Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Curr Alzheimer Res ; 20(12): 862-874, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38509675

RESUMO

BACKGROUND: Alzheimer's Disease (AD) represents a neurodegenerative disorder characterized by cognitive and behavioral impairments significantly hindering social and occupational functioning. Melatonin, a hormone pivotal in regulating the body's intrinsic circadian rhythm, also acts as a catalyst in the breakdown of beta-amyloid deposits, offering a promising therapeutic approach for AD. The upregulation of Brain and Muscle ARNT-Like 1 (Bmal1) gene expression, stimulated by melatonin, emerges as a potential contributor to AD intervention. Current pharmacological interventions, such as FDA-approved cholinesterase inhibitors and the recently authorized monoclonal antibody, Lecanemab, are utilized in AD management. However, the connection between these medications and Bmal1 remains insufficiently explored. OBJECTIVE: This study aims to investigate the molecular effects of FDA-endorsed drugs on the CLOCK: Bmal1 dimer. Furthermore, considering the interactions between melatonin and Bmal1, this research explores the potential synergistic efficacy of combining these pharmaceutical agents with melatonin for AD treatment. METHODS: Using molecular docking and MM/PBSA methodologies, this research determines the binding affinities of drugs within the Bmal1 binding site, constructing interaction profiles. RESULTS: The findings reveal that, among FDA-approved drugs, galanthamine and donepezil demonstrate notably similar binding energy values to melatonin, interacting within the Bmal1 binding site through analogous amino acid residues and functional groups. CONCLUSION: A novel therapeutic approach emerges, suggesting the combination of melatonin with Lecanemab as a monoclonal antibody therapy. Importantly, prior research has not explored the effects of FDA-approved drugs on Bmal1 expression or their potential for synergistic effects.


Assuntos
Fatores de Transcrição ARNTL , Doença de Alzheimer , Proteínas CLOCK , Melatonina , Simulação de Acoplamento Molecular , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Humanos , Fatores de Transcrição ARNTL/metabolismo , Fatores de Transcrição ARNTL/genética , Melatonina/uso terapêutico , Melatonina/farmacologia , Proteínas CLOCK/metabolismo , Proteínas CLOCK/genética , Simulação de Dinâmica Molecular , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico
2.
Neuro Oncol ; 25(11): 1932-1946, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37326042

RESUMO

Glioblastoma (GBM) is the most prevalent malignant primary brain tumor, accounting for 14.2% of all diagnosed tumors and 50.1% of all malignant tumors, and the median survival time is approximately 8 months irrespective of whether a patient receives treatment without significant improvement despite expansive research (Ostrom QT, Price M, Neff C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2015-2019. Neurooncology. 2022; 24(suppl 5):v1-v95.). Recently, important roles for the circadian clock in GBM tumorigenesis have been reported. Positive regulators of circadian-controlled transcription, brain and muscle ARNT-like 1 (BMAL1), and circadian locomotor output cycles kaput (CLOCK), are highly expressed also in GBM and correlated with poor patient prognosis. BMAL1 and CLOCK promote the maintenance of GBM stem cells (GSCs) and the establishment of a pro-tumorigenic tumor microenvironment (TME), suggesting that targeting the core clock proteins may augment GBM treatment. Here, we review findings that highlight the critical role the circadian clock plays in GBM biology and the strategies by which the circadian clock can be leveraged for GBM treatment in the clinic moving forward.


Assuntos
Relógios Circadianos , Glioblastoma , Humanos , Proteínas CLOCK/metabolismo , Fatores de Transcrição ARNTL/metabolismo , Encéfalo/metabolismo , Microambiente Tumoral
3.
Int J Mol Sci ; 24(2)2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36674967

RESUMO

Diclofenac effectively reduces pain and inflammation; however, its use is associated with hepato- and nephrotoxicity. To delineate mechanisms of injury, we investigated a clinically relevant (3 mg/kg) and high-dose (15 mg/kg) in minipigs for 4 weeks. Initially, serum biochemistries and blood-smears indicated an inflammatory response but returned to normal after 4 weeks of treatment. Notwithstanding, histopathology revealed drug-induced hepatitis, marked glycogen depletion, necrosis and steatosis. Strikingly, the genomic study revealed diclofenac to desynchronize the liver clock with manifest inductions of its components CLOCK, NPAS2 and BMAL1. The > 4-fold induced CRY1 expression underscored an activated core-loop, and the dose dependent > 60% reduction in PER2mRNA repressed the negative feedback loop; however, it exacerbated hepatotoxicity. Bioinformatics enabled the construction of gene-regulatory networks, and we linked the disruption of the liver-clock to impaired glycogenesis, lipid metabolism and the control of immune responses, as shown by the 3-, 6- and 8-fold induced expression of pro-inflammatory CXCL2, lysozyme and ß-defensin. Additionally, diclofenac treatment caused adrenocortical hypertrophy and thymic atrophy, and we evidenced induced glucocorticoid receptor (GR) activity by immunohistochemistry. Given that REV-ERB connects the circadian clock with hepatic GR, its > 80% repression alleviated immune responses as manifested by repressed expressions of CXCL9(90%), CCL8(60%) and RSAD2(70%). Together, we propose a circuitry, whereby diclofenac desynchronizes the liver clock in the control of the hepatic metabolism and immune response.


Assuntos
Relógios Circadianos , Animais , Suínos , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Diclofenaco/farmacologia , Porco Miniatura , Fígado/metabolismo , Proteínas CLOCK/metabolismo , Transdução de Sinais
4.
Cephalalgia ; 42(8): 798-803, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35166148

RESUMO

OBJECTIVE: To investigate how cluster headache preventatives verapamil, lithium and prednisone affect expression of hypothalamic genes involved in chronobiology. METHODS: C57Bl/6 mice were exposed to daily, oral treatment with verapamil, lithium, prednisone or amitriptyline (as negative control), and transcripts of multiple genes quantified in the anterior, lateral and posterior hypothalamus. RESULTS: Verapamil, lithium or prednisone did not affect expression of clock genes of the anterior hypothalamus (Clock, Bmal1, Cry1/2 and Per1/2). Prednisone altered expression of hypothalamic neuropeptides melanin-concentrating hormone and histidine decarboxylase within the lateral and posterior hypothalamus, respectively. The three preventatives did not affect expression of the neurohypophyseal hormones oxytocin and arginine-vasopressin in the posterior hypothalamus. Conversely, amitriptyline reduced mRNA levels of Clock, oxytocin and arginine-vasopressin. CONCLUSION: Data suggest that cluster headache preventatives act upstream or downstream from the hypothalamus. Our findings provide new insights on hypothalamic homeostasis during cluster headache prophylaxis, as well as neurochemistry underlying cluster headache treatment.


Assuntos
Proteínas CLOCK , Cefaleia Histamínica , Ocitocina , Amitriptilina , Animais , Arginina , Arginina Vasopressina/genética , Arginina Vasopressina/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Cefaleia Histamínica/genética , Cefaleia Histamínica/metabolismo , Homeostase , Hipotálamo , Lítio/metabolismo , Lítio/farmacologia , Camundongos , Ocitocina/metabolismo , Prednisona , Verapamil
5.
Nutrients ; 13(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34836101

RESUMO

We used time-restricted feeding (TRF) to investigate whether microbial metabolites and the hunger hormone ghrelin can become the dominant entraining factor during chronic jetlag to prevent disruption of the master and peripheral clocks, in order to promote health. Therefore, hypothalamic clock gene and Agrp/Npy mRNA expression were measured in mice that were either chronically jetlagged and fed ad libitum, jetlagged and fed a TRF diet, or not jetlagged and fed a TRF diet. Fecal short-chain fatty acid (SCFA) concentrations, plasma ghrelin and corticosterone levels, and colonic clock gene mRNA expression were measured. Preventing the disruption of the food intake pattern during chronic jetlag using TRF restored the rhythmicity in hypothalamic clock gene mRNA expression of Reverbα but not of Arntl. TRF countered the changes in plasma ghrelin levels and in hypothalamic Npy mRNA expression induced by chronic jetlag, thereby reestablishing the food intake pattern. Increase in body mass induced by chronic jetlag was prevented. Alterations in diurnal fluctuations in fecal SCFAs during chronic jetlag were prevented thereby re-entraining the rhythmic expression of peripheral clock genes. In conclusion, TRF during chronodisruption re-entrains the rhythms in clock gene expression and signals from the gut that regulate food intake to normalize body homeostasis.


Assuntos
Proteínas CLOCK/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Jejum/metabolismo , Síndrome do Jet Lag/prevenção & controle , Animais , Doença Crônica , Colo/metabolismo , Corticosterona/sangue , Modelos Animais de Doenças , Ácidos Graxos Voláteis/metabolismo , Fezes/química , Comportamento Alimentar/fisiologia , Expressão Gênica/fisiologia , Grelina/sangue , Hipotálamo/metabolismo , Síndrome do Jet Lag/genética , Camundongos , RNA Mensageiro/metabolismo
6.
Hypertension ; 78(5): 1185-1196, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34601963

RESUMO

Accumulating evidence suggests that the molecular circadian clock is crucial in blood pressure (BP) control. Circadian rhythms are controlled by the central clock, which resides in the suprachiasmatic nucleus of the hypothalamus and peripheral clocks throughout the body. Both light and food cues entrain these clocks but whether these cues are important for the circadian rhythm of BP is a growing area of interest. The peripheral clocks in the smooth muscle, perivascular adipose tissue, liver, adrenal gland, and kidney have been recently implicated in the regulation of BP rhythm. Dysregulation of the circadian rhythm of BP is associated with adverse cardiorenal outcomes and increased risk of cardiovascular mortality. In this review, we summarize the most recent advances in peripheral clocks as BP regulators, highlight the adverse outcomes of disrupted circadian BP rhythm in hypertension, and provide insight into potential future work in areas exploring the circadian clock in BP control and chronotherapy. A better understanding of peripheral clock function in regulating the circadian rhythm of BP will help pave the way for targeted therapeutics in the treatment of circadian BP dysregulation and hypertension.


Assuntos
Pressão Sanguínea/fisiologia , Proteínas CLOCK/metabolismo , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Hipertensão/fisiopatologia , Animais , Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/genética , Proteínas CLOCK/genética , Relógios Circadianos/genética , Ensaios Clínicos como Assunto , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/genética
7.
J Biochem ; 170(4): 453-461, 2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33982090

RESUMO

Proximity-dependent biotin identification (BioID) is a useful method to identify unknown protein-protein interactions. Few reports have described genetically engineered knock-in mouse models for in vivo BioID. Thus, little is known about the proper method for biotin administration and which tissues are applicable. Here, we established a BioID knock-in mouse model of Brain and Muscle ARNT-Like 1 (BMAL1) and the BirA biotin ligase with R118G mutation (BirA*). The BMAL1-BioID mouse model was used to investigate the effect of biotin diet feeding on protein biotinylation in several tissues. The BMAL1-BirA* fusion protein-retained proper intracellular localization of BMAL1 and binding to CLOCK protein in HEK293T cells. A biotin labelling assay in mouse embryonic fibroblasts revealed the protein biotinylation activity of BMAL1-BirA* expressed in knock-in mouse cells depending on biotin supplementation. Lastly, feeding a 0.5% biotin diet for 7 days induced protein biotinylation in the brain, heart, testis and liver of BMAL1-BioID mice without adverse effects on spermatogenesis. In the kidney, the biotin diet increased biotinylated protein levels in BMAL1-BioID and control mice, suggesting the existence of endogenous biotinylation activity. These results provide valuable information to optimize the in vivo BioID procedure.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Biotina/farmacologia , Mapeamento de Interação de Proteínas/métodos , Animais , Biotina/administração & dosagem , Biotinilação/métodos , Encéfalo/metabolismo , Proteínas CLOCK/metabolismo , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/metabolismo , Dieta/métodos , Fibroblastos/metabolismo , Genótipo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Músculos/metabolismo , Coloração e Rotulagem/métodos
8.
Int J Mol Sci ; 22(4)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672695

RESUMO

Circadian desynchrony induced by a long period of irregular feeding leads to metabolic diseases, such as obesity and diabetes mellitus. The recently identified neurosecretory protein GL (NPGL) and neurosecretory protein GM (NPGM) are hypothalamic small proteins that stimulate food intake and fat accumulation in several animals. To clarify the mechanisms that evoke feeding behavior and induce energy metabolism at the appropriate times in accordance with a circadian rhythm, diurnal fluctuations in Npgl and Npgm mRNA expression were investigated in mice. Quantitative RT-PCR analysis revealed that the mRNAs of these two genes were highly expressed in the mediobasal hypothalamus during the active dark phase under ad libitum feeding. In mice restricted to 3 h of feeding during the inactive light phase, the Npgl mRNA level was augmented in the moment prior to the feeding period and the midnight peak of Npgm mRNA was attenuated. Moreover, the mRNA expression levels of clock genes, feeding regulatory neuropeptides, and lipid metabolic enzymes in the central and peripheral tissues were comparable to those of central Npgl and Npgm. These data suggest that Npgl and Npgm transcription fluctuates daily and likely mediates feeding behavior and/or energy metabolism at an appropriate time according to the meal timing.


Assuntos
Comportamento Alimentar/fisiologia , Regulação da Expressão Gênica , Hipotálamo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Análise de Variância , Animais , Anorexia/sangue , Anorexia/genética , Glicemia/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Perfilação da Expressão Gênica , Insulina/sangue , Metabolismo dos Lipídeos/genética , Masculino , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Orexinas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo
9.
Chronobiol Int ; 38(4): 584-597, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33393371

RESUMO

Obesity is a global health threat and a risk factor for several metabolic conditions. Though circadian dysfunction has been considered among the multiple causes of obesity, little work has been done to explore the relationship between obesity, circadian dysfunction, and sexual dimorphism. The Neotomodon alstoni mouse is a suitable model for such research. This study employed N. alstoni mice in a chronobiological analysis to determine whether there is circadian desynchronization of relative PER1 and BMAL1 protein levels in the hypothalamus, liver, visceral white adipose tissue, kidney, and heart. It also compared differences between sexes and lean and obese N. alstoni adult mice, by recording behavior and daily circulating serum melatonin as markers of circadian output. We found that obese mice display reduced locomotor activity. Additionally, Cosinor analyses of the relative expression of PER1 and BMAL1 show differences between lean and obese mice in a sex-linked manner. The PER1 24 h rhythm was absent in all tissues of obese males and significant in the tissues of obese females. The BMAL1 24 h rhythm also was significant in most of the tissues tested in lean males, whereas it was significant and shifted the acrophase (peak time of rhythm) in most of the tissues in obese females. Both lean male and female mice showed a rhythmic 24 h pattern of circulating serum melatonin. This daily profile was not only absent in obese mice of both sexes but showed sexual dimorphism. Obese male mice showed lower circulating levels of melatonin compared to lean male mice, but they were higher in obese females compared to lean females. Our results suggest that obesity in N. alstoni is associated with an internal circadian desynchronization in a sex-dependent manner. Overall, this study reinforces the need for further research on the neuroendocrinology of obesity and circadian rhythms using this biological model.


Assuntos
Proteínas CLOCK , Melatonina , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/metabolismo , Ritmo Circadiano , Feminino , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Obesos , Obesidade , Proteínas Circadianas Period/genética , Caracteres Sexuais
10.
J Photochem Photobiol B ; 211: 111995, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32836050

RESUMO

A most crucial feature of biological adaptation is the maintenance of a close temporal relationship of behaviour and physiology with prevailing 24-h light-dark environment, which is rapidly changing with increasing nighttime illumination. This study investigated developmental effects of the loss of night on circadian behaviour, metabolism and gene expressions in diurnal zebra finches born and raised under LL, with controls on 12L:12D. Birds under LD were entrained, and showed normal body mass and a significant 24-h rhythm in both activity-rest pattern and mRNA expression of candidate genes that we measured. But, under LL, birds gained weight and accumulated lipid in the liver. Intriguingly, at the end of the experiment, the majority (4/5th) of birds under LL were rhythmic in activity despite arrhythmic expression in the hypothalamus of c-Fos (neuronal activity), Rhodopsin and Mel1-a genes (light perception), and clock genes (Bmal1, Per2 and Rev-erb ß). In peripheral tissues, LL induced variable clock gene expressions. Whereas 24-h mRNA rhythm was abolished for Bmal1 in both liver and gut, it persisted for Per2 and Rev-erb ß in liver, and for Per2 in gut. Further, we found under LL, the loss of 24-h rhythm in hepatic expression of Fasn and Cd36/Fat (biosynthesis and its uptake), and gut expression of Sglt1, Glut5, Cd36 and Pept1 (nutrient absorption) genes. As compared to LD, baseline mRNA levels of Fasn and Cd36 genes were attenuated under LL. Among major transporter genes, Sglt1 (glucose) and Cd36 (fat) genes were arrhythmic, while Glut5 (glucose) and Pept1 (protein) genes were rhythmic but with phase differences under LL, compared to LD. These results demonstrate dissociation of circadian behaviour from clock gene rhythms, and provide molecular insights into possible mechanisms at different levels (behaviour and physiology) that diurnal animals might employ in order to adapt to an emerging overly illuminated-night urban environment.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica/fisiologia , Hipotálamo/fisiologia , Metabolismo/fisiologia , Animais , Antígenos CD36/genética , Antígenos CD36/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Tentilhões , Transportador de Glucose Tipo 5/genética , Transportador de Glucose Tipo 5/metabolismo , Luz , Fígado , Transportador 1 de Peptídeos/genética , Transportador 1 de Peptídeos/metabolismo , Fotoperíodo , RNA Mensageiro/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Transportador 1 de Glucose-Sódio/genética , Transportador 1 de Glucose-Sódio/metabolismo , Estômago
11.
Sci Rep ; 10(1): 13055, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32747727

RESUMO

Kiwifruit (KF) contains bioactive compounds with potential anti-inflammatory properties. In this study, we investigated the protective effects of KF on gastric and duodenal damage induced by soluble aspirin in healthy rats. Sixty-four male Sprague Dawley rats were allocated to eight experimental treatments (n = 8) and the experimental diets were fed for 14 days ad libitum. The experimental diets were 20% fresh pureed KF (green-fleshed and gold-fleshed) or 10% glucose solution (control diet). A positive anti-inflammatory control treatment (ranitidine) was included. At the end of the 14-day feeding period, the rats were fasted overnight, and the following morning soluble aspirin (400 mg/kg aspirin) or water (control) was administered by oral gavage. Four hours after aspirin administration, the rats were euthanized and samples taken for analysis. We observed no significant ulcer formation or increase in infiltration of the gastric mucosal inflammatory cells in the rats with the aspirin treatment. Despite this, there were significant changes in gene expression, such as in the duodenum of aspirin-treated rats fed green KF where there was increased expression of inflammation-related genes NOS2 and TNF-alpha. We also observed that gold and green KF diets had a number of contrasting effects on genes related to inflammation and gastro-protective effects.


Assuntos
Actinidia/química , Aspirina/efeitos adversos , Duodeno/patologia , Frutas/química , Mucosa Gástrica/patologia , Regulação da Expressão Gênica , Inflamação/genética , Estômago/patologia , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Duodeno/efeitos dos fármacos , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/patologia , Masculino , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Análise de Componente Principal , Ratos Sprague-Dawley , Estômago/efeitos dos fármacos , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/genética , Úlcera Gástrica/patologia , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Triptofano/metabolismo
12.
J Mol Med (Berl) ; 98(8): 1175-1188, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32638047

RESUMO

Pazopanib-a multitargeted tyrosine kinase inhibitor with prominent antiangiogenic effects-has shown promise in the treatment of soft-tissue sarcomas. Hyperthermia has been also applied as an adjunctive treatment to chemotherapy for these malignancies. Here, we show that pazopanib and hyperthermia act synergistically in inhibiting uterine leiomyosarcoma (LMS) cell growth. Compared with either treatment alone, the combination of pazopanib and hyperthermia exerted the highest antitumor activity in a xenograft model. Mechanistically, we found that combined treatment with pazopanib and hyperthermia inhibited histone acetyltransferase 1 (HAT1) expression in LMS cells. The Clock element on the HAT1 promoter was critical for pazopanib- and hyperthermia-induced HAT1 downregulation. Inhibition of HAT1-either by pazopanib and hyperthermia or through HAT1 silencing-was mediated by suppression of Clock. Accordingly, Clock protein reconstitution rescued both HAT1 levels and HAT1-mediated histone acetylation. Immunohistochemistry revealed a higher expression of HAT1 in uterine LMS than in leiomyomas (p = 0.007), with high HAT1 expression levels being associated with poor clinical outcomes (p = 0.007). We conclude that pazopanib and hyperthermia exert synergistic effects against LMS growth by inhibiting HAT1. Further preclinical studies on HAT1 as a potential drug target in uterine LMS are warranted, especially in combination with hyperthermia. KEY MESSAGES: Pazopanib and hyperthermia inhibit the growth of leiomyosarcoma. Their combined use inhibits HAT1 expression in leiomyosarcoma cells. The promoter Clock element is required for HAT1 downregulation. HAT1 expression is higher in leiomyosarcoma than in leiomyomas. An increased HAT1 expression is associated with poor clinical outcomes.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histona Acetiltransferases/genética , Hipertermia Induzida , Indazóis/farmacologia , Pirimidinas/farmacologia , Sulfonamidas/farmacologia , Biomarcadores , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Feminino , Histona Acetiltransferases/metabolismo , Humanos , Hipertermia Induzida/métodos , Leiomiossarcoma/genética , Leiomiossarcoma/metabolismo , Leiomiossarcoma/patologia , Neoplasias Uterinas/genética , Neoplasias Uterinas/metabolismo , Neoplasias Uterinas/patologia
13.
J Pharm Pharmacol ; 72(12): 1854-1864, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32478421

RESUMO

OBJECTIVES: We aimed to determine the diurnal rhythm of Tripterygium wilfordii (TW) hepatotoxicity and to investigate a potential role of metabolism and pharmacokinetics in generating chronotoxicity. METHODS: Hepatotoxicity was determined based on assessment of liver injury after dosing mice with TW at different circadian time points. Circadian clock control of metabolism, pharmacokinetics and hepatotoxicity was investigated using Clock-deficient (Clock-/- ) mice. KEY FINDINGS: Hepatotoxicity of TW displayed a significant circadian rhythm (the highest level of toxicity was observed at ZT2 and the lowest level at ZT14). Pharmacokinetic experiments showed that oral gavage of TW at ZT2 generated higher plasma concentrations (and systemic exposure) of triptolide (a toxic constituent) compared with ZT14 dosing. This was accompanied by reduced formation of triptolide metabolites at ZT2. Loss of Clock gene sensitized mice to TW-induced hepatotoxicity and abolished the time-dependency of toxicity that was well correlated with altered metabolism and pharmacokinetics of triptolide. Loss of Clock gene also decreased Cyp3a11 expression in mouse liver and blunted its diurnal rhythm. CONCLUSIONS: Tripterygium wilfordii chronotoxicity was associated with diurnal variations in triptolide pharmacokinetics and circadian expression of hepatic Cyp3a11 regulated by circadian clock. Our findings may have implications for improving TW treatment outcome with a chronotherapeutic approach.


Assuntos
Proteínas CLOCK/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Ritmo Circadiano/efeitos dos fármacos , Diterpenos/toxicidade , Fígado/efeitos dos fármacos , Fenantrenos/toxicidade , Extratos Vegetais/toxicidade , Tripterygium/toxicidade , Ativação Metabólica , Animais , Proteínas CLOCK/genética , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Diterpenos/isolamento & purificação , Diterpenos/farmacocinética , Compostos de Epóxi/isolamento & purificação , Compostos de Epóxi/farmacocinética , Compostos de Epóxi/toxicidade , Fígado/metabolismo , Fígado/patologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenantrenos/isolamento & purificação , Fenantrenos/farmacocinética , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacocinética , Toxicocinética
14.
Proc Natl Acad Sci U S A ; 117(11): 5761-5771, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32132203

RESUMO

The circadian clock coordinates a variety of immune responses with signals from the external environment to promote survival. We investigated the potential reciprocal relationship between the circadian clock and skin inflammation. We treated mice topically with the Toll-like receptor 7 (TLR7) agonist imiquimod (IMQ) to activate IFN-sensitive gene (ISG) pathways and induce psoriasiform inflammation. IMQ transiently altered core clock gene expression, an effect mirrored in human patient psoriatic lesions. In mouse skin 1 d after IMQ treatment, ISGs, including the key ISG transcription factor IFN regulatory factor 7 (Irf7), were more highly induced after treatment during the day than the night. Nuclear localization of phosphorylated-IRF7 was most prominently time-of-day dependent in epidermal leukocytes, suggesting that these cell types play an important role in the diurnal ISG response to IMQ. Mice lacking Bmal1 systemically had exacerbated and arrhythmic ISG/Irf7 expression after IMQ. Furthermore, daytime-restricted feeding, which affects the phase of the skin circadian clock, reverses the diurnal rhythm of IMQ-induced ISG expression in the skin. These results suggest a role for the circadian clock, driven by BMAL1, as a negative regulator of the ISG response, and highlight the finding that feeding time can modulate the skin immune response. Since the IFN response is essential for the antiviral and antitumor effects of TLR activation, these findings are consistent with the time-of-day-dependent variability in the ability to fight microbial pathogens and tumor initiation and offer support for the use of chronotherapy for their treatment.


Assuntos
Ritmo Circadiano , Imunidade Inata/genética , Interferons/genética , Glicoproteínas de Membrana/genética , Pele/metabolismo , Receptor 7 Toll-Like/genética , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Imiquimode/farmacologia , Indutores de Interferon/farmacologia , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Interferons/metabolismo , Masculino , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pele/efeitos dos fármacos , Receptor 7 Toll-Like/agonistas , Receptor 7 Toll-Like/metabolismo
15.
Horm Behav ; 117: 104609, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31647920

RESUMO

The objective of this study was to investigate the role of palmitoylethanolamide (PEA) in the regulation of energy homeostasis in goldfish (Carassius auratus). We examined the effects of acute or chronic intraperitoneal treatment with PEA (20 µg·g-1 body weight) on parameters related to food intake and its regulatory mechanisms, locomotor activity, glucose and lipid metabolism, and the possible involvement of transcription factors and clock genes on metabolic changes in the liver. Acute PEA treatment induced a decrease in food intake at 6 and 8 h post-injection, comparable to that observed in mammals. This PEA anorectic effect in goldfish could be mediated through interactions with leptin and NPY, as PEA increased hepatic expression of leptin aI and reduced hypothalamic expression of npy. The PEA chronic treatment reduced weight gain, growth rate, and locomotor activity. The rise in glycolytic potential together with the increased potential of glucose to be transported into liver suggests an enhanced use of glucose in the liver after PEA treatment. In addition, part of glucose may be exported to be used in other tissues. The activity of fatty acid synthase (FAS) increased after chronic PEA treatment, suggesting an increase in the hepatic lipogenic capacity, in contrast with the mammalian model. Such lipogenic increment could be linked with the PEA-induction of REV-ERBα and BMAL1 found after the chronic treatment. As a whole, the present study shows the actions of PEA in several compartments related to energy homeostasis and feeding behavior, supporting a regulatory role for this N-acylethanolamine in fish.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Etanolaminas/farmacologia , Carpa Dourada/metabolismo , Homeostase/efeitos dos fármacos , Ácidos Palmíticos/farmacologia , Amidas , Animais , Peso Corporal/efeitos dos fármacos , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Etanolaminas/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Injeções Intraperitoneais , Leptina/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Ácidos Palmíticos/administração & dosagem , Receptores Ativados por Proliferador de Peroxissomo/genética , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Aumento de Peso/efeitos dos fármacos
16.
Curr Med Sci ; 40(6): 1128-1136, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33428141

RESUMO

Acute focal cerebral ischemic stroke (IS) is a leading cause of morbidity and mortality worldwide. Acupuncture is an emerging alternative therapy that has been beneficial to acute brain ischemia. However, the underlying protective mechanism of its neuroprotective effect remains unclear. Human original circadian rhythm will be lost after IS, which seriously affects the quality of life and functional recovery of stroke patients. We hypothesize that acupuncture treats IS by regulating the balance of Clock and Bmal1. This study aims to explore the effect of acupuncture at acupoints GV20 and BL23 on neuroprotection and anti-apoptosis in middle cerebral artery occlusion (MCAO) rats and expression of apoptosis and circadian rhythm related proteins. Male Sprague-Dawley (SD) rats were randomly divided into five groups: normal group (Normal), sham model group (Sham MCAO), MCAO model group (MCAO), sham electroacupuncture group (Sham EA) and electroacupuncture group (EA). The MCAO model was prepared by electrocoagulation. The first acupuncture treatment was performed within 2 h after surgery, and then acupuncture therapy was performed on 1st day, 2nd day and 3rd day respectively. After their neurological examination at 72 h of ischemia, the rats from each group were sacrificed. Triphenyltetrazolium chloride (TTC) staining was used to evaluate the brain infarct size. Ultrastructural observation on cerebral ischemic cortex and serum inflammatory cytokines were evaluated. TUNEL staining was used to detect cell apoptosis of brain tissue. The expression levels of proteins Bax, bcl-2, caspase-3, Clock and Bmal1 in the cerebral ischemic region were detected by immunofluorescence staining. Here, we presented evidence that EA at GV20 and BL23 could significantly improve the neurological deficit score and infarct size, and alleviate the cell apoptosis of brain tissue. Moreover, acupuncture treatment upregulated the anti-apoptotic Bcl-2/Bax ratio and reversed the upregulation of caspase-3 following 72-h cerebral ischemia. In addition, the expression levels of circadian proteins Clock and Bmal1 were upregulated in EA group while compared with MCAO group. Our study demonstrated that acupuncture exerted neuroprotective effect against neuronal apoptosis after stroke and the mechanism might be related with regulation of circadian rhythm proteins Clock and Bmal1.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Proteínas CLOCK/metabolismo , Eletroacupuntura/métodos , Infarto da Artéria Cerebral Média/terapia , Animais , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Citocinas/sangue , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Infarto da Artéria Cerebral Média/sangue , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Infarto da Artéria Cerebral Média/metabolismo , Melatonina/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Regulação para Cima
17.
Cell Mol Life Sci ; 76(9): 1795-1806, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30694347

RESUMO

Saturated fatty acids, such as palmitate, lead to circadian disruption in cell culture. Moreover, information regarding the effects of unsaturated fatty acids on circadian parameters is scarce. We aimed at studying the effects of low doses of saturated as well as unsaturated fatty acids on circadian metabolism in vivo and at deciphering the mechanism by which fatty acids convey their effect. Mice were fed non-obesogenic doses of palm or olive oil and hepatocytes were treated with palmitate and oleate. Mice fed non-obesogenic doses of palm oil showed increased signaling towards fatty acid synthesis, while olive oil increased signaling towards fatty acid oxidation. Low doses of palmitate and oleate were sufficient to alter circadian rhythms, due to changes in the expression and/or activity of key metabolic proteins. Palmitate, but not oleate, counteracted the reduction in lipid accumulation and BMAL1-induced expression of mitochondrial genes involved in fatty acid oxidation. Palmitate was also found to interfere with the transcriptional activity of CLOCK:BMAL1 by preventing BMAL1 deacetylation and activation. In addition, palmitate, but not oleate, reduced PER2-mediated transcriptional activation and increased REV-ERBα-mediated transcriptional inhibition of Bmal1. The inhibition of PER2-mediated transcriptional activation by palmitate was achieved by interfering with PER2 nuclear translocation. Indeed, PER2 reduced fat accumulation in hepatocytes and this reduction was prevented by palmitate. Herein, we show that the detrimental metabolic alteration seen with high doses of palmitate manifests itself early on even with non-obesogenic levels. This is achieved by modulating BMAL1 at several levels abrogating its activity and expression.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/efeitos dos fármacos , Ácidos Graxos Insaturados/farmacologia , Ácido Oleico/farmacologia , Azeite de Oliva/farmacologia , Óleo de Palmeira/farmacologia , Palmitatos/farmacologia , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/metabolismo , Linhagem Celular , Ácidos Graxos Insaturados/biossíntese , Fígado/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos
18.
Biochem Biophys Res Commun ; 508(3): 811-817, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30528733

RESUMO

Constant light exposure is widespread in the intensive care unit (ICU) and could increase the rate of brain dysfunction as delirium and sleep disorders in critical patients. And the activation of hypothalamic neuropeptides is proved to play a crucial role in regulating hypercatabolism, especially skeletal muscle wasting in critical patients, which could lead to serious complications and poor prognosis. Here we investigated the hypothesis that constant light exposure could aggravate skeletal muscle wasting in endotoxemia rats and whether it was associated with alterations of circadian clock and hypothalamic proopiomelanocortin(POMC) expression. Fifty-four adult male Sprague-Dawley rats were intraperitoneally injected with lipopolysaccharide(LPS) or saline, subjected to constant light or a 12:12 h light-dark cycle for 7 days. On day 8, rats were sacrificed across six time points in 24 h and hypothalamus tissues and skeletal muscle were obtained. Rates of muscle wasting were measured by 3-methylhistidine(3-MH) and tyrosine release as well as expression of two muscle atrophic genes, muscle ring finger 1(MuRF-1) and muscle atrophy F-box(MAFbx). The expression of circadian clock genes, silent information regulator 1(SIRT1), POMC and hypothalamic inflammatory cytokines were also detected. Results showed that LPS administration significantly increased hypothalamic POMC expression, inflammatory cytokine levels and muscle wasting rates. Meanwhile constant light exposure disrupted the circadian rhythm, declined the expression of SIRT1 as well as aggravated hypothalamic POMC overexpression and skeletal muscle wasting in rats with endotoxemia. Taken together, the results demonstrated that constant light exposure could aggravate POMC-mediated skeletal muscle wasting in endotoxemia rats, which is associated with alteration of circadian clocks and SIRT1 in the hypothalamus.


Assuntos
Relógios Circadianos/genética , Endotoxemia/metabolismo , Hipotálamo/metabolismo , Músculo Esquelético/metabolismo , Pró-Opiomelanocortina/metabolismo , Sirtuína 1/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Citocinas/metabolismo , Endotoxemia/genética , Expressão Gênica , Luz , Masculino , Proteínas Musculares/metabolismo , Pró-Opiomelanocortina/genética , Ratos , Ratos Sprague-Dawley , Proteínas Ligases SKP Culina F-Box/metabolismo , Sirtuína 1/genética
20.
Chin J Integr Med ; 23(12): 901-907, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28986813

RESUMO

OBJECTIVE: To explore the effect and mechanism of Jiaotai Pill (, JTW) on intestinal mucosal damage in rats with chronic partial sleep deprivation (PSD). METHODS: Obesity resistant (OR) rats were selected, and underwent 4 h PSD by being exposed to environmental noise for 4 weeks. During the whole PSD period, JTW and estazolam were orally given to the rats respectively in the treating groups. Plasma concentration of lipopolysaccharide (LPS) which is the marker of gut-origin endotoxemia was examined. Intestinal morphology changes were observed by optical microscopy. The protein expression of occludin (Ocln) in the intestine was measured by immunofluorescence technique and Western blot. The expressions of circadian proteins cryptochromes (Cry1 and Cry2) in the intestine were also determined. RESULTS: The treatment of JTW significantly decreased LPS level in OR rats with PSD (P<0.05). JTW also attenuated insomnia-induced intestinal injury like shorter, sparse and incomplete villus, wide gap between the villus, mucosal swelling and congesting (P<0.05). These changes were associated with the effect of JTW on up-regulating the expressions of Cry1 protein, Cry2 protein and Ocln protein in the intestine. CONCLUSIONS: JTW has the beneficial effect on improving intestinal mucosal damage caused by PSD. The mechanism appears to be related to the modulation of the expressions of circadian proteins and Ocln protein in the intestine, thereby attenuating inflammation and improving insulin resistance in insomnia rats.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Intestinos/patologia , Privação do Sono/tratamento farmacológico , Animais , Proteínas CLOCK/metabolismo , Relógios Circadianos/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Íleo/efeitos dos fármacos , Íleo/patologia , Lipopolissacarídeos , Masculino , Modelos Biológicos , Ocludina/metabolismo , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA