Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34361729

RESUMO

Tyrosinase (TYR) is a type III copper oxidase present in fungi, plants and animals. The inhibitor of human TYR plays a vital role in pharmaceutical and cosmetic fields by preventing synthesis of melanin in the skin. To search for an effective TYR inhibitor from various plant extracts, a kinetic study of TYR inhibition was performed with mushroom TYR. Among Panax ginseng, Alpinia galanga, Vitis vinifera and Moringa oleifera, the extracts of V. vinifera seed, A. galanga rhizome and M. oleifera leaf reversibly inhibited TYR diphenolase activity with IC50 values of 94.8 ± 0.2 µg/mL, 105.4 ± 0.2 µg/mL and 121.3 ± 0.4 µg/mL, respectively. Under the same conditions, the IC50 values of the representative TYR inhibitors of ascorbic acid and kojic acid were found at 235.7 ± 1.0 and 192.3 ± 0.4 µg/mL, respectively. An inhibition kinetics study demonstrated mixed-type inhibition of TYR diphenolase by A. galanga and V. vinifera, whereas a rare uncompetitive inhibition pattern was found from M. oleifera with an inhibition constant of Kii 73 µg/mL. Phytochemical investigation by HPLC-MS proposed luteolin as a specific TYR diphenolase ES complex inhibitor, which was confirmed by the inhibition kinetics of luteolin. The results clearly showed that studying TYR inhibition kinetics with plant extract mixtures can be utilized for the screening of specific TYR inhibitors.


Assuntos
Inibidores Enzimáticos/farmacologia , Proteínas Fúngicas/antagonistas & inibidores , Luteolina/farmacologia , Monofenol Mono-Oxigenase/antagonistas & inibidores , Moringa oleifera/química , Agaricales/química , Agaricales/enzimologia , Alpinia/química , Ácido Ascórbico/química , Ácido Ascórbico/isolamento & purificação , Ácido Ascórbico/farmacologia , Ensaios Enzimáticos , Inibidores Enzimáticos/química , Proteínas Fúngicas/isolamento & purificação , Ensaios de Triagem em Larga Escala , Concentração Inibidora 50 , Cinética , Luteolina/química , Luteolina/isolamento & purificação , Monofenol Mono-Oxigenase/isolamento & purificação , Panax/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Pironas/química , Pironas/isolamento & purificação , Pironas/farmacologia , Rizoma/química , Sementes/química , Vitis/química
2.
Int J Biol Macromol ; 186: 909-918, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34274400

RESUMO

A purified exo-polygalacturonase of Neosartorya glabra (EplNg) was successfully characterized. EplNg native presented 68.2 kDa, with 32% carbohydrate content. The deglycosylated form showed 46.3 kDa and isoelectric point of 5.4. The identity of EplNg was confirmed as an exo-polygalacturonase class I (EC 3.2.1.67) using mass spectrometry and Western-Blotting. Capillary electrophoresis indicated that only galacturonic acid was released by the action of EplNg on sodium polypectate, confirming an exoenzyme character. The structural model confers that EplNg has a core formed by twisted parallel ß-sheets structure. Among twelve putative cysteines, ten were predicted to form disulfide bridges. The catalytic triad predicted is composed of Asp223, Asp245, and Asp246 aligned along with a distance in 4-5 Å, suggesting that EplNg probably does not perform the standard inverting catalytic mechanism described for the GH28 family. EplNg was active from 30 to 90 °C, with maximum activity at 65 °C, pH 5.0. The Km and Vmax determined using sodium polypectate were 6.9 mg·mL-1 and Vmax 690 µmol·min-1.mg-1, respectively. EplNg was active and stable over a wide range of pH values and temperatures, confirming the interesting properties EplNg and provide a basis for the development of the enzyme in different biotechnological processes.


Assuntos
Aspergillus/enzimologia , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/metabolismo , Catálise , Estabilidade Enzimática , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/isolamento & purificação , Ácidos Hexurônicos/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Pectinas/metabolismo , Conformação Proteica , Estabilidade Proteica , Relação Estrutura-Atividade , Especificidade por Substrato , Temperatura
3.
Int J Biol Macromol ; 172: 270-280, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33418049

RESUMO

Enzyme immobilization can increase enzyme reusability to reduce cost of industrial production. Ginkgo biloba leaf extract is commonly used for medical purposes, but it contains ginkgolic acid, which has negative effects on human health. Here, we report a novel approach to solve the problem by degrading the ginkgolic acid with immobilized-laccase, where core/shell composite nanoparticles prepared by coaxial electrospraying might be first applied to enzyme immobilization. The core/shell Fe3O4/nylon 6,6 composite nanoparticles (FNCNs) were prepared using one-step coaxial electrospraying and can be simply recovered by magnetic force. The glutaraldehyde-treated FNCNs (FNGCNs) were used to immobilize laccase. As a result, thermal stability of the free laccase was significantly improved in the range of 60-90 °C after immobilization. The laccase-immobilized FNGCNs (L-FNGCNs) were applied to degrade the ginkgolic acids, and the rate constants (k) and times (τ50) were ~0.02 min-1 and lower than 39 min, respectively, showing good catalytic performance. Furthermore, the L-FNGCNs exhibited a relative activity higher than 0.5 after being stored for 21 days or reused for 5 cycles, showing good storage stability and reusability. Therefore, the FNGCNs carrier was a promising enzyme immobilization system and its further development and applications were of interest.


Assuntos
Óxido Ferroso-Férrico/química , Proteínas Fúngicas/química , Ginkgo biloba/química , Lacase/química , Nanopartículas de Magnetita/química , Salicilatos/química , Reagentes de Ligações Cruzadas/química , Técnicas Eletroquímicas , Enzimas Imobilizadas/química , Enzimas Imobilizadas/isolamento & purificação , Reutilização de Equipamento , Proteínas Fúngicas/isolamento & purificação , Glutaral/química , Hidrólise , Cinética , Lacase/isolamento & purificação , Nanopartículas de Magnetita/ultraestrutura , Nylons/química , Extratos Vegetais/química , Folhas de Planta/química , Polyporaceae/química , Polyporaceae/enzimologia
4.
Protein Pept Lett ; 28(7): 817-830, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33413052

RESUMO

BACKGROUND: Polygalacturonases are a group of enzymes under pectinolytic enzymes related to enzymes that hydrolyse pectic substances. Polygalacturonases have been used in various industrial applications such as fruit juice clarification, retting of plant fibers, wastewater treatment drinks fermentation, and oil extraction. OBJECTIVES: The study was evaluated at the heterologous expression, purification, biochemical characterization, computational modeling, and performance in apple juice clarification of a new exo-polygalacturonase from Sporothrix schenckii 1099-18 (SsExo-PG) in Pichia pastoris. METHODS: Recombinant DNA technology was used in this study. Two different pPIC9K plasmids were constructed with native signal sequence-ssexo-pg and alpha signal sequence-ssexo-pg separately. Protein expression and purification performed after plasmids transformed into the Pichia pastoris. Biochemical and structural analyses were performed by using pure SsExo-PG. RESULTS: The purification of SsExo-PG was achieved using a Ni-NTA chromatography system. The enzyme was found to have a molecular mass of approximately 52 kDa. SsExo-PG presented as stable at a wide range of temperature and pH values, and to be more storage stable than other commercial pectinolytic enzyme mixtures. Structural analysis revealed that the catalytic residues of SsExo- PG are somewhat similar to other Exo-PGs. The KM and kcat values for the degradation of polygalacturonic acid (PGA) by the purified enzyme were found to be 0.5868 µM and 179 s-1, respectively. Cu2+ was found to enhance SsExo-PG activity while Ag2+ and Fe2+ almost completely inhibited enzyme activity. The enzyme reduced turbidity up to 80% thus enhanced the clarification of apple juice. SsExo-PG showed promising performance when compared with other commercial pectinolytic enzyme mixtures. CONCLUSION: The clarification potential of SsExo-PG was revealed by comparing it with commercial pectinolytic enzymes. The following parameters of the process of apple juice clarification processes showed that SsExo-PG is highly stable and has a novel performance.


Assuntos
Sucos de Frutas e Vegetais/análise , Proteínas Fúngicas/química , Malus/química , Pectinas/química , Poligalacturonase/química , Sporothrix/química , Cátions Bivalentes , Clonagem Molecular , Cobre/química , Estabilidade Enzimática , Tecnologia de Alimentos/métodos , Proteínas Fúngicas/isolamento & purificação , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Ferro/química , Cinética , Peso Molecular , Pichia/genética , Pichia/metabolismo , Poligalacturonase/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Prata/química , Sporothrix/enzimologia , Temperatura
5.
Int Microbiol ; 24(2): 169-181, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33389217

RESUMO

L-Glutaminase is an amidohydrolase which can act as a vital chemotherapeutic agent against various malignancies. In the present work, L-glutaminase productivity from Aspergillus versicolor Faesay4 was significantly increased by 7.72-fold (from 12.33 ± 0.47 to 95.15 ± 0.89 U/mL) by optimizing submerged fermentation parameters in Czapek's Dox (CZD) medium including an incubation period from 3 (12.33 ± 0.47 U/mL) to 6 days (23.36 ± 0.58 U/mL), an incubation temperature from 30 °C (23.36 ± 0.49 U/mL) to 25 °C (31.08 ± 0.60 U/mL), initial pH from pH 5.0 (8.49 ± 0.21 U/mL)  to pH 7.0 (32.18 ± 0.57 U/mL), replacement of glucose (30.19 ± 0.52 U/mL) by sucrose (48.97 ± 0.67 U/mL) as the carbon source at a concentration of 2.0% (w/v), increasing glutamine concentration as the nitrogen source from 1.0% (w/v, 48.54 ± 0.48 U/mL) to 1.5% (w/v, 63.01 ± 0.60 U/mL), and addition of a mixture of KH2PO4 and NaCl (0.5% w/v for both) to SZD as the metal supplementation (95.15 ± 0.89 U/mL). Faesay4 L-glutaminase was purified to yield total activity 13,160 ± 22.76 (U), specific activity 398.79 ± 9.81 (U/mg of protein), and purification fold 2.1 ± 3.18 with final enzyme recovery 57.22 ± 2.17%. The pure enzyme showed a molecular weight of 61.80 kDa, and it was stable and retained 100.0% of its activity at a temperature ranged from 10 to 40 °C and pH 7.0. In our trials, to increase the enzyme activity by optimizing the assay conditions (which were temperature 60 °C, pH 7.0, substrate glutamine, substrate concentration 1.0%, and reaction time 60 min), the enzyme activity increased by 358.8% after changing the assay temperature from 60 to 30 °C and then increased by 138% after decreasing the reaction time from 60 to 40 min. However, both pH 7.0 and glutamine as the substrate remain the best assay parameters for the L-glutaminase activity. When the glutamine in the assay as the reaction substrate was replaced by asparagine, lysine, proline, methionine, cysteine, glycine, valine, phenylalanine, L-alanine, aspartic acid, tyrosine, and serine, the enzyme lost 23.86%, 29.0%, 31.0%, 48.3%, 50.0%, 73.6%, 74.51%, 80.42%, 82.5%, 83.43%, 88.36%, and 89.78% of its activity with glutamine, respectively. Furthermore, Mn2+, K+, Na+, and Fe3+ were enzymatic activators that increased the L-glutaminase activity by 25.0%, 18.05%, 10.97%, and 8.0%, respectively. Faesay4 L-glutaminase was characterized as a serine protease enzyme as a result of complete inhibition by all serine protease inhibitors (PMSF, benzamidine, and TLCK). Purified L-glutaminase isolated from Aspergillus versicolor Faesay4 showed potent DPPH scavenging activities with IC50 = 50 µg/mL and anticancer activities against human liver (HepG-2), colon (HCT-116), breast (MCF-7), lung (A-549), and cervical (Hela) cancer cell lines with IC50 39.61, 12.8, 6.18, 11.48, and 7.25 µg/mL, respectively.


Assuntos
Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antioxidantes/isolamento & purificação , Aspergillus/enzimologia , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Glutaminase/química , Glutaminase/isolamento & purificação , Antineoplásicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Aspergillus/química , Aspergillus/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Estabilidade Enzimática , Proteínas Fúngicas/farmacologia , Glutaminase/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Cinética , Peso Molecular , Especificidade por Substrato
6.
Molecules ; 26(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33419035

RESUMO

Mushrooms, the fruiting bodies of fungi, are known for a long time in different cultures around the world to possess medicinal properties and are used to treat various human diseases. Mushrooms that are parts of traditional medicine in Asia had been extensively studied and this has led to identification of their bioactive ingredients. North America, while home to one of the world's largest and diverse ecological systems, has not subjected its natural resources especially its diverse array of mushroom species for bioprospecting purposes: Are mushrooms native to North America a good source for drug discovery? In this review, we compile all the published studies up to September 2020 on the bioprospecting of North American mushrooms. Out of the 79 species that have been investigated for medicinal properties, 48 species (60%) have bioactivities that have not been previously reported. For a mere 16 selected species, 17 new bioactive compounds (10 small molecules, six polysaccharides and one protein) have already been isolated. The results from our literature search suggest that mushrooms native to North America are indeed a good source for drug discovery.


Assuntos
Agaricales/química , Descoberta de Drogas , Polissacarídeos Fúngicos , Proteínas Fúngicas , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/isolamento & purificação , Polissacarídeos Fúngicos/uso terapêutico , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/uso terapêutico , Humanos , América do Norte
7.
J Vis Exp ; (160)2020 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-32597857

RESUMO

Natural products derived from plants and microbes are a rich source of bioactive molecules. Prior to their use, the active molecules from complex extracts must be purified for downstream applications. There are various chromatographic methods available for this purpose yet not all labs can afford high performance methods and isolation from complex biological samples can be difficult. Here we demonstrate that preparative liquid-phase isoelectric focusing (IEF) can separate molecules, including small molecules and peptides from complex plant extracts, based on their isoelectric points (pI). We have used the method for complex biological sample fractionation and characterization. As a proof of concept, we fractionated a Gymnema sylvestre plant extract, isolating a family of terpenoid saponin small molecules and a peptide. We also demonstrated effective microbial protein separation using the Candida albicans fungus as a model system.


Assuntos
Produtos Biológicos/isolamento & purificação , Candida albicans/metabolismo , Proteínas Fúngicas/isolamento & purificação , Focalização Isoelétrica/métodos , Fragmentos de Peptídeos/isolamento & purificação , Extratos Vegetais/química , Bibliotecas de Moléculas Pequenas/isolamento & purificação , Produtos Biológicos/química , Proteínas Fúngicas/química , Gymnema sylvestre/química , Fragmentos de Peptídeos/química , Bibliotecas de Moléculas Pequenas/química
8.
Int J Med Mushrooms ; 22(10): 991-1000, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33426828

RESUMO

A ribonuclease was purified from dry fruiting bodies of the wild edible mushroom Lepista personata (LPR) to 259-fold with a specific activity of 280 U/mg. The purification protocol involved ion-exchange chromatography on DEAE-cellulose, CM-cellulose and SP-sepharose, followed by size exclusion chromatography on Superdex 75. LPR is a homodimeric protein with a molecular weight of 27.8 kDa as determined by SDS-PAGE and by gel filtration. Three inner peptide sequences for LPR were obtained by LC-MS-MS analysis. It demonstrated the optimum pH of 4.0 and temperature optimum of 60°C. The specificity ribonuclease potencies order toward polyhomoribonucleotides was poly C > poly A > poly G > poly U. The ribonuclease inhibited HIV-1 reverse transcriptase with an IC50 of 0.53 µM.


Assuntos
Agaricales/enzimologia , Proteínas Fúngicas/isolamento & purificação , Transcriptase Reversa do HIV/antagonistas & inibidores , Ribonucleases/isolamento & purificação , Agaricales/química , Agaricales/metabolismo , Estabilidade Enzimática , Carpóforos/química , Carpóforos/enzimologia , Proteínas Fúngicas/química , Transcriptase Reversa do HIV/química , Concentração de Íons de Hidrogênio , Peso Molecular , Ribonucleases/química
9.
J Biosci Bioeng ; 129(4): 502-507, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31732260

RESUMO

Industrial scale microalgal cell disruption requires low cost, high efficiency and structural conservation of biomolecules for biorefinery. Many cultivated microalgae have thick walls and these walls are barriers for efficient cell disruption. Until recently, despite the high biodiversity of microalgae, little attention has been paid to thin-wall microalgal species in the natural environment for the production and recovery of valuable biomolecules. Instead of developing high power cell disruption devices, utilization of thin-wall species would be a better approach. The present paper describes a simple device that was assembled to evaluate the viability and effectiveness of biomolecule extraction from both thin- and thick-wall species as a proof of concept. This device was tested with high-pressure gases including N2, CO2 plus N2, and air as the disruption force. The highest nitrogen pressure, 110 bar, was not able to disrupt the thick-wall microalgal cells. On the other hand, the thin-wall species was disrupted to different degrees using different pressures and treatment durations. In the same treatment duration, higher nitrogen pressure gave better cell disruption efficiency than the lower pressure. However, in the same pressure, longer treatment duration did not give better efficiency than the shorter duration. High pressure CO2 treatments resulted in low soluble protein levels in the media. The best conditions to disrupt the thin-wall microalgal cells were 110 bar N2 or air for 1 min among these tests. In these conditions, not only were the disruption efficiencies high, but also the biomolecules were well preserved.


Assuntos
Carotenoides/isolamento & purificação , Fracionamento Celular/métodos , Parede Celular/química , Proteínas Fúngicas/isolamento & purificação , Gases/farmacologia , Microalgas/química , Pressão , Biomassa , Carotenoides/metabolismo , Proteínas Fúngicas/metabolismo , Humanos , Microalgas/efeitos dos fármacos , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Estabilidade Proteica , Estresse Mecânico , Frações Subcelulares/química , Frações Subcelulares/metabolismo , Fatores de Tempo
10.
Colloids Surf B Biointerfaces ; 183: 110418, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31404792

RESUMO

The design of interfaces that selectively react with molecules to transform them into compounds of industrial interest is an emerging area of research. An example of such reactions is the hydrolytic conversion of ester-based molecules to lipids and alcohols, which is of interest to the food, and pharmaceutical industries. In this study, a functional bio-interfaced layer was designed to hydrolyze 4-nitrophenyl acetate (pNPA) and Ricinus Communis (castor) oil rich in triglycerides using lipase b from Candida antarctica (CALB, EC 3.1.1.3). The attachment of CALB was performed via non-covalent immobilization over a polymer film of vertically aligned cylinders that resulted from the self-assembly of the di-block copolymer polystyrene-block-poly(4-vinyl pyridine) (PS-b-P4VP). This polymer-lipase model will serve as the groundwork for the design of further bioactive layers for separation applications requiring similar hydrolytic processes. Results from the fabricated functional bio-interfaced material include cylinders with featured pore size of 19 nm, d spacing of 34 nm, and ca. 40 nm of thickness. The polymer-enzyme layers were physically characterized using AFM, XPS, and FTIR. The immobilized enzyme was able to retain 91% of the initial enzymatic activity when using 4-nitrophenyl acetate (pNPA) and 78% when exposed to triglycerides from castor oil.


Assuntos
Poluentes Ambientais/química , Enzimas Imobilizadas/química , Proteínas Fúngicas/química , Lipase/química , Nitrofenóis/química , Poliestirenos/química , Polivinil/química , Triglicerídeos/química , Candida/química , Candida/enzimologia , Óleo de Rícino/química , Enzimas Imobilizadas/isolamento & purificação , Proteínas Fúngicas/isolamento & purificação , Humanos , Hidrólise , Lipase/isolamento & purificação , Porosidade , Ricinus/química
11.
J Basic Microbiol ; 59(9): 879-889, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31339587

RESUMO

Metallothionein (MT) is a low-molecular-weight protein with a high metal binding capacity and plays a key role in organism adaptation to heavy metals. In this study, a metallothionein gene was successfully cloned and sequenced from Antarctic sea-ice yeast Rhodotorula mucilaginosa AN5. Nucleotide sequencing and analysis revealed that the gene had four exons interrupted by three introns. MTs complementary DNA (named as RmMT) had an open reading frame of 321 bp encoding a 106 amino acid protein with a predicted molecular weight of 10.3 kDa and pI of 8.49. The number of amino acids and distribution of cysteine residues indicated that RmMT was a novel family of fungal MTs. Quantitative real-time polymerase chain reaction analysis showed that RmMT expression was elevated under copper-induced stress. The RmMT gene was transferred into E. coli and the RmMT expressing bacteria showed improved tolerance to copper ion and increased accumulation of heavy metals, such as Cu2+ , Pb2+ , Zn2+ , Cd2+ , and Ag+ . Moreover, in vitro studies, purified recombinant RmMT demonstrated that it could be used as a good scavenger of superoxide anion, hydroxyl, and 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radicals. In summary, these results demonstrate that RmMT plays a key role in the tolerance and bioaccumulation of heavy metals.


Assuntos
Camada de Gelo/microbiologia , Metalotioneína/genética , Metalotioneína/metabolismo , Metais Pesados/metabolismo , Rhodotorula/genética , Adaptação Fisiológica/genética , Regiões Antárticas , Antioxidantes/isolamento & purificação , Antioxidantes/metabolismo , Sequência de Bases , Clonagem Molecular , Cobre/metabolismo , Escherichia coli/genética , Escherichia coli/fisiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Expressão Gênica , Metalotioneína/isolamento & purificação , Fases de Leitura Aberta , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Rhodotorula/fisiologia
12.
Appl Microbiol Biotechnol ; 103(14): 5567-5581, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31147756

RESUMO

Bioactive peptide natural products are an important source of therapeutics. Prominent examples are the antibiotic penicillin and the immunosuppressant cyclosporine which are both produced by fungi and have revolutionized modern medicine. Peptide biosynthesis can occur either non-ribosomally via large enzymes referred to as non-ribosomal peptide synthetases (NRPS) or ribosomally. Ribosomal peptides are synthesized as part of a larger precursor peptide where they are posttranslationally modified and subsequently proteolytically released. Such peptide natural products are referred to as ribosomally synthesized and posttranslationally modified peptides (RiPPs). Their biosynthetic pathways have recently received a lot of attention, both from a basic and applied research point of view, due to the discoveries of several novel posttranslational modifications of the peptide backbone. Some of these modifications were so far only known from NRPSs and significantly increase the chemical space covered by this class of peptide natural products. Latter feature, in combination with the promiscuity of the modifying enzymes and the genetic encoding of the peptide sequence, makes RiPP biosynthetic pathways attractive for synthetic biology approaches to identify novel peptide therapeutics via screening of de novo generated peptide libraries and, thus, exploit bioactive peptide natural products beyond their direct use as therapeutics. This review focuses on the recent discovery and characterization of novel RiPP biosynthetic pathways in fungi and their possible application for the development of novel peptide therapeutics.


Assuntos
Produtos Biológicos/metabolismo , Vias Biossintéticas , Proteínas Fúngicas/isolamento & purificação , Fungos/metabolismo , Processamento de Proteína Pós-Traducional , Ribossomos/metabolismo , Descoberta de Drogas , Proteínas Fúngicas/uso terapêutico , Fungos/genética , Peptídeos Cíclicos , Biossíntese de Proteínas
13.
PLoS One ; 13(8): e0202440, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30138464

RESUMO

The white-rot fungus Cerrena unicolor BBP6 produced up to 243.4 U mL-1 laccase. A novel laccase isoform LacA was purified; LacA is a homodimer with an apparent molecular mass of 55 kDa and an isoelectric point of 4.7. Its optimal pH was 2.5, 4.0, and 5.5 when 2, 2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS), guaiacol, and 2, 6-dimethoxyphenol (2, 6-DMP) were used as the substrates, respectively. The optimal temperature was 60°C for ABTS and 80°C for both guaiacol and 2, 6-DMP. LacA retained 82-92% activity when pH was greater than 4 and 42%-92% activity at or below 50°C. LacA was completely inhibited by 0.1 mM L-cysteine, 1 mM Dithiothreitol, and 10 mM metal ions, Ca2+, Mg2+ and Co2+. LacA had good affinity for ABTS, with a Km of 49.1 µM and a kcat of 3078.9 s-1. It decolorized synthetic dyes at 32.3-87.1%. In the presence of 1-hydroxybenzotriazole (HBT), LacA decolorized recalcitrant dyes such as Safranine (97.1%), Methylene Blue (98.9%), Azure Blue (96.6%) and simulated textile effluent (84.6%). With supplemented manganese peroxidase (MnP), Mn2+ and HBT, the purified LacA and BBP6 fermentation broth showed great potential in denim bleaching, with an up to 5-fold increase in reflectance values.


Assuntos
Corantes/química , Proteínas Fúngicas , Lacase , Polyporales/enzimologia , Têxteis , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Isoenzimas/química , Isoenzimas/isolamento & purificação , Lacase/química , Lacase/isolamento & purificação
14.
Int J Mol Sci ; 19(7)2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29987231

RESUMO

Although the emergence of gel-free approaches has greatly enhanced proteomic studies, two-dimensional gel electrophoresis (2-DE) remains one of the most widely used proteomic techniques for its high resolving power, relatively low cost, robustness, and high resolution. Preparation of high-quality protein samples remains the key in high-quality 2-DE for proteomic analysis. Samples with high endogenous levels of interfering molecules, such as salts, nucleic acids, lipids, and polysaccharides, would yield a low-quality 2-DE gel and hinder the analysis. Recently, a TRIzol-based protein extraction method has gained prominence and has attracted attention due to its promising performance in high-quality 2-DE. The authors evaluate the use of this approach for four valuable dried food products, namely two dried seafood products (abalone slices and whelk slices) and two traditional Chinese tonic foods (ganoderma and caterpillar fungus). The results indicate that 2-DE gels obtained through the TRIzol-based method are of high-quality and are comparable to those obtained through the trichloroacetic acid⁻acetone method in terms of spot number, spot intensity, and resolution. The TRIzol-based method is generally applicable to dried food samples and is simple and fast, which greatly streamlines the protein extraction procedure. Additionally, it enables the concurrent extraction and analysis of RNA, DNA, and protein from the same sample.


Assuntos
Eletroforese em Gel Bidimensional/métodos , Produtos Pesqueiros/análise , Alimentos em Conserva/análise , Proteínas/isolamento & purificação , Proteômica/métodos , China , Proteínas de Peixes/análise , Proteínas de Peixes/isolamento & purificação , Proteínas de Peixes/normas , Proteínas Fúngicas/análise , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/normas , Ganoderma/metabolismo , Guanidinas , Hypocreales/metabolismo , Medicina Tradicional Chinesa , Fenóis , Proteínas/análise , Proteínas/normas
15.
Int J Med Mushrooms ; 20(6): 537-548, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29953350

RESUMO

Ling zhi-8 (LZ-8) is the first fungal immunomodulatory protein (FIP) isolated from the lingzhi or reishi medicinal mushroom, Ganoderma lucidum. LZ-8 effectively induces interleukin 2 expression and secretion by forming a stable homodimer, and it is regarded as a good candidate to become a new therapeutic agent and/or functional food supplement. However, the molecular mechanism by which LZ-8 dimerization influences the regulation of interleukin 2 is not clear. In this study we performed structure-based multiple alignment of LZ-8 and an FIP from Volvariella volvacea, compared the electrostatic potential of their protein surfaces, and developed a model summarizing the unique electrostatic interaction in LZ-8 dimerization. In addition, further electrostatic potential and virtual amino acid mutation analyses suggested that L10, W12, and D45 are the key amino acid residues responsible for the protein's high immunomodulatory activity. These findings may provide useful insights into the design and construction of a new FIP mutant for use in treating and preventing autoimmune diseases.


Assuntos
Proteínas Fúngicas/genética , Fatores Imunológicos/genética , Simulação de Acoplamento Molecular/métodos , Reishi/química , Sequência de Aminoácidos , Aminoácidos/genética , Dimerização , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Fatores Imunológicos/química , Fatores Imunológicos/isolamento & purificação , Fatores Imunológicos/metabolismo , Interleucina-2/genética , Interleucina-2/metabolismo , Conformação Molecular , Mutação , Alinhamento de Sequência , Eletricidade Estática
16.
Int J Med Mushrooms ; 20(4): 349-358, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29953395

RESUMO

A novel protease was isolated from Coprinopsis atramentaria, which is, to our knowledge, the first macromolecule to be purified from this species. The protease, referred to as CAP, was purified through the use of ion exchange chromatography on sulphopropyl-sepharose, diethylaminoethyl-cellulose, Q-Sepharose, and gel filtration on a Superdex 75 column. CAP is a monomelic protein with a molecular mass of 32 kDa. The maximum activity of CAP was detected at pH 7.0 and 50°C. The preferred pH of CAP demonstrated that it was a neutral protease. Kinetic constants were determined under optimal reaction conditions, using 1% casein as the substrate. We found Km and Vmax values of 7.98 mg · mL-1 and 215 µg · mL-1 · min-1, respectively. Among the various metal ions tested, Pb2+, Zn2+, Mn2+, Hg2+, Cu2+, and Cd2+ exerted dose-dependent inhibitory actions, whereas Mg2+ exhibited a promoting action at all concentrations tested. Eight inner peptide sequences were detected by liquid chromatography on an LTQ-Orbitrap mass spectrometer and were identified using the Basic Local Alignment Search Tool, which contains proteases from other sources. Alignment results showed that 2 of them were homologous to fungal cysteine proteases. The other 5 peptide sequences also shared similarities with proteases of other origins. The isolation of a novel protease from C. atramentaria in this study not only expands the sources of proteases but also provides further information about this fungus.


Assuntos
Agaricales/enzimologia , Proteínas Fúngicas/isolamento & purificação , Peptídeo Hidrolases/isolamento & purificação , Agaricales/química , Caseínas/metabolismo , Cromatografia em Gel , Cromatografia por Troca Iônica , Cromatografia Líquida , Carpóforos/química , Carpóforos/enzimologia , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Cinética , Espectrometria de Massas , Peso Molecular , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Temperatura
17.
Cell Mol Biol (Noisy-le-grand) ; 64(5): 80-84, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29729698

RESUMO

In skin, melanocytes determine skin color using melanogenesis, which induces protective mechanism to oxidative stress and UV damage. However, when melanin is excessive produced by the various stimulus, the accumulated melanin induces hyperpigmentation disease such as melasma, freckles, Melanism ware induced. Therefore, it is implicated to finding potential agents for whitening to be used in cosmetic products. In our present study, we show that Poria cocos Wolf extracts decreased melanin synthesis in B16F10. And then this inhibition of melanogenesis was provoked by regulation of tyrosinase activity and tyrosinase and MITF expression. Moreover, Poria cocos Wolf extracts contained cream improved skin tone using increase of bright value. Overall, these results provide evidence to potential agent for whitening to be used in cosmetic products.


Assuntos
Melaninas/antagonistas & inibidores , Melanócitos/efeitos dos fármacos , Monofenol Mono-Oxigenase/antagonistas & inibidores , Preparações Clareadoras de Pele/farmacologia , Pele/efeitos dos fármacos , Wolfiporia/química , Adulto , Agaricales/química , Animais , Linhagem Celular Tumoral , Método Duplo-Cego , Feminino , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica , Humanos , Melaninas/biossíntese , Melanócitos/enzimologia , Melanócitos/patologia , Melanoma Experimental/enzimologia , Melanoma Experimental/genética , Melanoma Experimental/patologia , Camundongos , Fator de Transcrição Associado à Microftalmia/antagonistas & inibidores , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Pigmentação/efeitos dos fármacos , Pigmentação/genética , Extratos Vegetais/química , Pele/enzimologia , Preparações Clareadoras de Pele/isolamento & purificação , Neoplasias Cutâneas/enzimologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia
18.
J Basic Microbiol ; 58(4): 331-342, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29442377

RESUMO

Psychrotolerant yeast Rhodotorula sp. Y-23 was isolated from the sediment core sub-samples of Nella Lake, East Antarctica. Isolate was screened for lipase production using plate assay method followed by submerged fermentation. Production optimization revealed the maximum lipase production by using palmolein oil (5% v/v), pH 8.0 and inoculum size of 2.5% v/v at 15 °C. The potential inducers for lipase were 1% w/v of galactose and KNO3 , and MnCl2 (0.1% w/v). Final productions with optimized conditions gave 5.47-fold increase in lipase production. Dialyzed product gave a purification fold of 5.63 with specific activity of 26.83 U mg-1 and 15.67% yields. This lipase was more stable at pH 5.0 and -20 °C whereas more activity was found at pH 8.0 and 35 °C. Stability was more in 50 mM Fe3+ , EDTA-Na (20 mM), sodium deoxycholate (20 mM), H2 O2 (1% v/v), and almost all organic solvents (50% v/v). Tolerance capacity at wider range of pH and temperature with having lower Km value i.e., 0.08 mg ml-1 and higher Vmax 385.68 U mg-1 at 15 °C make the studied lipase useful for industrial applications. Besides this, the lipase was compatible with commercially available detergents, and its addition to them increases lipid degradation performances making it a potential candidate in detergent formulation.


Assuntos
Temperatura Baixa , Proteínas Fúngicas/metabolismo , Sedimentos Geológicos/microbiologia , Lipase/metabolismo , Rhodotorula/enzimologia , Solventes/farmacologia , Regiões Antárticas , Detergentes/química , Estabilidade Enzimática/efeitos dos fármacos , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/fisiologia , Concentração de Íons de Hidrogênio , Cinética , Lipase/biossíntese , Lipase/isolamento & purificação , Lipase/fisiologia , Óleos de Plantas/metabolismo , Rhodotorula/classificação , Rhodotorula/genética , Rhodotorula/isolamento & purificação , Especificidade por Substrato , Temperatura
19.
J Proteome Res ; 17(2): 780-793, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29251506

RESUMO

Calcineurin is a critical cell-signaling protein that orchestrates growth, stress response, virulence, and antifungal drug resistance in several fungal pathogens. Blocking calcineurin signaling increases the efficacy of several currently available antifungals and suppresses drug resistance. We demonstrate the application of a novel scanning quadrupole DIA method for the analysis of changes in the proteins coimmunoprecipitated with calcineurin during therapeutic antifungal drug treatments of the deadly human fungal pathogen Aspergillus fumigatus. Our experimental design afforded an assessment of the precision of the method as demonstrated by peptide- and protein-centric analysis from eight replicates of the study pool QC samples. Two distinct classes of clinically relevant antifungal drugs that are guideline recommended for the treatment of invasive "aspergillosis" caused by Aspergillus fumigatus, the azoles (voriconazole) and the echinocandins (caspofungin and micafungin), which specifically target the fungal plasma membrane and the fungal cell wall, respectively, were chosen to distinguish variations occurring in the proteins coimmunoprecipitated with calcineurin. Novel potential interactors were identified in response to the different drug treatments that are indicative of the possible role for calcineurin in regulating these effectors. Notably, treatment with voriconazole showed increased immunoprecipitation of key proteins involved in membrane ergosterol biosynthesis with calcineurin. In contrast, echinocandin (caspofungin or micafungin) treatments caused increased immunoprecipitation of proteins involved in cell-wall biosynthesis and septation. Furthermore, abundant coimmunoprecipitation of ribosomal proteins with calcineurin occurred exclusively in echinocandins treatment, indicating reprogramming of cellular growth mechanisms during different antifungal drug treatments. While variations in the observed calcineurin immunoprecipitated proteins may also be due to changes in their expression levels under different drug treatments, this study suggests an important role for calcineurin-dependent cellular mechanisms in response to antifungal treatment of A. fumigatus that warrants future studies.


Assuntos
Aspergillus fumigatus/efeitos dos fármacos , Calcineurina/isolamento & purificação , Proteínas Fúngicas/isolamento & purificação , Proteínas Ribossômicas/isolamento & purificação , Voriconazol/farmacologia , Antifúngicos/farmacologia , Aspergillus fumigatus/química , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Calcineurina/genética , Calcineurina/metabolismo , Caspofungina , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Parede Celular/química , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Cromatografia Líquida/métodos , Equinocandinas/farmacologia , Ergosterol/biossíntese , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Ontologia Genética , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imunoprecipitação , Lipopeptídeos/farmacologia , Micafungina , Anotação de Sequência Molecular , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
20.
Molecules ; 22(12)2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29215562

RESUMO

Lipases are the most widely employed enzymes in commercial industries. The catalytic mechanism of most lipases involves a step called "interfacial activation". As interfacial activation can lead to a significant increase in catalytic activity, it is of profound importance in developing lipase immobilization methods. To obtain a potential biocatalyst for industrial biodiesel production, an effective strategy for enhancement of catalytic activity and stability of immobilized lipase was developed. This was performed through the combination of interfacial activation with hybrid magnetic cross-linked lipase aggregates. This biocatalyst was investigated for the immobilization of lipase from Rhizomucor miehei (RML). Under the optimal conditions, the activity recovery of the surfactant-activated magnetic RML cross-linked enzyme aggregates (CLEAs) was as high as 2058%, with a 20-fold improvement over the free RML. Moreover, the immobilized RML showed excellent catalytic performance for the biodiesel reaction at a yield of 93%, and more importantly, could be easily separated from the reaction mixture by simple magnetic decantation, and retained more than 84% of its initial activities after five instances of reuse. This study provides a new and versatile approach for designing and fabricating immobilized lipase with high activation and stability.


Assuntos
Enzimas Imobilizadas/química , Proteínas Fúngicas/química , Jatropha/química , Lipase/química , Óleos de Plantas/química , Rhizomucor/química , Biocatálise , Biocombustíveis , Ativação Enzimática , Enzimas Imobilizadas/isolamento & purificação , Reutilização de Equipamento , Esterificação , Proteínas Fúngicas/isolamento & purificação , Lipase/isolamento & purificação , Imãs , Agregados Proteicos , Rhizomucor/enzimologia , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA