Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Int Med Res ; 52(1): 3000605231222156, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38180904

RESUMO

OBJECTIVE: This study aimed to examine the mechanism of hyperphosphatemia-induced vascular calcification (HPVC). METHODS: Primary human aortic smooth muscle cells and rat aortic rings were cultured in Dulbecco's modified Eagle's medium supplemented with 0.9 mM or 2.5 mM phosphorus concentrations. Type III sodium-dependent phosphate cotransporter-1 (Pit-1) small interfering RNA and phosphonoformic acid (PFA), a Pit-1 inhibitor, were used to investigate the effects and mechanisms of Pit-1 on HPVC. Calcium content shown by Alizarin red staining, expression levels of Pit-1, and characteristic molecules for phenotypic transition of vascular smooth muscle cells were examined. RESULTS: Hyperphosphatemia induced the upregulation of Pit-1 expression, facilitated phenotypic transition of vascular smooth muscle cells, and led to HPVC in cellular and organ models. Treatment with Pit-1 small interfering RNA or PFA significantly inhibited Pit-1 expression, suppressed phenotypic transition, and attenuated HPVC. CONCLUSIONS: Our findings suggest that Pit-1 plays a pivotal role in the development of HPVC. The use of PFA as a Pit-1 inhibitor has the potential for therapeutic intervention in patients with HPVC. However, further rigorous clinical investigations are required to ensure the safety and efficacy of PFA before it can be considered for widespread implementation in clinical practice.


Assuntos
Hiperfosfatemia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III , Calcificação Vascular , Animais , Humanos , Ratos , Aorta , Foscarnet , Hiperfosfatemia/complicações , RNA Interferente Pequeno/genética , Fatores de Transcrição , Calcificação Vascular/tratamento farmacológico , Calcificação Vascular/etiologia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/efeitos dos fármacos , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo
2.
Atherosclerosis ; 244: 1-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26581047

RESUMO

BACKGROUND: Vascular calcification (VC) is closely related to cardiovascular events in chronic kidney disease (CKD). Apelin has emerged as a potent regulator of cardiovascular function, but its role in VC during CKD remains unknown. We determined whether apelin plays a role in phosphate-induced mineralization of human aortic smooth muscle cells (HASMCs) and in adenine-induced CKD rats with aortic calcification. METHODS AND RESULTS: In vitro, apelin-13 was found to inhibit calcium deposition in HASMCs (Pi(+) Apelin(+) group vs Pi(+) Apelin(-) group: 50.1 ± 6.21 ug/mg vs 146.67 ± 10.02 ug/mg protein, p = 0.012) and to suppress the induction of the osteoblastic transformation genes BMP-2, osteoprotegerin (OPG) and Cbfa1. This effect was mediated by interference of the sodium-dependent phosphate cotransporter (Pit-1) expression and phosphate uptake. In vivo, decreased plasma apelin levels (adenine(+) apelin(-) vs vehicle: 0.37 ± 0.09 ng/ml vs 0.68 ± 0.16 ng/ml, p = 0.003) and downregulation of APJ in the aorta were found in adenine-induced CKD rats with hyperphosphatemia (adenine(+) apelin(-) vs vehicle: 6.91 ± 0.23 mmoL/L vs 2.3 ± 0.07 mmoL/L, p = 0.001) and aortic calcification. Exogenous supplementation of apelin-13 normalized the level of the apelin/APJ system and significantly ameliorated aortic calcification, as well as the suppression of Runx2, OPG and Pit-1 expression. CONCLUSIONS: Apelin ameliorates VC by suppressing osteoblastic differentiation of VSMCs through downregulation of Pit-1. These results suggest apelin may have potential therapeutic value for treatment of VC in CKD.


Assuntos
Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , RNA/genética , Insuficiência Renal Crônica/complicações , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Calcificação Vascular/prevenção & controle , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Western Blotting , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/biossíntese , Subunidade alfa 1 de Fator de Ligação ao Core/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Imuno-Histoquímica , Ligantes , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Osteoprotegerina/biossíntese , Osteoprotegerina/efeitos dos fármacos , Osteoprotegerina/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/biossíntese , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/efeitos dos fármacos , Calcificação Vascular/etiologia , Calcificação Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA