Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35566130

RESUMO

Nigella sativa oil, commonly known as black seed oil (BSO), is a well-known Mediterranean food, and its consumption is associated with beneficial effects on human health. A large number of BSO's therapeutic properties is attributed to its pharmacologically active compound, thymoquinone (TQ), which inhibits cell proliferation and induces apoptosis by targeting several epigenetic players, including the ubiquitin-like, containing plant homeodomain (PHD) and an interesting new gene, RING finger domains 1 (UHRF1), and its partners, DNA methyltransferase 1 (DNMT1) and histone deacetylase 1 (HDAC1). This study was designed to compare the effects of locally sourced BSO with those of pure TQ on the expression of the epigenetic complex UHRF1/DNMT1/HDAC1 and the related events in several cancer cells. The gas chromatographs obtained from GC-MS analyses of extracted BSO showed that TQ was the major volatile compound. BSO significantly inhibited the proliferation of MCF-7, HeLa and Jurkat cells in a dose-dependent manner, and it induced apoptosis in these cell lines. BSO-induced inhibitory effects were associated with a significant decrease in mRNA expression of UHRF1, DNMT1 and HDAC1. Molecular docking and MD simulation showed that TQ had good binding affinity to UHRF1 and HDAC1. Of note, TQ formed a stable metal coordinate bond with zinc tom, found in the active site of the HDAC1 protein. These findings suggest that the use of TQ-rich BSO represents a promising strategy for epigenetic therapy for both solid and blood tumors through direct targeting of the trimeric epigenetic complex UHRF1/DNMT1/ HDAC1.


Assuntos
Neoplasias , Nigella sativa , Benzoquinonas/farmacologia , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Epigênese Genética , Humanos , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Nigella sativa/metabolismo , Óleos de Plantas/farmacologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
Int J Mol Sci ; 23(2)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35054838

RESUMO

Increased bone marrow adiposity is widely observed in patients with obesity and osteoporosis and reported to have deleterious effects on bone formation. Dracunculin (DCC) is a coumarin isolated from Artemisia spp. but, until now, has not been studied for its bioactive potential except antitrypanosomal activity. In this context, current study has reported the anti-adipogenic effect of DCC in human bone marrow-derived mesenchymal stromal cells (hBM-MSCs). DCC dose-dependently inhibited the lipid accumulation and expression of adipogenic transcription factors peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα) in hBM-MSCs induced to undergo adipogenesis. To elucidate its action mechanism, the effect of DCC on Wnt/ß-catenin and AMPK pathways was examined. Results showed that DCC treatment activated Wnt/ß-catenin signaling pathway via AMPK evidenced by increased levels of AMPK phosphorylation and Wnt10b expression after DCC treatment. In addition, DCC treated adipo-induced hBM-MSCs exhibited significantly increased nuclear levels of ß-catenin compared with diminished nuclear PPARγ levels. In conclusion, DCC was shown to be able to hinder adipogenesis by activating the ß-catenin via AMPK, providing potential utilization of DCC as a nutraceutical against bone marrow adiposity.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adipogenia/efeitos dos fármacos , Artemisia/química , Cumarínicos/farmacologia , Células-Tronco Mesenquimais/citologia , Via de Sinalização Wnt/efeitos dos fármacos , Proteínas Estimuladoras de Ligação a CCAAT/genética , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cumarínicos/química , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/metabolismo , Estrutura Molecular , PPAR gama/genética , Fosforilação/efeitos dos fármacos
3.
Food Funct ; 13(1): 316-326, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34897340

RESUMO

Maritime pine bark is a rich source of polyphenolic compounds and is commonly employed as a herbal supplement worldwide. This study was designed to check the potential of maritime pine tannin extract (MPTE) in anticancer therapy and to determine the underlying mechanism of action. Our results showed that MPTE, containing procyanidin oligomers and lanostane type terpenoids, has an inhibitory effect on cancer cell proliferation through cell cycle arrest in the G2/M phase. Treatment with MPTE also induced apoptosis in a concentration-dependent manner in human cancer cell lines (HeLa and U2OS), as evidenced by the enhanced activation of caspase 3 and the cleavage of PARP along with the downregulation of the antiapoptotic protein Bcl-2. Interestingly, human non-cancerous fibroblasts are much less sensitive to MPTE, suggesting that it preferentially targets cancer cells. MPTE played a pro-oxidant role in cancer cells and promoted the expression of the p73 tumor suppressor gene in p53-deficient cells. It also downregulated the protooncogenic proteins UHRF1 and DNMT1, mediators of the DNA methylation machinery, and reduced the global methylation levels in HeLa cells. Overall, our results show that maritime pine tannin extract can play a favorable role in cancer treatment, and can be further explored by the pharmaceutical industry.


Assuntos
Antineoplásicos/farmacologia , Proteínas Estimuladoras de Ligação a CCAAT , Epigênese Genética/efeitos dos fármacos , Pinus/química , Taninos/farmacologia , Ubiquitina-Proteína Ligases , Apoptose/efeitos dos fármacos , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Regulação para Baixo/efeitos dos fármacos , Células HeLa , Humanos , Casca de Planta/química , Extratos Vegetais/farmacologia , Proteína Tumoral p73/genética , Proteína Tumoral p73/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
4.
Bioorg Med Chem ; 52: 116500, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34801826

RESUMO

The accumulation of epigenetic alterations is one of the major causes of tumorigenesis. Aberrant DNA methylation patterns cause genome instability and silencing of tumor suppressor genes in various types of tumors. Therefore, drugs that target DNA methylation-regulating factors have great potential for cancer therapy. Ubiquitin-like containing PHD and RING finger domain 1 (UHRF1) is an essential factor for DNA methylation maintenance. UHRF1 is overexpressed in various cancer cells and down-regulation of UHRF1 in these cells reactivates the expression of tumor suppressor genes, thus UHRF1 is a promising target for cancer therapy. We have previously shown that interaction between the tandem Tudor domain (TTD) of UHRF1 and DNA ligase 1 (LIG1) di/trimethylated on Lys126 plays a key role in the recruitment of UHRF1 to replication sites and replication-coupled DNA methylation maintenance. An arginine binding cavity (Arg-binding cavity) of the TTD is essential for LIG1 interaction, thus the development of inhibitors that target the Arg-binding cavity could potentially repress UHRF1 function in cancer cells. To develop such an inhibitor, we performed in silico screening using not only static but also dynamic metrics based on all-atom molecular dynamics simulations, resulting in efficient identification of 5-amino-2,4-dimethylpyridine (5A-DMP) as a novel TTD-binding compound. Crystal structure of the TTD in complex with 5A-DMP revealed that the compound stably bound to the Arg-binding cavity of the TTD. Furthermore, 5A-DMP inhibits the full-length UHRF1:LIG1 interaction in Xenopus egg extracts. Our study uncovers a UHRF1 inhibitor which can be the basis of future experiments for cancer therapy.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/antagonistas & inibidores , DNA Ligase Dependente de ATP/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Simulação de Dinâmica Molecular , Piridinas/farmacologia , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Linhagem Celular Tumoral , DNA Ligase Dependente de ATP/metabolismo , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Piridinas/química , Relação Estrutura-Atividade , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Xenopus
5.
Medicine (Baltimore) ; 100(5): e24385, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33592885

RESUMO

INTRODUCTION: The transformation of acute promyelocytic leukemia (APL) to acute mononuclear leukemia during treatment is a rare clinical phenomenon, and no CCAAT/enhancer-binding protein alpha (CEBPA) double mutations have been reported. PATIENT CONCERNS: A 42-year-old male was hospitalized for ecchymosis of the left lower limb for more than 1 month, gingival bleeding, and fatigue for 10 days, with aggravation of symptoms for 2 days. DIAGNOSIS: A diagnosis of APL was based on bone marrow (BM) morphology, immunophenotyping, fusion gene analysis, and fluorescence in situ hybridization. At a 1-year follow-up of maintenance treatment, he developed thrombocytopenia and was diagnosed with acute myeloid leukemia (AML) with a CEBPA double mutation by BM morphology, immunotyping, chromosomal analysis, polymerase chain reaction, and next generation sequencing. INTERVENTIONS: Complete remission of APL was achieved after all-trans retinoic acid and arsenic trioxide double induction therapy, followed by 2 cycles of mitoxantrone and cytarabine, and 1 cycle of idarubicin and cytarabine. Thereafter, sequential maintenance therapy of arsenic trioxide + all-trans retinoic acid + methotrexate was started. In the fourth cycle of maintenance therapy, APL was transformed into AML with a CEBPA double mutation. After 1 cycle of idarubicin and cytarabine, the patient achieved complete remission and received 3 cycles of idarubicin and cytarabine and three cycles of high-dose cytarabine as consolidation therapy. OUTCOMES: At present, the patient is in continuous remission with minimal residual disease negative for both of APL and AML. CONCLUSION: AML with a CEBPA double mutation after APL treatment is very rare, thus the prognosis of this event will require further observation.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/genética , Transformação Celular Neoplásica/genética , Leucemia Mieloide Aguda/genética , Leucemia Promielocítica Aguda/genética , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Humanos , Quimioterapia de Indução , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/tratamento farmacológico , Masculino , Mutação
6.
Mol Biol Rep ; 48(1): 743-761, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33275195

RESUMO

Obesity is growing at an alarming rate, which is characterized by increased adipose tissue. It increases the probability of many health complications, such as diabetes, arthritis, cardiac disease, and cancer. In modern society, with a growing population of obese patients, several individuals have increased insulin resistance. Herbal medicines are known as the oldest method of health care treatment for obesity-related secondary health issues. Several traditional medicinal plants and their effective phytoconstituents have shown anti-diabetic and anti-adipogenic activity. Adipose tissue is a major site for lipid accumulation as well as the whole-body insulin sensitivity region. 3T3-L1 cell line model can achieve adipogenesis. Adipocyte characteristics features such as expression of adipocyte markers and aggregation of lipids are chemically induced in the 3T3-L1 fibroblast cell line. Differentiation of 3T3-L1 is an efficient and convenient way to obtain adipocyte like cells in experimental studies. Peroxisome proliferation activated receptor γ (PPARγ) and Cytosine-Cytosine-Adenosine-Adenosine-Thymidine/Enhancer-binding protein α (CCAAT/Enhancer-binding protein α or C/EBPα) are considered to be regulating adipogenesis at the early stage, while adiponectin and fatty acid synthase (FAS) is responsible for the mature adipocyte formation. Excess accumulation of these adipose tissues and lipids leads to obesity. Thus, investigating adipose tissue development and the underlying molecular mechanism is important in the therapeutical approach. This review describes the cellular mechanism of 3T3-L1 fibroblast cells on potential anti-adipogenic herbal bioactive compounds.


Assuntos
Fármacos Antiobesidade/uso terapêutico , Artrite/prevenção & controle , Diabetes Mellitus/prevenção & controle , Cardiopatias/prevenção & controle , Neoplasias/prevenção & controle , Obesidade/tratamento farmacológico , Compostos Fitoquímicos/uso terapêutico , Células 3T3-L1 , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Adiponectina/genética , Adiponectina/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Fármacos Antiobesidade/química , Artrite/etiologia , Artrite/genética , Artrite/patologia , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Diabetes Mellitus/etiologia , Diabetes Mellitus/genética , Diabetes Mellitus/patologia , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Regulação da Expressão Gênica , Cardiopatias/etiologia , Cardiopatias/genética , Cardiopatias/patologia , Humanos , Resistência à Insulina , Camundongos , Neoplasias/etiologia , Neoplasias/genética , Neoplasias/patologia , Obesidade/complicações , Obesidade/genética , Obesidade/patologia , PPAR gama/genética , PPAR gama/metabolismo , Compostos Fitoquímicos/química
7.
Molecules ; 25(10)2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32466183

RESUMO

Obesity is one of the most common metabolic diseases resulting in metabolic syndrome. In this study, we investigated the antiobesity effect of Gentiana lutea L. (GL) extract on 3T3-L1 preadipocytes and a high-fat-diet (HFD)-induced mouse model. For the induction of preadipocytes into adipocytes, 3T3-L1 cells were induced by treatment with 0.5 mM 3-isobutyl-1-methylxanthine, 1 mM dexamethasone, and 1 µg/mL insulin. Adipogenesis was assessed based on the messenger ribonucleic acid expression of adipogenic-inducing genes (adiponectin (Adipoq), CCAAT/enhancer-binding protein alpha (Cebpa), and glucose transporter type 4 (Slc2a4)) and lipid accumulation in the differentiated adipocytes was visualized by Oil Red O staining. In vivo, obese mice were induced with HFD and coadministered with 100 or 200 mg/kg/day of GL extract for 12 weeks. GL extract treatment inhibited adipocyte differentiation by downregulating the expression of adipogenic-related genes in 3T3-L1 cells. In the obese mouse model, GL extract prevented HFD-induced weight gain, fatty hepatocyte deposition, and adipocyte size by decreasing the secretion of leptin and insulin. In conclusion, GL extract shows antiobesity effects in vitro and in vivo, suggesting that this extract can be beneficial in the prevention of obesity.


Assuntos
Adipócitos/efeitos dos fármacos , Fármacos Antiobesidade/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Gentiana/química , Obesidade/tratamento farmacológico , Extratos Vegetais/farmacologia , 1-Metil-3-Isobutilxantina/farmacologia , Células 3T3-L1 , Adipócitos/metabolismo , Adipócitos/patologia , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Adiponectina/genética , Adiponectina/metabolismo , Animais , Fármacos Antiobesidade/isolamento & purificação , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Diferenciação Celular/efeitos dos fármacos , Dexametasona/farmacologia , Dieta Hiperlipídica , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Insulina/farmacologia , Leptina/genética , Leptina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/etiologia , Obesidade/genética , Obesidade/metabolismo , Extratos Vegetais/isolamento & purificação , Transdução de Sinais
8.
Molecules ; 25(10)2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443487

RESUMO

Medicinal plants have been used worldwide as primary alternative healthcare supplements. Cornus officinalis (CO) and Ribes fasciculatum (RF) are traditional medicinal plants applied in East Asia to treat human diseases such as hepatitis, osteoporosis, oxidative stress and allergy. The aim of this study was to examine the anti-obesity effect of CO and RF on preadipocyte 3T3-L1 cells in vitro and high-fat diet (HFD)-induced obesity mice in vivo. Combination treatment of CO and RF in differentiated 3T3-L1 cells inhibited adipocyte differentiation through downregulation of adipogenesis-associated genes such as CCAAT/enhancer-binding protein alpha (Cebpa), fatty acid binding protein 4 (Fabp4), peroxisome proliferator-activated receptor gamma (Pparg) and sterol regulatory element binding protein (Srebp1). In vivo animal models showed that a mixture of CO and RF inhibited HFD-induced weight gain, resulting in decreased abdominal visceral fat tissues and fatty hepatocyte deposition. In addition, CO+RF treatment decreased HFD-induced adipogenesis-associated genes in abdominal white fat tissue. These results suggest that administration of a CO and RF mixture prevented adipocyte differentiation and lipid accumulation in preadipocyte cells and HFD-induced body weight in obesity mice. Therefore, combined therapy of CO and RF may be a protective therapeutic agent against obesity.


Assuntos
Adipogenia/efeitos dos fármacos , Proteínas Estimuladoras de Ligação a CCAAT/genética , Cornus/química , PPAR gama/genética , Ribes/química , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Camundongos , Extratos Vegetais/química , Extratos Vegetais/farmacologia
9.
Zhonghua Xue Ye Xue Za Zhi ; 41(12): 1008-1012, 2020 Dec 14.
Artigo em Chinês | MEDLINE | ID: mdl-33445848

RESUMO

Objective: To investigate the clinical characteristics, etiology, and prognosis of familial acute myeloid leukemia (AML) with germline CEBPA mutation and improve the understanding of familial leukemia. Methods: The age of onset, clinical characteristics, outcome, and prognosis of a family of patients with AML were investigated, and the family tree of the cases was displayed. Bone marrow and oral mucosal cells were collected from the proband, and peripheral blood was collected from the relatives of the proband. Gene mutation was detected by gene sequencing technology. Results: A total of 10 patients in this family were diagnosed with acute leukemia, including 4 males and 6 females, with a median age of 9 (3-48) years. Of the 10 patients, six died. Among them, 4 patients did not receive treatment, 1 patient survived 3 years after chemotherapy and died of relapse, and one patient died 2 years after receiving traditional Chinese medicine and supportive treatment. Four patients are alive. One patient has survived 15 years through chemotherapy, and three patients have survived with chemotherapy combined with hematopoietic stem cell transplantation, and the survival time was 6, 9, and 28 months at the end of follow-up. Gene sequencing was performed on proband and 8 relatives of the proband, and 5 were found to have the germline CEBPA TAD p.G36Afs*124 mutation. Among the 5 individuals with confirmed CEBPA mutation, 4 were diagnosed with AML, and 1 had not developed disease during follow-up. Conclusion: AML with germline CEBPA gene mutation mostly occurs in children and young adults, with complete or nearly complete penetrance. With active treatment, most of the patients have a favorable prognosis.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/genética , Leucemia Mieloide Aguda , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Células Germinativas , Mutação em Linhagem Germinativa , Humanos , Leucemia Mieloide Aguda/genética , Masculino , Pessoa de Meia-Idade , Prognóstico , Adulto Jovem
10.
EMBO J ; 38(18): e101426, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31373033

RESUMO

Steroid hormones are key gene regulators in breast cancer cells. While estrogens stimulate cell proliferation, progestins activate a single cell cycle followed by proliferation arrest. Here, we use biochemical and genome-wide approaches to show that progestins achieve this effect via a functional crosstalk with C/EBPα. Using ChIP-seq, we identify around 1,000 sites where C/EBPα binding precedes and helps binding of progesterone receptor (PR) in response to hormone. These regions exhibit epigenetic marks of active enhancers, and C/EBPα maintains an open chromatin conformation that facilitates loading of ligand-activated PR. Prior to hormone exposure, C/EBPα favors promoter-enhancer contacts that assure hormonal regulation of key genes involved in cell proliferation by facilitating binding of RAD21, YY1, and the Mediator complex. Knockdown of C/EBPα disrupts enhancer-promoter contacts and decreases the presence of these architectural proteins, highlighting its key role in 3D chromatin looping. Thus, C/EBPα fulfills a previously unknown function as a potential growth modulator in hormone-dependent breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Receptores de Progesterona/metabolismo , Animais , Neoplasias da Mama/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Células MCF-7 , Camundongos , Transplante de Neoplasias , Progestinas/farmacologia , Regiões Promotoras Genéticas , Ensaios Antitumorais Modelo de Xenoenxerto , Fator de Transcrição YY1/metabolismo
11.
Biomed Res Int ; 2019: 3101987, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31467880

RESUMO

There has been a remarkable interest in finding lipid inhibitors from natural products to replace synthetic compounds, and a variety of oriental medicinal herbs are reported to have biological activity with regard to lipid inhibition. Buginawa (Bugi) is a novel combined formula that contains twelve medicinal herbs with potential for weight loss induction. We hypothesized that Bugi may have antiobesity effects in 3T3-L1 preadipocytes and in a high-fat diet- (HFD-) induced mouse model. In this study, 3T3-L1 cells were treated with varied concentrations of Bugi (62.5, 125, or 250 µg/mL). Bugi treatment inhibited adipocyte differentiation by suppressing adipogenic transcription genes, including peroxisome proliferator-activated receptor γ protein (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), sterol regulatory element-binding protein 1 (SREBP1), and CCAAT/enhancer-binding protein ß (C/EBPß). Mice were fed a normal diet or an HFD for 11 weeks, and Bugi was simultaneously administered at 50 or 100 mg/kg. Bugi administration significantly reduced body weight gain and white adipose tissue (WAT) weight and effectively inhibited lipid droplet accumulation in epididymal white adipose tissue (eWAT) and liver tissue. Further, Bugi treatment suppressed mRNA levels of PPARγ, C/EBPα, and SREBP1 in eWAT and liver tissue. Our findings demonstrate that Bugi could be an effective candidate for preventing obesity and related metabolic disorders.


Assuntos
Tecido Adiposo Branco/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Obesidade/tratamento farmacológico , Preparações de Plantas/farmacologia , Plantas Medicinais , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Tecido Adiposo Branco/crescimento & desenvolvimento , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , Diferenciação Celular/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Obesidade/metabolismo , Obesidade/patologia , PPAR gama/genética
12.
Food Funct ; 10(8): 4811-4822, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31317981

RESUMO

Cocoa polyphenols exhibit high antioxidant activity and have been proposed as a potential adjuvant for the treatment of metabolic disturbances. Here, we demonstrate that supplementation with low doses (14 and 140 mg per kg per rat) of a complete cocoa extract induces metabolic benefits in a diet-induced obesity (DIO) model of Wistar rats. After 10 weeks, cocoa extract-supplemented animals exhibited significantly lower body weight gain and food efficiency, with no differences in energy intake. Cocoa significantly reduced visceral (epididymal and retroperitoneal) and subcutaneous fat accumulation accompanied by a significant reduction in the adipocyte size, which was mediated by downregulation of the adipocyte-specific genes Cebpa, Fasn and Adipoq. Additionally, cocoa extract supplementation reduced the triacylglycerol/high density lipoprotein (TAG/HDL) ratio, decreased hepatic triglyceride accumulation, improved insulin sensitivity by reducing HOMA-IR, and significantly ameliorated glucose tolerance after an intraperitoneal glucose tolerance test. Finally, no adverse effect was observed in an in vivo toxicity evaluation of our cocoa extract at doses up to 500 mg kg-1 day-1. Our data demonstrate that low doses of cocoa extract supplementation (14 and 140 mg kg-1 day-1) are safe and sufficient to counteract obesity and type-2 diabetes in rats and provide new insights into the potential application of cocoa supplements in the management of the metabolic syndrome.


Assuntos
Cacau/química , Resistência à Insulina , Obesidade/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Cacau/efeitos adversos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais/análise , Gorduras/metabolismo , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Feminino , Humanos , Masculino , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Extratos Vegetais/efeitos adversos , Ratos , Ratos Wistar , Sementes/química , Aumento de Peso/efeitos dos fármacos
13.
Molecules ; 24(10)2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31108834

RESUMO

Clitoria ternatea (commonly known as blue pea) flower petal extract (CTE) is used as a natural colorant in a variety of foods and beverages. The objective of study was to determine the inhibitory effect of CTE on adipogenesis in 3T3-L1 preadipocytes. The phytochemical profiles of CTE were analyzed by liquid chromatography and tandem mass spectrometry (LC-MS/MS). Anti-adipogenesis effect of CTE was measured by using Oil Red O staining, intracellular triglyceride assay, quantitative real-time PCR and western blot analysis in 3T3-L1 adipocytes. Cell cycle studies were performed by flow cytometry. Lipolysis experiments were performed using a colorimetric assay kit. In early stages, CTE demonstrated anti-adipogenic effects through inhibition of proliferation and cell cycle retardation by suppressing expression of phospho-Akt and phospho-ERK1/2 signaling pathway. The results also showed that CTE inhibited the late stage of differentiation through diminishing expression of adipogenic transcription factors including PPARγ and C/EBPα. The inhibitory action was subsequently attenuated in downregulation of fatty acid synthase and acetyl-CoA carboxylase, causing the reduction of TG accumulation. In addition, CTE also enhanced catecholamine-induced lipolysis in adipocytes. These results suggest that CTE effectively attenuates adipogenesis by controlling cell cycle progression and downregulating adipogenic gene expression.


Assuntos
Adipócitos/citologia , Adipogenia/efeitos dos fármacos , Clitoria/química , Metabolismo dos Lipídeos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo , Flores/química , Regulação da Expressão Gênica/efeitos dos fármacos , Lipólise , Camundongos , PPAR gama/genética , PPAR gama/metabolismo , Extratos Vegetais/isolamento & purificação
14.
J Nanosci Nanotechnol ; 19(2): 701-708, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30360145

RESUMO

The obesity rate has been increasing worldwide, which is important because obesity has been linked to the development of various metabolic disorders, such as type 2 diabetes, hypertension, cancer, and stroke. Nanomedicine offers a new approach for treating many diseases, including metabolic disorders such as obesity. In this study, we explored the anti-adipogenic effects of spherical gold nanoparticles synthesized with fresh Panax ginseng leaves (P.g AuNPS) in vitro using 3T3-L1 mature adipocytes. Cell viability was assessed by quantitating preadipocyte growth at different time points. Furthermore, to assess the anti-adipogenic effects of P.g AuNPS, intracellular lipid accumulation was investigated in mature adipocytes. To this end, cells were observed under a microscope and OD measurements were taken after Oil Red O staining. In addition, transcriptional gene regulation was examined by performing real time PCR to assess the levels of adipogenic genes such as PPARγ, CEBPα, CEBPß, Jak2, STAT3, FAS, SREBP-1, and ap2. Moreover, protein levels were evaluated by immunoblotting. Altogether, these results confirm that P.g AuNPS exhibit anti-adipogenic effects at a concentration of 100 µg/ml and that these effects are mediated by the downregulation of PPARγ/CEBPα (major transcription factors) signaling in 3T3-L1 mature adipocytes.


Assuntos
Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Proteínas Estimuladoras de Ligação a CCAAT/genética , Nanopartículas Metálicas , PPAR gama/genética , Extratos Vegetais/farmacologia , Células 3T3-L1 , Adipogenia/genética , Animais , Diferenciação Celular , Diabetes Mellitus Tipo 2 , Ouro , Camundongos , Panax
15.
J Oral Sci ; 60(4): 601-610, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30587692

RESUMO

Follicular dendritic cell-secreted protein (FDC-SP) is expressed in FDCs, human periodontal ligament (HPL) cells, and junctional epithelium. To evaluate the effects of interleukin-1 beta (IL-1ß) on FDC-SP gene expression in immortalized HPL cells, FDC-SP mRNA and protein levels in HPL cells following stimulation by IL-1ß were measured by real-time polymerase chain reaction and Western blotting. Luciferase (LUC), gel mobility shift, and chromatin immunoprecipitation (ChIP) analyses were performed to study the interaction between transcription factors and promoter regions in the human FDC-SP gene. IL-1ß (1 ng/mL) induced the expression of FDC-SP mRNA and protein levels at 3 h, and reached maximum levels at 12 h. IL-1ß increased LUC activities of constructs (-116FDCSP - -948FDCSP) including the FDC-SP gene promoter. Transcriptional inductions by IL-1ß were partially inhibited by 3-base-pair (3-bp) mutations in the Yin Yang 1 (YY1), GATA, CCAAT-enhancer-binding protein2 (C/EBP2), or C/EBP3 in the -345FDCSP. IL-1ß-induced -345FDCSP activities were inhibited by protein kinase A, tyrosine-kinase, mitogen-activated protein kinase (MEK)1/2, and PI3-kinase inhibitors. The results of gel shift and ChIP assays revealed that YY1, GATA, and C/EBP-ß interacted with the YY1, GATA, C/EBP2, and C/EBP3 elements that were increased by IL-1ß. These studies demonstrate that IL-1ß increases FDC-SP gene transcription in HPL cells by targeting YY1, GATA, C/EBP2, and C/EBP3 in the human FDC-SP gene promoter.


Assuntos
Células Dendríticas Foliculares/metabolismo , Expressão Gênica/efeitos dos fármacos , Interleucina-1beta/farmacologia , Ligamento Periodontal/citologia , Proteínas/metabolismo , Western Blotting , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Células Cultivadas , Inserção Epitelial/metabolismo , Fatores de Transcrição GATA/genética , Fatores de Transcrição GATA/metabolismo , Humanos , Imunoprecipitação , Regiões Promotoras Genéticas , Proteínas/genética , Reação em Cadeia da Polimerase em Tempo Real , Transcrição Gênica , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
16.
EMBO J ; 37(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30389661

RESUMO

Nutrient overload in combination with decreased energy dissipation promotes obesity and diabetes. Obesity results in a hormonal imbalance, which among others activates G protein-coupled receptors utilizing diacylglycerol (DAG) as secondary messenger. Protein kinase D1 (PKD1) is a DAG effector, which integrates multiple nutritional and hormonal inputs, but its physiological role in adipocytes is unknown. Here, we show that PKD1 promotes lipogenesis and suppresses mitochondrial fragmentation, biogenesis, respiration, and energy dissipation in an AMP-activated protein kinase (AMPK)-dependent manner. Moreover, mice lacking PKD1 in adipocytes are resistant to diet-induced obesity due to elevated energy expenditure. Beiging of adipocytes promotes energy expenditure and counteracts obesity. Consistently, deletion of PKD1 promotes expression of the ß3-adrenergic receptor (ADRB3) in a CCAAT/enhancer binding protein (C/EBP)-α- and δ-dependent manner, which leads to the elevated expression of beige markers in adipocytes and subcutaneous adipose tissue. Finally, deletion of PKD1 in adipocytes improves insulin sensitivity and ameliorates liver steatosis. Thus, depletion of PKD1 in adipocytes increases energy dissipation by several complementary mechanisms and might represent an attractive strategy to treat obesity and its related complications.


Assuntos
Adipócitos/metabolismo , Adiposidade , Metabolismo Energético , Fígado Gorduroso/metabolismo , Obesidade/metabolismo , Proteína Quinase C/metabolismo , Gordura Subcutânea/metabolismo , Células 3T3-L1 , Adipócitos/patologia , Animais , Proteína delta de Ligação ao Facilitador CCAAT/genética , Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Mutantes , Obesidade/genética , Obesidade/patologia , Proteína Quinase C/genética , Receptores Adrenérgicos beta 3/genética , Receptores Adrenérgicos beta 3/metabolismo , Sistemas do Segundo Mensageiro/genética , Gordura Subcutânea/fisiologia
17.
J Microbiol Biotechnol ; 28(10): 1645-1653, 2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-30176712

RESUMO

The genus Acer contains several species with various bioactivities including antioxidant, antitumor and anti-inflammatory properties. However, Acer okamotoanum Nakai, one species within this genus has not been fully studied yet. Therefore, in this study, we investigated the anti-adipogenic activities of leaf extract from A. okamotoanum Nakai (LEAO) on 3T3-L1 preadipocytes. Adipogenesis is one of the cell differentiation processes, which converts preadipocytes into mature adipocytes. Nowadays, inhibition of adipogenesis is considered as an effective strategy in the field of anti-obesity research. In this study, we observed that LEAO decreased the accumulation of lipid droplets during adipogenesis and down-regulated the expression of key adipogenic transcription factors such as peroxisome proliferator-activated receptor γ (PPAR γ) and CCAAT/enhancer binding protein α (C/EBP α). In addition, LEAO inactivated PI3K/Akt signaling and its downstream factors that promote adipogenesis by inducing the expression of PPAR γ. LEAO also activated ß-catenin signaling, which prevents the adipogenic program by suppressing the expression of PPAR γ. Therefore, we found that treatment with LEAO is effective for attenuating adipogenesis in 3T3-L1 cells. Consequently, these findings suggest that LEAO has the potential to be used as a therapeutic agent for preventing obesity.


Assuntos
Acer/química , Adipogenia/efeitos dos fármacos , Proteínas Estimuladoras de Ligação a CCAAT/genética , Regulação da Expressão Gênica/efeitos dos fármacos , PPAR gama/genética , Extratos Vegetais/farmacologia , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Sobrevivência Celular , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Obesidade/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , beta Catenina/metabolismo
18.
Cell Physiol Biochem ; 48(1): 397-408, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30016791

RESUMO

BACKGROUND/AIMS: Compared with non-obese individuals, obese individuals commonly store more vitamin D in adipose tissue. VDR expression in adipose tissue can influence adipogenesis and is therefore a target pathway deserving further study. This study aims to assess the role of 1,25(OH)2D3 in human preadipocyte proliferation and differentiation. METHODS: RTCA, MTT, and trypan blue assays were used to assess the effects of 1,25(OH)2D3 on the viability, proliferation, and adipogenic differentiation of SGBS cells. Cell cycle and apoptosis analyses were performed with flow cytometry, triglycerides were quantified, and RT-qPCR was used to assess gene expression. RESULTS: We confirmed that the SGBS cell model is suitable for studying adipogenesis and demonstrated that the differentiation protocol induces cell maturation, thereby increasing the lipid content of cells independently of treatment. 1,25(OH)2D3 treatment had different effects according to the cell stage, indicating different modes of action driving proliferation and differentiation. In preadipocytes, 1,25(OH)2D3 induced G1 growth arrest at both tested concentrations without altering CDKN1A gene expression. Treatment with 100 nM 1,25(OH)2D3 also decreased MTT absorbance and the lipid concentration. Moreover, increased normalized cell index values and decreased metabolic activity were not induced by proliferation or apoptosis. Exposure to 100 nM 1,25(OH)2D3 induced VDR, CEBPA, and CEBPB expression, even in the preadipocyte stage. During adipogenesis, 1,25(OH)2D3 had limited effects on processes such as VDR and PPARG gene expression, but it upregulated CEBPA expression. CONCLUSIONS: We demonstrated for the first time that 1,25(OH)2D3 induces changes in preadipocytes, including VDR expression and growth arrest, and increases the lipid content in adipocytes treated for 16 days. Preadipocytes are important cells in adipose tissue homeostasis, and understanding the role of 1,25(OH)2D3 in adipogenesis is a crucial step in ensuring adequate vitamin D supplementation, especially for obese individuals.


Assuntos
Adipogenia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Vitamina D/análogos & derivados , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , PPAR gama/genética , PPAR gama/metabolismo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Regulação para Cima/efeitos dos fármacos , Vitamina D/farmacologia
19.
Am J Chin Med ; 46(5): 1045-1063, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29976086

RESUMO

Obesity is a significant risk factor for various diseases. It is a clinical condition caused by the excessive accumulation of fat, which has a negative impact on human health. Galactin-12 is an adipocyte-expressed protein and possesses adipocyte-inducing activity. We investigated the expression level of candidate proteins involved in galactin-12-mediated adipocyte differentiation pathway. We performed a high-throughput screening assay to monitor galectin-12 promoter activity using 105 traditional Chinese herbs. Corn silk extract and [Formula: see text]-sitosterol reduced the expression of galactin-12 promoter in 3T3-L1 cells. In addition, corn silk extract and [Formula: see text]-sitosterol decreased the level of lipid droplets and downregulated the gene and protein expression level of C/EBP[Formula: see text], C/EBP[Formula: see text], PPAR[Formula: see text], Ap2, and adipsin in 3T3-L1 pre-adipocytes via AKT and ERK1/2 inhibition. In vivo study with the oral administration of corn silk extract and [Formula: see text]-sitosterol in a mouse model showed a significant weight reduction and decrease in adipocytes in several organs such as the liver and adipose tissue. Taken together, corn silk extract and [Formula: see text]-sitosterol may effectively reduce pre-adipocyte differentiation by inhibiting galectin-12 activity and exerting anti-obesity effects. These findings highlight the potential use of corn silk extract and [Formula: see text]-sitosterol as potential candidates for the prevention and treatment of obesity.


Assuntos
Adipogenia/efeitos dos fármacos , Fármacos Antiobesidade/farmacologia , Proteínas de Ciclo Celular/metabolismo , Galectinas/metabolismo , Obesidade/metabolismo , Extratos Vegetais/farmacologia , Zea mays/química , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas de Ciclo Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Galectinas/genética , Humanos , Camundongos , Células NIH 3T3 , Obesidade/tratamento farmacológico , Obesidade/genética , Obesidade/fisiopatologia , PPAR gama/genética , PPAR gama/metabolismo
20.
Food Funct ; 9(8): 4340-4351, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30043014

RESUMO

Obesity is a medical condition with increasing prevalence, characterized by an accumulation of excess fat that could be improved using some bioactive compounds. However, many of these compounds with in vitro activity fail to respond in vivo, probably due to the sophistication of the physiological energy regulatory networks. In this context, C. elegans has emerged as a plausible model for the identification and characterization of the effect of such compounds on fat storage in a complete organism. However, the results obtained in such a simple model are not easily extrapolated to more complex organisms such as mammals, which hinders its application in the short term. Therefore, it is necessary to obtain new experimental data about the evolutionary conservation of the mechanisms of fat loss between worms and mammals. Previously, we found that some omega-6 fatty acids promote fat loss in C. elegans by up-regulation of peroxisomal fatty acid ß-oxidation in an omega-3 independent manner. In this work, we prove that the omega-6 fatty acids' effects on worms are also seen when they are supplemented with a natural omega-6 source (borage seed oil, BSO). Additionally, we explore the anti-obesity effects of two doses of BSO in a diet-induced obesity rat model, validating the up-regulation of peroxisomal fatty acid ß-oxidation. The supplementation with BSO significantly reduces body weight gain and energy efficiency and prevents white adipose tissue accumulation without affecting food intake. Moreover, BSO also increases serum HDL-cholesterol levels, improves insulin resistance and promotes the down-regulation of Cebpa, an adipogenesis-related gene. Therefore, we conclude that the effects of omega-6 fatty acids are highly conserved between worms and obesity-induced mammals, so these compounds could be considered to treat or prevent obesity-related disorders.


Assuntos
Borago/química , Caenorhabditis elegans/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Obesidade/dietoterapia , Peroxissomos/metabolismo , Óleos de Plantas/metabolismo , Ácido gama-Linolênico/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Borago/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Caenorhabditis elegans/genética , Colesterol/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Ômega-6/análise , Humanos , Masculino , Obesidade/genética , Obesidade/metabolismo , Oxirredução , Peroxissomos/genética , Óleos de Plantas/química , Ratos , Ratos Wistar , Ácido gama-Linolênico/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA