning and signal transduction in the frontal cortex (FC) of rats. CS effects on synaptic activity were evaluated in FC slices of the primary motor cortex (M1) by measuring field potential (FP) amplitude, paired-pulse ratio (PPR), and long-term potentiation (LTP). Protein expression of GluA1, GluN2B mGluR1a/5, VGLUT1, and VGLUT2 was assessed in FC by western blot. The body's response to CS was evaluated by measuring body weight and the plasma level of plasma corticosterone (CORT), adrenocorticotropic hormone (ACTH), and interleukin 1 beta (IL1B). CS 3 14d increased FP and attenuated LTP in M1, while PPR was augmented in CS 14d. The expression of GluA1, GluN2B, and mGluR1a/5 was up-regulated in CS 3d and downregulated in CS 14d. VGLUTs expression tended to increase in CS 7d. The failure to blunt the effects of chronic CS on FP and LTP in M1 suggests the impairment of habituation mechanisms by psychosocial stressors. PPR augmented by chronic CS with increased VGLUTs level in the CS 7d indicates that prolonged CS exposure changed presynaptic signaling within the FC. The CS bidirectional profile of changes in glutamate receptors' expression seems to be a common mechanism evoked by stress in the FC.


Assuntos
Lobo Frontal/metabolismo , Receptores de Glutamato/biossíntese , Hormônio Adrenocorticotrópico/biossíntese , Animais , Peso Corporal , Corticosterona/biossíntese , Aglomeração , Eletrofisiologia , Ácido Glutâmico , Interleucina-1beta/biossíntese , Potenciação de Longa Duração , Masculino , Modelos Animais , Córtex Motor , Tamanho do Órgão , Ratos , Ratos Wistar , Receptores de AMPA/biossíntese , Receptores de Glutamato Metabotrópico/biossíntese , Receptores de N-Metil-D-Aspartato/biossíntese , Baço/patologia , Estresse Psicológico , Transmissão Sináptica/efeitos dos fármacos , Proteína Vesicular 1 de Transporte de Glutamato/biossíntese , Proteína Vesicular 2 de Transporte de Glutamato/biossíntese
11.
J Comp Neurol ; 529(4): 657-693, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32621762

RESUMO

The parabrachial nucleus (PB) is a complex structure located at the junction of the midbrain and hindbrain. Its neurons have diverse genetic profiles and influence a variety of homeostatic functions. While its cytoarchitecture and overall efferent projections are known, we lack comprehensive information on the projection patterns of specific neuronal subtypes in the PB. In this study, we compared the projection patterns of glutamatergic neurons here with a subpopulation expressing the transcription factor Foxp2 and a further subpopulation expressing the neuropeptide Pdyn. To do this, we injected an AAV into the PB region to deliver a Cre-dependent anterograde tracer (synaptophysin-mCherry) in three different strains of Cre-driver mice. We then analyzed 147 neuroanatomical regions for labeled boutons in every brain (n = 11). Overall, glutamatergic neurons in the PB region project to a wide variety of sites in the cerebral cortex, basal forebrain, bed nucleus of the stria terminalis, amygdala, diencephalon, and brainstem. Foxp2 and Pdyn subpopulations project heavily to the hypothalamus, but not to the cortex, basal forebrain, or amygdala. Among the few differences between Foxp2 and Pdyn cases was a notable lack of Pdyn projections to the ventromedial hypothalamic nucleus. Our results indicate that genetic identity determines connectivity (and therefore, function), providing a framework for mapping all PB output projections based on the genetic identity of its neurons. Using genetic markers to systematically classify PB neurons and their efferent projections will enhance the translation of research findings from experimental animals to humans.


Assuntos
Encefalinas/biossíntese , Fatores de Transcrição Forkhead/biossíntese , Núcleos Parabraquiais/metabolismo , Precursores de Proteínas/biossíntese , Proteínas Repressoras/biossíntese , Proteína Vesicular 2 de Transporte de Glutamato/biossíntese , Animais , Tronco Encefálico/química , Tronco Encefálico/metabolismo , Córtex Cerebral/química , Córtex Cerebral/metabolismo , Vias Eferentes/química , Vias Eferentes/metabolismo , Encefalinas/análise , Encefalinas/genética , Feminino , Fatores de Transcrição Forkhead/análise , Fatores de Transcrição Forkhead/genética , Hipotálamo/química , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Núcleos Parabraquiais/química , Precursores de Proteínas/análise , Precursores de Proteínas/genética , Proteínas Repressoras/análise , Proteínas Repressoras/genética , Tálamo/química , Tálamo/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/análise , Proteína Vesicular 2 de Transporte de Glutamato/genética
12.
Neuropsychopharmacology ; 45(9): 1454-1462, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31995814

RESUMO

Dorsal striatal manipulations including stimulation of dopamine release and activation of medium spiny neurons (MSNs) are sufficient to drive reinforcement-based learning. Glutamatergic innervation of the striatum by the cortex and thalamus is a critical determinant of MSN activity and local regulation of dopamine release. However, the relationship between striatal glutamatergic afferents and behavioral reinforcement is not well understood. We evaluated the reinforcing properties of optogenetic stimulation of thalamostriatal terminals, which are associated with vesicular glutamate transporter 2 (Vglut2) expression, in the dorsomedial striatum (DMS), a region implicated in goal-directed behaviors. In mice expressing channelrhodopsin-2 (ChR2) under control of the Vglut2 promoter, optical stimulation of the DMS reinforced operant lever-pressing behavior. Mice also acquired operant self-stimulation of thalamostriatal terminals when ChR2 expression was virally targeted to the intralaminar thalamus. Stimulation trains that supported operant responding evoked dopamine release in the DMS and excitatory postsynaptic currents in DMS MSNs. Our previous work demonstrated that the presynaptic G protein-coupled receptor metabotropic glutamate receptor 2 (mGlu2) robustly inhibits glutamate and dopamine release induced by activation of thalamostriatal afferents. Thus, we examined the regulation of thalamostriatal self-stimulation by mGlu2. Administration of an mGlu2/3 agonist or an mGlu2-selective positive allosteric modulator reduced self-stimulation. Conversely, blockade of these receptors increased thalamostriatal self-stimulation, suggesting that endogenous activation of these receptors negatively modulates the reinforcing properties of thalamostriatal activity. These findings demonstrate that stimulation of thalamic terminals in the DMS is sufficient to reinforce a self-initiated action, and that thalamostriatal reinforcement is constrained by mGlu2 activation.


Assuntos
Corpo Estriado , Receptores de Glutamato Metabotrópico , Animais , Corpo Estriado/metabolismo , Camundongos , Tálamo/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
13.
Neuron ; 105(2): 355-369.e6, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31812514

RESUMO

In the mammalian visual system, information from the retina streams into parallel bottom-up pathways. It remains unclear how these pathways interact to contribute to contextual modulation of visual cortical processing. By optogenetic inactivation and activation of mouse lateral posterior nucleus (LP) of thalamus, a homolog of pulvinar, or its projection to primary visual cortex (V1), we found that LP contributes to surround suppression of layer (L) 2/3 responses in V1 by driving L1 inhibitory neurons. This results in subtractive suppression of visual responses and an overall enhancement of orientation, direction, spatial, and size selectivity. Neurons in V1-projecting LP regions receive bottom-up input from the superior colliculus (SC) and respond preferably to non-patterned visual noise. The noise-dependent LP activity allows V1 to "cancel" noise effects and maintain its orientation selectivity under varying noise background. Thus, the retina-SC-LP-V1 pathway forms a differential circuit with the canonical retino-geniculate pathway to achieve context-dependent sharpening of visual representations.


Assuntos
Corpos Geniculados/fisiologia , Pulvinar/fisiologia , Retina/fisiologia , Colículos Superiores/fisiologia , Tálamo/fisiologia , Córtex Visual/fisiologia , Animais , Feminino , Glutamato Descarboxilase/genética , Masculino , Camundongos , Camundongos Transgênicos , Inibição Neural/fisiologia , Neurônios/fisiologia , Estimulação Luminosa , Proteína Vesicular 2 de Transporte de Glutamato/genética , Vias Visuais/fisiologia
14.
Neuron ; 103(2): 323-334.e7, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31178114

RESUMO

A crucial step in understanding the sleep-control mechanism is to identify sleep neurons. Through systematic anatomical screening followed by functional testing, we identified two sleep-promoting neuronal populations along a thalamo-amygdala pathway, both expressing neurotensin (NTS). Rabies-mediated monosynaptic retrograde tracing identified the central nucleus of amygdala (CeA) as a major source of GABAergic inputs to multiple wake-promoting populations; gene profiling revealed NTS as a prominent marker for these CeA neurons. Optogenetic activation and inactivation of NTS-expressing CeA neurons promoted and suppressed non-REM (NREM) sleep, respectively, and optrode recording showed they are sleep active. Further tracing showed that CeA GABAergic NTS neurons are innervated by glutamatergic NTS neurons in a posterior thalamic region, which also promote NREM sleep. CRISPR/Cas9-mediated NTS knockdown in either the thalamic or CeA neurons greatly reduced their sleep-promoting effect. These results reveal a novel thalamo-amygdala circuit for sleep generation in which NTS signaling is essential for both the upstream glutamatergic and downstream GABAergic neurons.


Assuntos
Tonsila do Cerebelo/citologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Neurotensina/metabolismo , Sono/fisiologia , Tálamo/citologia , Potenciais de Ação/genética , Tonsila do Cerebelo/fisiologia , Animais , Caspase 9/metabolismo , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Vias Neurais/metabolismo , Neurotensina/genética , Técnicas de Patch-Clamp , Sono/genética , Privação do Sono/fisiopatologia , Tálamo/fisiologia , Transfecção , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
15.
Neurobiol Dis ; 121: 230-239, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30308244

RESUMO

Brain microvascular endothelial cells (BMEC) are highly complex regulatory cells that communicate with other cells in the neurovascular unit. Cerebral ischemic injury is known to produce detectable synaptic dysfunction. This study aims to investigate whether endothelial cells in the brain regulate postnatal synaptic development and to elucidate their role in functional recovery after ischemia. Here, we found that in vivo engraftment of endothelial cells increased synaptic puncta and excitatory postsynaptic currents in layers 2/3 of the motor cortex. This pro-synaptogenic effect was blocked by the depletion of VEGF in the grafted BMEC. The in vitro results showed that BMEC conditioned medium enhanced spine and synapse formation but conditioned medium without VEGF had no such effects. Moreover, under pathological conditions, transplanted endothelial cells were capable of enhancing angiogenesis and synaptogenesis and improved motor function in the ischemic injury model. Collectively, our findings suggest that endothelial cells promote excitatory synaptogenesis via the paracrine factor VEGF during postnatal development and exert repair functions in hypoxia-ischemic neonatal mice. This study highlights the importance of the endothelium-neuron interaction not only in regulating neuronal development but also in maintaining healthy brain function.


Assuntos
Isquemia Encefálica/fisiopatologia , Células Endoteliais/fisiologia , Potenciais Pós-Sinápticos Excitadores , Córtex Motor/irrigação sanguínea , Córtex Motor/crescimento & desenvolvimento , Transtornos Motores/fisiopatologia , Sinapses/fisiologia , Animais , Animais Recém-Nascidos , Isquemia Encefálica/complicações , Células Cultivadas , Meios de Cultivo Condicionados , Feminino , Masculino , Camundongos Endogâmicos C57BL , Microvasos/fisiologia , Transtornos Motores/etiologia , Neovascularização Fisiológica , Tálamo/crescimento & desenvolvimento , Fator A de Crescimento do Endotélio Vascular/fisiologia , Proteína Vesicular 2 de Transporte de Glutamato/fisiologia
16.
Diabetes ; 67(8): 1538-1548, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29776968

RESUMO

Glucagon-like peptide 1 receptor (GLP-1R) agonists are U.S. Food and Drug Administration-approved weight loss drugs. Despite their widespread use, the sites of action through which GLP-1R agonists (GLP1RAs) affect appetite and body weight are still not fully understood. We determined whether GLP-1Rs in either GABAergic or glutamatergic neurons are necessary for the short- and long-term effects of the GLP1RA liraglutide on food intake, visceral illness, body weight, and neural network activation. We found that mice lacking GLP-1Rs in vGAT-expressing GABAergic neurons responded identically to controls in all parameters measured, whereas deletion of GLP-1Rs in vGlut2-expressing glutamatergic neurons eliminated liraglutide-induced weight loss and visceral illness and severely attenuated its effects on feeding. Concomitantly, deletion of GLP-1Rs from glutamatergic neurons completely abolished the neural network activation observed after liraglutide administration. We conclude that liraglutide activates a dispersed but discrete neural network to mediate its physiological effects and that these effects require GLP-1R expression on glutamatergic but not GABAergic neurons.


Assuntos
Depressores do Apetite/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hipoglicemiantes/uso terapêutico , Hipotálamo/efeitos dos fármacos , Liraglutida/uso terapêutico , Neurônios/efeitos dos fármacos , Obesidade/tratamento farmacológico , Animais , Dieta Hiperlipídica/efeitos adversos , Ingestão de Energia/efeitos dos fármacos , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Genes Reporter/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1/química , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipotálamo/metabolismo , Hipotálamo/patologia , Masculino , Camundongos Knockout , Camundongos Transgênicos , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/metabolismo , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Distribuição Aleatória , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/química , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/química , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Redução de Peso/efeitos dos fármacos
17.
Mol Pain ; 14: 1744806918781259, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29770746

RESUMO

Reward system has been proved to be important to nociceptive behavior, and the nucleus accumbens (NAc) is a key node in reward circuitry. It has been further revealed that dopamine system modulates the NAc to influence the pain sensation, whereas the role of glutamatergic projection in the NAc in the modulation of chronic pain is still elusive. In this study, we used a complete Freund's adjuvant-induced chronic inflammatory pain model to explore the changes of the glutamatergic terminals in the NAc, and we found that following the chronic inflammation, the protein level of vesicular glutamate transporter1 (VGLUT1) was significantly decreased in the NAc. Immunofluorescence staining further showed a reduced expression of VGLUT1-positive terminals in the dopamine receptor 2 (D2R) spiny projection neurons of NAc after chronic inflammatory pain. Furthermore, using a whole-cell recording in double transgenic mice, in which dopamine receptor 1- and D2R-expressing neurons can be visualized, we found that the frequency of spontaneous excitatory postsynaptic currents was significantly decreased and paired-pulse ratio of evoked excitatory postsynaptic currents was increased in D2R neurons, but not in dopamine receptor 1 neurons in NAc of complete Freund's adjuvant group. Moreover, the abnormal expression of soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex contributed to the reduced formation of glutamate vesicles. Hence, our results demonstrated that decreased glutamate release in the indirect pathway of the NAc may be a critical mechanism for chronic pain and provided a novel evidence for the presynaptic mechanisms in chronic pain regulation.


Assuntos
Dor Crônica/metabolismo , Dor Crônica/patologia , Ácido Glutâmico/metabolismo , Inflamação/patologia , Núcleo Accumbens/metabolismo , Núcleo Accumbens/patologia , Terminações Pré-Sinápticas/metabolismo , Animais , Ansiedade/complicações , Ansiedade/metabolismo , Ansiedade/patologia , Dor Crônica/fisiopatologia , Modelos Animais de Doenças , Regulação para Baixo , Adjuvante de Freund , Hiperalgesia/complicações , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Núcleo Accumbens/fisiopatologia , Receptores de Dopamina D2/metabolismo , Proteínas SNARE/metabolismo , Transmissão Sináptica , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
18.
Proc Natl Acad Sci U S A ; 115(20): 5064-5071, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29686073

RESUMO

Neurotransmitter switching in the adult mammalian brain occurs following photoperiod-induced stress, but the mechanism of regulation is unknown. Here, we demonstrate that elevated activity of dopaminergic neurons in the paraventricular nucleus of the hypothalamus (PaVN) in the adult rat is required for the loss of dopamine expression after long-day photoperiod exposure. The transmitter switch occurs exclusively in PaVN dopaminergic neurons that coexpress vesicular glutamate transporter 2 (VGLUT2), is accompanied by a loss of dopamine type 2 receptors (D2Rs) on corticotrophin-releasing factor (CRF) neurons, and can lead to increased release of CRF. Suppressing activity of all PaVN glutamatergic neurons decreases the number of inhibitory PaVN dopaminergic neurons, indicating homeostatic regulation of transmitter expression in the PaVN.


Assuntos
Encéfalo/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Luz , Neurotransmissores/metabolismo , Estresse Fisiológico , Animais , Encéfalo/patologia , Encéfalo/efeitos da radiação , Células Cultivadas , Hormônio Liberador da Corticotropina , Neurônios Dopaminérgicos/citologia , Hipotálamo/metabolismo , Hipotálamo/patologia , Hipotálamo/efeitos da radiação , Masculino , Neurotransmissores/efeitos da radiação , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/patologia , Núcleo Hipotalâmico Paraventricular/efeitos da radiação , Ratos , Ratos Long-Evans , Receptores Dopaminérgicos/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
19.
J Comp Neurol ; 526(11): 1760-1776, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29658111

RESUMO

Titi monkeys are arboreal, diurnal New World monkeys whose ancestors were the first surviving branch of the New World radiation. In the current study, we use cytoarchitectonic and immunohistochemical characteristics to compare titi monkey subcortical structures associated with visual processing with those of other well-studied primates. Our goal was to appreciate features that are similar across all New World monkeys, and primates in general, versus those features that are unique to titi monkeys and other primate taxa. We examined tissue stained for Nissl substance, cytochrome oxidase (CO), acetylcholinesterase (AChE), calbindin (Cb), parvalbumin (Pv), and vesicular glutamate transporter 2 (VGLUT2) to characterize the superior colliculus, lateral geniculate nucleus, and visual pulvinar. This is the first study to characterize VGLUT2 in multiple subcortical structures of any New World monkey. Our results from tissue processed for VGLUT2, in combination with other histological stains, revealed distinct features of subcortical structures that are similar to other primates, but also some features that are slightly modified compared to other New World monkeys and other primates. These included subdivisions of the inferior pulvinar, sublamina within the stratum griseum superficiale (SGS) of the superior colliculus, and specific koniocellular layers within the lateral geniculate nucleus. Compared to other New World primates, many features of the subcortical structures that we examined in titi monkeys were most similar to those in owl monkeys and marmosets, with the lateral geniculate nucleus consisting of two main parvocellular layers and two magnocellular layers separated by interlaminar zones or koniocellular layers.


Assuntos
Callicebus/anatomia & histologia , Colículos Superiores/anatomia & histologia , Tálamo/anatomia & histologia , Animais , Tronco Encefálico/anatomia & histologia , Feminino , Corpos Geniculados/anatomia & histologia , Imuno-Histoquímica , Masculino , Pulvinar/anatomia & histologia , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Visão Ocular/fisiologia
20.
Mol Brain ; 11(1): 22, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29650024

RESUMO

The trigemino-thalamic (T-T) and trigemino-parabrachial (T-P) pathways are strongly implicated in the sensory-discriminative and affective/emotional aspects of orofacial pain, respectively. These T-T and T-P projection fibers originate from the spinal trigeminal nucleus (Vsp). We previously determined that many vesicular glutamate transporter (VGLUT1 and/or VGLUT2) mRNA-positive neurons were distributed in the Vsp of the adult rat, and most of these neurons sent their axons to the thalamus or cerebellum. However, whether VGLUT1 or VGLUT2 mRNA-positive projection neurons exist that send their axons to both the thalamus and the parabrachial nucleus (PBN) has not been reported. Thus, in the present study, dual retrograde tract tracing was used in combination with fluorescence in situ hybridization (FISH) for VGLUT1 or VGLUT2 mRNA to identify the existence of VGLUT1 or VGLUT2 mRNA neurons that send collateral projections to both the thalamus and the PBN. Neurons in the Vsp that send collateral projections to both the thalamus and the PBN were mainly VGLUT2 mRNA-positive, with a proportion of 90.3%, 93.0% and 85.4% in the oral (Vo), interpolar (Vi) and caudal (Vc) subnucleus of the Vsp, respectively. Moreover, approximately 34.0% of the collateral projection neurons in the Vc showed Fos immunopositivity after injection of formalin into the lip, and parts of calcitonin gene-related peptide (CGRP)-immunopositive axonal varicosities were in direct contact with the Vc collateral projection neurons. These results indicate that most collateral projection neurons in the Vsp, particularly in the Vc, which express mainly VGLUT2, may relay orofacial nociceptive information directly to the thalamus and PBN via axon collaterals.


Assuntos
Neurônios/metabolismo , Núcleos Parabraquiais/metabolismo , Tálamo/metabolismo , Núcleo Espinal do Trigêmeo/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/genética , Animais , Axônios/metabolismo , Biotina/administração & dosagem , Biotina/análogos & derivados , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Dendritos/metabolismo , Dextranos/administração & dosagem , Formaldeído , Hibridização in Situ Fluorescente , Injeções Subcutâneas , Lábio , Masculino , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Rodaminas/administração & dosagem , Estilbamidinas/administração & dosagem , Sinapses/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA