Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FEBS J ; 289(5): 1256-1275, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33774927

RESUMO

PRDF1 and RIZ1 homology domain containing (PRDMs) are a subfamily of Krüppel-like zinc finger proteins controlling key processes in metazoan development and in cancer. PRDMs exhibit unique dualities: (a) PR domain/ZNF arrays-their structure combines a SET-like domain known as a PR domain, typically found in methyltransferases, with a variable array of C2H2 zinc fingers (ZNF) characteristic of DNA-binding transcription factors; (b) transcriptional activators/repressors-their physiological function is context- and cell-dependent; mechanistically, some PRDMs have a PKMT activity and directly catalyze histone lysine methylation, while others are rather pseudomethyltransferases and act by recruiting transcriptional cofactors; (c) oncogenes/tumor suppressors-their pathological function depends on the specific PRDM isoform expressed during tumorigenesis. This duality is well known as the 'Yin and Yang' of PRDMs and involves a complex regulation of alternative splicing or alternative promoter usage, to generate full-length or PR-deficient isoforms with opposing functions in cancer. In conclusion, once their dualities are fully appreciated, PRDMs represent a promising class of targets in oncology by virtue of their widespread upregulation across multiple tumor types and their somatic dispensability, conferring a broad therapeutic window and limited toxic side effects. The recent discovery of a first-in-class compound able to inhibit PRDM9 activity has paved the way for the identification of further small molecular inhibitors able to counteract PRDM oncogenic activity.


Assuntos
Epigênese Genética , Proteínas Metiltransferases/metabolismo , Sequência de Aminoácidos , Carcinogênese , Cristalização , DNA/metabolismo , Meiose , Neoplasias/enzimologia , Neoplasias/patologia , Oncogenes , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Proteínas Metiltransferases/química , Proteínas Metiltransferases/genética , Alinhamento de Sequência , Transdução de Sinais
2.
Microbiology (Reading) ; 166(9): 837-848, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32639227

RESUMO

Bacterial soft rot caused by the bacteria Dickeya and Pectobacterium is a destructive disease of vegetables, as well as ornamental plants. Several management options exist to help control these pathogens. Because of the limited success of these approaches, there is a need for the development of alternative methods to reduce losses. In this study, we evaluated the effect of potassium tetraborate tetrahydrate (PTB) on the growth of six Dickeya and Pectobacterium spp. Disc diffusion assays showed that Dickeya spp. and Pectobacterium spp. differ in their sensitivity to PTB. Spontaneous PTB-resistant mutants of Pectobacterium were identified and further investigation of the mechanism of PTB resistance was conducted by full genome sequencing. Point mutations in genes cpdB and supK were found in a single Pectobacterium atrosepticum PTB-resistant mutant. Additionally, point mutations in genes prfB (synonym supK) and prmC were found in two independent Pectobacterium brasiliense PTB-resistant mutants. prfB and prmC encode peptide chain release factor 2 and its methyltransferase, respectively. We propose the disruption of translation activity due to PTB leads to Pectobacterium growth inhibition. The P. atrosepticum PTB-resistant mutant showed altered swimming motility. Disease severity was reduced for P. atrosepticum-inoculated potato stems sprayed with PTB. We discuss the potential risk of selecting for bacterial resistance to this chemical.


Assuntos
Antibacterianos/farmacologia , Boratos/farmacologia , Dickeya/efeitos dos fármacos , Pectobacterium/efeitos dos fármacos , Solanum tuberosum/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dickeya/genética , Dickeya/crescimento & desenvolvimento , Dickeya/fisiologia , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Farmacorresistência Bacteriana/genética , Genes Bacterianos , Teste de Complementação Genética , Movimento , Pectobacterium/genética , Pectobacterium/crescimento & desenvolvimento , Pectobacterium/fisiologia , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , Doenças das Plantas/microbiologia , Mutação Puntual , Proteínas Metiltransferases/genética , Proteínas Metiltransferases/metabolismo
3.
Annu Rev Microbiol ; 71: 413-439, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28715960

RESUMO

Histone-modifying enzymes are responsible for regulating transcription, recombination, DNA repair, DNA replication, chromatid cohesion, and chromosome segregation. Fungi are ideally suited for comparative chromatin biology because sequencing of numerous genomes from many clades is coupled to existing rich methodology that allows truly holistic approaches, integrating evolutionary biology with mechanistic molecular biology and ecology, promising applications in medicine or plant pathology. While genome information is rich, mechanistic studies on histone modifications are largely restricted to two yeasts, Saccharomyces cerevisiae and Schizosaccharomyces pombe, and one filamentous fungus, Neurospora crassa-three species that arguably are not representative of this diverse kingdom. Here, histone methylation serves as a paradigm to illustrate the roles chromatin modifications may play in more complex fungal life cycles. This review summarizes recent advances in our understanding of histone H3 methylation at two sites associated with active transcription, lysine 4 and lysine 36 (H3K4, H3K36); a site associated with the formation of constitutive heterochromatin, lysine 9 (H3K9); and a site associated with the formation of facultative heterochromatin, lysine 27 (H3K27). Special attention is paid to differences in how methylation marks interact in different taxa.


Assuntos
Histonas/metabolismo , Neurospora crassa/enzimologia , Domínios PR-SET , Proteínas Metiltransferases/metabolismo , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/enzimologia , Schizosaccharomyces/enzimologia , Cromossomos Fúngicos/metabolismo , Heterocromatina/metabolismo , Metilação , Neurospora crassa/metabolismo , Proteínas Metiltransferases/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo
4.
Cytokine ; 94: 29-36, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28408068

RESUMO

Chronic inflammation plays a key role in the pathogenesis of myriad complications associated with diabetes and thus anti-inflammatory therapies may ameliorate these complications. Quercus infectoria (Qi) extract has been shown to downregulate inflammatory processes; however, the molecular mechanisms of this anti-inflammatory activity remain unclear. The hypothesis of our study was that Qi extract exerts its anti-inflammatory effect by downregulating the Set7/NF-κB pathway. Bone marrow-derived macrophages (BMM) were treated with high glucose plus palmitate medium (HG/Pa) to simulate the diabetic environment. Compared with control conditions, HG/Pa elevated expression Set7, expression and activity of NF-κB along with expression of several inflammatory cytokines. These changes were associated with increased levels of intracellular reactive oxygen species (ROS). Moreover, similar alterations were demonstrated in BMM derived from mice fed a high fat diet (HFD) compared to those from lean mice, suggesting that HFD-induced changes in BM progenitors persist throughout differentiation and culture. Importantly, Qi extract dose-dependently reduced Set7, p65 and inflammatory cytokine expression relative to vehicle controls in both HG/Pa-and HFD-treated BMM. Finally, macrophages/monocytes isolated from wounds of diabetic mice that were treated with Qi solution exhibited lower expression of the inflammatory cytokines, IL-1ß and TNF-α, compared with vehicle treated wounds, demonstrating translation to the in vivo diabetic environment. Taken together, data from this study suggests that Qi downregulates diabetes-induced activity of the Set7/NF-kB pathway.


Assuntos
Anti-Inflamatórios/farmacologia , Macrófagos/efeitos dos fármacos , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Proteínas Metiltransferases/metabolismo , Quercus/química , Transdução de Sinais/efeitos dos fármacos , Animais , Citocinas/genética , Citocinas/metabolismo , Diabetes Mellitus Experimental/imunologia , Dieta Hiperlipídica , Glucose/farmacologia , Histona-Lisina N-Metiltransferase , Inflamação , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Camundongos , Palmitatos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ferimentos e Lesões/imunologia
5.
Chembiochem ; 13(8): 1167-73, 2012 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-22549896

RESUMO

Protein methylation is catalyzed by S-adenosyl-L-methionine-dependent protein methyltransferases (MTases), and this posttranslational modification serves diverse cellular functions. Some MTases seem to exhibit broad substrate specificities and comprehensive methods for target profiling are needed. Here we report the synthesis of a new AdoMet analogue for enzymatic transfer of a small propargyl group and labeling of modified proteins through copper-catalyzed azide-alkyne cycloaddition (CuAAC). Replacement of sulfur by selenium strongly enhanced the stability of the progargylic cofactor, leading, in combination with better activation by the selenonium center, to higher enzymatic reactivity. A broad spectrum of wild-type protein MTases acting on lysine, arginine, and glutamine residues accept this cofactor and modified substrates can be efficiently labeled by CuAAC click chemistry.


Assuntos
Proteínas Metiltransferases/química , S-Adenosilmetionina/análogos & derivados , Selênio/química , Química Click/métodos , Proteínas Metiltransferases/metabolismo , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Selênio/metabolismo
6.
J Biol Chem ; 285(43): 32967-32976, 2010 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-20716525

RESUMO

Histone modification is well established as a fundamental mechanism driving the regulation of transcription, replication, and DNA repair through the control of chromatin structure. Likewise, it is apparent that incorrect targeting of histone modifications contributes to misregulated gene expression and hence to developmental disorders and diseases of genomic instability such as cancer. The KMT2 family of SET domain methyltransferases, typified by mixed lineage leukemia protein-1 (MLL1), is responsible for histone H3 lysine 4 methylation, a marker of active genes. To ensure that this modification is correctly targeted, a multiprotein complex associates with the methyltransferase and directs activity. We have identified a novel interaction site on the core complex protein WD repeat protein-5 (WDR5), and we mapped the complementary site on its partner retinoblastoma-binding protein-5 (RbBP5). We have characterized this interaction by x-ray crystallography and show how it is fundamental to the assembly of the complex and to the regulation of methyltransferase activity. We show which region of RbBP5 contributes directly to mixed lineage leukemia activation, and we combine our structural and biochemical data to produce a model to show how WDR5 and RbBP5 act cooperatively to stimulate activity.


Assuntos
Histonas/química , Modelos Moleculares , Proteína de Leucina Linfoide-Mieloide/química , Proteínas Metiltransferases/química , Proteínas/química , Proteínas de Ligação a Retinoblastoma/química , Animais , Sítios de Ligação , Cristalografia por Raios X , Histonas/genética , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Metilação , Camundongos , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Mapeamento de Peptídeos , Proteínas Metiltransferases/genética , Proteínas Metiltransferases/metabolismo , Proteínas/genética , Proteínas/metabolismo , Proteínas de Ligação a Retinoblastoma/genética , Proteínas de Ligação a Retinoblastoma/metabolismo
7.
Mol Cell Biol ; 21(24): 8289-300, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11713266

RESUMO

snRNPs, integral components of the pre-mRNA splicing machinery, consist of seven Sm proteins which assemble in the cytoplasm as a ring structure on the snRNAs U1, U2, U4, and U5. The survival motor neuron (SMN) protein, the spinal muscular atrophy disease gene product, is crucial for snRNP core particle assembly in vivo. SMN binds preferentially and directly to the symmetrical dimethylarginine (sDMA)-modified arginine- and glycine-rich (RG-rich) domains of SmD1 and SmD3. We found that the unmodified, but not the sDMA-modified, RG domains of SmD1 and SmD3 associate with a 20S methyltransferase complex, termed the methylosome, that contains the methyltransferase JBP1 and a JBP1-interacting protein, pICln. JBP1 binds SmD1 and SmD3 via their RG domains, while pICln binds the Sm domains. JBP1 produces sDMAs in the RG domain-containing Sm proteins. We further demonstrate the existence of a 6S complex that contains pICln, SmD1, and SmD3 but not JBP1. SmD3 from the methylosome, but not that from the 6S complex, can be transferred to the SMN complex in vitro. Together with previous results, these data indicate that methylation of Sm proteins by the methylosome directs Sm proteins to the SMN complex for assembly into snRNP core particles and suggest that the methylosome can regulate snRNP assembly.


Assuntos
Arginina/análogos & derivados , Arginina/metabolismo , Proteínas de Transporte/biossíntese , Proteínas Metiltransferases/metabolismo , Western Blotting , Proteínas de Transporte/química , Sobrevivência Celular , Células Cultivadas , Citoplasma/metabolismo , DNA/metabolismo , DNA Complementar/metabolismo , Eletroforese em Gel de Poliacrilamida , Inibidores Enzimáticos/farmacologia , Epitopos , Glutationa Transferase/metabolismo , Humanos , Espectrometria de Massas , Metilação , Metiltransferases/metabolismo , Modelos Biológicos , Testes de Precipitina , Ligação Proteica , Estrutura Terciária de Proteína , Proteína-Arginina N-Metiltransferases , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/metabolismo , Sacarose/metabolismo , Transfecção
8.
J Biol Chem ; 273(21): 12909-13, 1998 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-9582322

RESUMO

The widely distributed protein-L-isoaspartyl, D-aspartyl carboxylmethyltransferase (EC 2.1.1.77) is hypothesized to play a role in the repair or metabolism of deamidated and isomerized proteins that are spontaneously generated during the aging of proteins in cells. The yeast two-hybrid system was used to identify proteins that potentially interact with the methyltransferase in a cellular processing pathway. Two cDNAs, both encoding calmodulin, were isolated from a human fetal brain cDNA library using the human methyltransferase as the bait. Enzymatic assays with purified components revealed a complex set of interactions between the methyltransferase and calmodulin. Calmodulin weakly stimulated protein carboxylmethyltransferase activity in vitro at concentrations of the two proteins reflecting their representation in mammalian brain. Calmodulin stimulation of methyltransferase was observed in both the presence and absence of calcium, although the effect was greater in the presence of calcium. Native calmodulin was not a substrate for the carboxylmethyltransferase, but deamidated variants of calmodulin act as substrates for the methyltransferase, with calculated Km values of 3.6 and 8.6 microM for calcium-liganded and unliganded calmodulin, respectively. Both the effector and substrate interactions of calmodulin with the protein isoaspartyl methyltransferase likely contributed to the positive results obtained with the two-hybrid system.


Assuntos
Calmodulina/metabolismo , Proteínas Metiltransferases/metabolismo , Saccharomyces cerevisiae/genética , Calmodulina/genética , DNA Complementar , Ativação Enzimática , Humanos , Ligação Proteica , Proteína D-Aspartato-L-Isoaspartato Metiltransferase , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
Plant Physiol ; 115(4): 1481-9, 1997 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9414558

RESUMO

Protein L-isoaspartate (D-aspartate) O-methyltransferases (MTs; EC 2.1.1.77) can initiate the conversion of detrimental L-isoaspartyl residues in spontaneously damaged proteins to normal L-aspartyl residues. We detected this enzyme in 45 species from 23 families representing most of the divisions of the plant kingdom. MT activity is often localized in seeds, suggesting that it has a role in their maturation, quiescence, and germination. The relationship among MT activity, the accumulation of abnormal protein L-isoaspartyl residues, and seed viability was explored in barley (Hordeum vulgare cultivar Himalaya) seeds, which contain high levels of MT. Natural aging of barley seeds for 17 years resulted in a significant reduction in MT activity and in seed viability, coupled with increased levels of "unrepaired" L-isoaspartyl residues. In seeds heated to accelerate aging, we found no reduction of MT activity, but we did observe decreased seed viability and the accumulation of isoaspartyl residues. Among populations of accelerated aged seed, those possessing the highest levels of L-isoaspartyl-containing proteins had the lowest germination percentages. These results suggest that the MT present in seeds cannot efficiently repair all spontaneously damaged proteins containing altered aspartyl residues, and their accumulation during aging may contribute to the loss of seed viability.


Assuntos
Extratos Vegetais/farmacologia , Plantas/enzimologia , Proteínas Metiltransferases/análise , Proteínas Metiltransferases/metabolismo , Sementes/enzimologia , Brassica , Citosol/enzimologia , Hordeum , Proteína D-Aspartato-L-Isoaspartato Metiltransferase , Proteínas Metiltransferases/antagonistas & inibidores , Sementes/fisiologia , Especificidade da Espécie , Árvores
10.
J Biol Chem ; 262(21): 10398-403, 1987 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-3611066

RESUMO

A protein methyltransferase which recognizes racemized and isomerized aspartyl residues in proteins has been identified in both the cytoplasm and nucleus of Xenopus laevis oocytes by enzymatic and immunochemical assays. The methyltransferase activity is maintained at a constant concentration of approximately 0.2 microM throughout vitellogenesis. Two forms of the enzyme can be identified on immunoblots by their cross-reactivity with an antibody prepared against the purified enzyme from bovine brain. Although both forms, with molecular weights of 27,000 and 34,000, are present in the cytoplasm, only the smaller form is found in the oocyte nucleus. A heterogeneous group of endogenous methyl-accepting proteins has been identified following the addition of S-adenosyl-L-[methyl-3H]methionine to oocyte extracts. The subcellular distribution of these methyl-accepting proteins, i.e. those proteins with unmodified or unmetabolized D- and L-isoaspartyl residues, is complementary to that of the methyltransferase. Very low levels of methyl-accepting activity are associated with nuclear proteins, which are actively methylated by the methyltransferase in vivo (O'Connor, C. M., and Germain, B. J. (1987) J. Biol. Chem. 262, 10404-10411). Yolk platelet proteins, which are inaccessible to the methyltransferase in vivo, are readily methylated by the enzyme in vitro. The specific methyl-accepting activity of the yolk proteins increases severalfold during the months required for the development of an early-to-late vitellogenic oocyte, suggesting that derivatized aspartyl residues accumulate with time in proteins which are inaccessible to the methyltransferase. The results support the hypothesis that the methyltransferase initiates either the repair or metabolism of cellular proteins which have been damaged by spontaneous racemization and deamidation processes (Clarke, S. (1985) Annu. Rev. Biochem. 54, 479-506).


Assuntos
Ácido Aspártico/metabolismo , Oócitos/enzimologia , Proteínas Metiltransferases/metabolismo , Animais , Sítios de Ligação , Feminino , Peso Molecular , Oogênese , Distribuição Tecidual , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA