Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 282: 114672, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34560213

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Presently, insulin resistance has been a growing concern that urgently needs to be addressed, because it not only places patients at risk of developing type 2 diabetes mellitus but also results in metabolic syndrome and different aspects of cardiovascular diseases. Shenqi Jiangtang Granule (SJG) is a classic traditional Chinese medicine (TCM) prescription that is widely used to treat diabetes mellitus and its complications in clinical practice. While studies have revealed that SJG with multi-ingredients and multi-targets characteristics possesses potential anti-insulin resistance pharmacological properties, its mechanisms of action and molecular targets for the treatment of insulin resistance are still obscure, which prompt us to conduct an in-depth research. AIM OF THE STUDY: This study was purposed to uncover the pharmacological mechanism of SJG against insulin resistance through integrating network pharmacology and experimental validation. MATERIALS AND METHODS: The putative ingredients of SJG and its related targets were discerned from the TCMSP database. Subsequently, insulin resistance-associated targets were retrieved from GeneCard, OMIM, and GEO database. Compound-target, protein-protein interaction (PPI), and compound-target-pathway networks were established using Cytoscape software. GO and KEGG pathway analyses were performed to identify possible enrichment of genes with specific biological themes. Molecular docking was used to verify the correlation between the main active ingredients and hub targets. Optimal docking conformation was further analyzed by molecular dynamics (MD) simulation. Finally, the potential molecular mechanisms of SJG acting on insulin resistance, as predicted by the network pharmacology analyses, were validated experimentally in insulin-resistant rat model. RESULTS: 136 active compounds, 211 corresponding targets in addition to 1463 disease-related targets were collected, of which 94 intersection targets were obtained. 29 key targets including AKT1, VEGFA, IL-6, CASP3, and PTGS2 were identified through PPI network analysis. Hub module of PPI network was closely associated with inflammation. GO and KEGG analyses also revealed that inflammation-related pathways may be a central factor for SJG to modulate insulin resistance. Molecular docking test showed a good binding potency between primary active ingredients and core targets, and the binding mode of optimal docking conformation was stable in MD simulation. A rat model of insulin resistance was successfully induced by chronic high-fat diet (HFD) consumption. Through a series of in vivo studies, including HEC, ITT, and HOMA-IR measurement, it was revealed that SJG exhibited a beneficial effect on ameliorating insulin resistance, as demonstrated by a significant increase of GIR and a significant decrease of AUCITT and HOMA-IR index value. Further molecular biological analysis showed that SJG can decrease the mRNA expression level and serum concentration of inflammatory cytokines (TNF-α, IL-6, and IL-1ß), along with suppressing the p-NFκB protein overexpression, indicating its anti-inflammatory activity. Also, it can contribute to the reversal of the impaired hepatic insulin signaling pathway, as evidenced by up-regulated protein expression of p-Akt and GLUT2. CONCLUSIONS: Through in silico and in vivo approaches, the present study not only provides a unique insight into the possible mechanism of SJG in insulin resistance after successfully filtering out associated key target genes and signaling pathways, but also suggests a novel promising therapeutic strategy for curing insulin resistance.


Assuntos
Simulação por Computador , Medicamentos de Ervas Chinesas , Resistência à Insulina , Animais , Ratos , Glicemia/efeitos dos fármacos , Peso Corporal , Medicamentos de Ervas Chinesas/farmacologia , Técnica Clamp de Glucose , Insulina/sangue , Modelos Moleculares , Simulação de Acoplamento Molecular , Farmacologia em Rede , Conformação Proteica , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
J Zhejiang Univ Sci B ; 22(11): 929-940, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34783223

RESUMO

Inflammation plays an important role in the development of acute lung injury (ALI). Severe pulmonary inflammation can cause acute respiratory distress syndrome (ARDS) or even death. Expression of proinflammatory interleukin-|1ß (IL-|1ß) and inducible nitric oxide synthase (iNOS) in the process of pulmonary inflammation will further exacerbate the severity of ALI. The purpose of this study was to explore the effect of Palrnatine (Pa) on lipopolysaccharide (LPS)-induced mouse ALI and its underlying mechanism. Pa, a natural product, has a wide range of pharmacological activities with the potential to protect against lung injury. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) assays were performed to detect the expression and translation of inflammatory genes and proteins in vitro and in vivo. Immunoprecipitation was used to detect the degree of P65 translocation into the nucleus. We also used molecular modeling to further clarify the mechanism of action. The results showed that Pa pretreatment could significantly inhibit the expression and secretion of the inflammatory cytokine IL-1ß, and significantly reduce the protein level of the proinflammatory protease iNOS, in both in vivo and in vitro models induced by LPS. Further mechanism studies showed that Pa could significantly inhibit the activation of the protein kinase B (Akt)/nuclear factor-κB (NF-κB) signaling pathway in the LPS-induced ALI mode and in LPS-induced RAW264.7 cells. Through molecular dynamics simulation, we observed that Pa was bound to the catalytic pocket of Akt and effectively inhibited the biological activity of Akt. These results indicated that Pa significantly relieves LPS-induced ALI by activating the Akt/NF-κB signaling pathway.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Menispermaceae/química , NF-kappa B/antagonistas & inibidores , Extratos Vegetais/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Lesão Pulmonar Aguda/patologia , Animais , Modelos Animais de Doenças , Lipopolissacarídeos/farmacologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Simulação de Dinâmica Molecular , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/química , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
3.
Bioengineered ; 12(1): 2274-2287, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34077310

RESUMO

Xuebijing Injection have been found to improve the clinical symptoms of COVID-19 and alleviate disease severity, but the mechanisms are currently unclear. This study aimed to investigate the potential molecular targets and mechanisms of the Xuebijing injection in treating COVID-19 via network pharmacology and molecular docking analysis. The main active ingredients and therapeutic targets of the Xuebijing injection, and the pathogenic targets of COVID-19 were screened using the TCMSP, UniProt, and GeneCard databases. According to the 'Drug-Ingredients-Targets-Disease' network built by STRING and Cytoscape, AKT1 was identified as the core target, and baicalein, luteolin, and quercetin were identified as the active ingredients of the Xuebijing injection in connection with AKT1. R language was used for enrichment analysis that predict the mechanisms by which the Xuebijing injection may inhibit lipopolysaccharide-mediated inflammatory response, modulate NOS activity, and regulate the TNF signal pathway by affecting the role of AKT1. Based on the results of network pharmacology, a molecular docking was performed with AKT1 and the three active ingredients, the results indicated that all three active ingredients could stably bind with AKT1. These findings identify potential molecular mechanisms by which Xuebijing Injection inhibit COVID-19 by acting on AKT1.


Assuntos
Antivirais/administração & dosagem , Tratamento Farmacológico da COVID-19 , COVID-19/metabolismo , Medicamentos de Ervas Chinesas/administração & dosagem , SARS-CoV-2 , Antivirais/farmacocinética , Antivirais/farmacologia , Engenharia Biomédica , Medicamentos de Ervas Chinesas/farmacocinética , Medicamentos de Ervas Chinesas/farmacologia , Flavanonas/administração & dosagem , Humanos , Injeções , Luteolina/administração & dosagem , Simulação de Acoplamento Molecular , Pandemias , Ligação Proteica , Mapas de Interação de Proteínas , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quercetina/administração & dosagem , Transdução de Sinais/efeitos dos fármacos
4.
Phytomedicine ; 83: 153487, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33636476

RESUMO

BACKGROUND: Excessive hepatic glucose production (HGP) largely promotes the development of type 2 diabetes mellitus (T2DM), and the inhibition of HGP significantly ameliorates T2DM. Huanglian-Renshen-Decoction (HRD), a classic traditional Chinese herb medicine, is widely used for the treatment of diabetes in clinic for centuries and proved effective. However, the relevant mechanisms of HRD are not fully understood. PURPOSE: Based on that, this study was designed to identify the potential effects and underlying mechanisms of HRD on HGP by a comprehensive investigation that integrated in vivo functional experiments, network pharmacology, molecular docking, transcriptomics and molecular biology. METHODS: After confirming the therapeutic effects of HRD on T2DM mice, the inhibitory role of HRD on HGP was evaluated by pyruvate and glucagon tolerance tests, liver positron emission tomography (PET) imaging and the detection of gluconeogenic key enzymes. Then, network pharmacology and transcriptomics approaches were used to clarify the underlying mechanisms. Molecular biology, computational docking analysis and in vitro experiments were applied for final mechanism verification. RESULTS: Here, our results showed that HRD can decrease weight gain and blood glucose, increase fasting insulin, glucose clearance and insulin sensitivity in T2DM mice. Dysregulated lipid profile was also corrected by HRD administration. Pyruvate, glucagon tolerance tests and liver PET imaging all indicated that HRD inhibited the abnormal HGP of T2DM, and the expressions of phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase (G6Pase) were significantly suppressed by HRD as expected. Network pharmacology and transcriptomics approaches illustrated that PI3K/Akt/FoxO1 signaling pathway may be responsible for the inhibitory effect of HRD on HGP. Afterward, further western blot and immunoprecipitation found that HRD did activate PI3K/Akt/FoxO1 signaling pathway in T2DM mice, which confirmed previous results. Additionally, the conclusion was further supported by molecular docking and in vitro experiments, in which identified HRD compound, oxyberberine, was proven to exert an obvious effect on Akt. CONCLUSION: Our data demonstrated that HRD can treat T2DM by inhibiting hepatic glucose production, the underlying mechanisms were associated with the activation of PI3K/Akt/FoxO1 signaling pathway.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Glucose/metabolismo , Animais , Glicemia/metabolismo , Biologia Computacional , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Proteína Forkhead Box O1/metabolismo , Perfilação da Expressão Gênica , Gluconeogênese/efeitos dos fármacos , Células Hep G2 , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Resistência à Insulina , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Obesos , Panax/química , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/metabolismo
5.
Acc Chem Res ; 54(3): 618-631, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33228351

RESUMO

Here we provide a personal account of innovation and design principles underpinning a method to interrogate precision electrophile signaling that has come to be known as "REX technologies". This Account is framed in the context of trying to improve methods of target mining and understanding of individual target-ligand engagement by a specific natural electrophile and the ramifications of this labeling event in cells and organisms. We start by explaining from a practical standpoint why gleaning such understanding is critical: we are constantly assailed by a battery of electrophilic molecules that exist as a consequence of diet, food preparation, ineluctable endogenous metabolic processes, and potentially disease. The resulting molecules, which are detectable in the body, appear to be able to modify function of specific proteins. Aside from potentially being biologically relevant in their own right, these labeling events are essentially identical to protein-covalent drug interactions. Thus, on what proteins and even in what ways a covalent drug will work can be understood through the eyes of natural electrophiles; extending this logic leads to the postulate that target identification of specific electrophiles can inform on drug design. However, when we entered this field, there was no way to interrogate how a specific labeling event impacted a specific protein in an unperturbed cell. Methods to evaluate stoichiometry of labeling, and even chemospecificity of a specific phenotype were limited. There were further no generally accepted ways to study electrophile signaling that did not hugely disturb physiology.We developed T-REX, a method to study single-protein-specific electrophile engagement, to interrogate how single-protein electrophile labeling shapes pathway flux. Using T-REX, we discovered that labeling of several proteins by a specific electrophile, even at low occupancy, leads to biologically relevant signaling outputs. Further experimentation using T-REX showed that in some instances, single-protein isoforms were electrophile responsive against other isoforms, such as Akt3. Selective electrophile-labeling of Akt3 elicited inhibition of Akt-pathway flux in cells and in zebrafish embryos. Using these data, we rationally designed a molecule to selectively target Akt3. This was a fusion of the naturally derived electrophile and an isoform-nonspecific, reversible Akt inhibitor in phase-II trials, MK-2206. The resulting molecule was a selective inhibitor of Akt3 and was shown to fare better than MK-2206 in breast cancer xenograft mouse models. Recently, we have also developed a means to screen electrophile sensors that is unbiased and uses a precise burst of electrophiles. Using this method, dubbed G-REX, in conjunction with T-REX, we discovered new DNA-damage response upregulation pathways orchestrated by simple natural electrophiles. We thus emphasize how deriving a quantitative understanding of electrophile signaling that is linked to thorough and precise mechanistic studies can open doors to numerous medicinally and biologically relevant insights, from gleaning better understanding of target engagement and target mining to rational design of targeted covalent medicines.


Assuntos
Preparações Farmacêuticas/química , Proteínas Proto-Oncogênicas c-akt/química , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Portadores de Fármacos/química , Avaliação Pré-Clínica de Medicamentos , Feminino , Compostos Heterocíclicos com 3 Anéis/química , Compostos Heterocíclicos com 3 Anéis/metabolismo , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Humanos , Ligantes , Camundongos , Oxidantes/química , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transplante Heterólogo
6.
Sci Rep ; 10(1): 15730, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978480

RESUMO

Prunella vulgaris L, a perennial herb widely used in Asia in the treatment of various diseases including cancer. In vitro studies have demonstrated the therapeutic effect of Prunella vulgaris L. against breast cancer through multiple pathways. However, the nature of the biological mechanisms remains unclear. In this study, a Network pharmacology based approach was used to explore active constituents and potential molecular mechanisms of Prunella vulgaris L. for the treatment of breast cancer. The methods adopted included active constituents prescreening, target prediction, GO and KEGG pathway enrichment analysis. Molecular docking experiments were used to further validate network pharmacology results. The predicted results showed that there were 19 active ingredients in Prunella vulgaris L. and 31 potential gene targets including AKT1, EGFR, MYC, and VEGFA. Further, analysis of the potential biological mechanisms of Prunella vulgaris L. against breast cancer was performed by investigating the relationship between the active constituents, target genes and pathways. Network analysis showed that Prunella vulgaris L. exerted a promising preventive effect on breast cancer by acting on tumor-associated signaling pathways. This provides a basis to understand the mechanism of the anti-breast cancer activity of Prunella vulgaris L.


Assuntos
Neoplasias da Mama/metabolismo , Redes Reguladoras de Genes/efeitos dos fármacos , Extratos Vegetais/farmacologia , Prunella/química , Neoplasias da Mama/tratamento farmacológico , Simulação por Computador , Receptores ErbB/química , Receptores ErbB/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Int J Mol Sci ; 21(18)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32962182

RESUMO

Global environmental pollution has led to human exposure to ultraviolet (UV) radiation due to the damaged ozone layer, thereby increasing the incidence and death rate of skin cancer including both melanoma and non-melanoma. Overexpression and activation of V-akt murine thymoma viral oncogene homolog (AKT, also known as protein kinase B) and related signaling pathways are major factors contributing to many cancers including lung cancer, esophageal squamous cell carcinoma and skin cancer. Although BRAF inhibitors are used to treat melanoma, further options are needed due to treatment resistance and poor efficacy. Depletion of AKT expression and activation, and related signaling cascades by its inhibitors, decreases the growth of skin cancer and metastasis. Here we have focused the effects of AKT and related signaling (PI3K/AKT/mTOR) pathways by regulators derived from plants and suggest the need for efficient treatment in skin cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Melanoma/tratamento farmacológico , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Melanoma/metabolismo , Camundongos , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
8.
Biochim Biophys Acta Gen Subj ; 1864(10): 129655, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32535151

RESUMO

BACKGROUND: Previous studies found that Vitamin E (VE) could recruit protein kinase B (Akt1) to the membrane by targeting its unconventional lipid-binding site, which led to the dephosphorylation of Akt1 at Ser473, eventually deactivating the enzyme. METHODS: A series of VE-like compounds with varying types and lengths of the linker groups are designed to study the VE-driven membrane recruitment of Akt1 using a combined molecular docking and molecular dynamics (MD) simulation approach. RESULTS: We find that the linker groups with only one methylene linker and multiple hydrogen bond donors are optimal for achieving a balance between binding to the protein and partitioning into the membrane to form a stable protein-ligand-membrane ternary complex. These polar linkers are found to form stable hydrogen bonds with the lipid head groups during the MD simulations, which turns out critical for ensuring that the chromanol ring of the VE-like compounds resides above the membrane surface to fully engage in the protein. CONCLUSIONS: Our results reveal the molecular determinants of the linker groups for VE derivatives' ability to anchor Akt1 to the membrane. GENERAL SIGNIFICANCE: These findings will facilitate the design of membrane interfacial compounds to recruit specific proteins to the membrane to modulate the protein function.


Assuntos
Membrana Celular/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Vitamina E/metabolismo , Sítios de Ligação , Humanos , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Domínios Proteicos , Proteínas Proto-Oncogênicas c-akt/química , Vitamina E/análogos & derivados
9.
IET Nanobiotechnol ; 14(3): 210-216, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32338629

RESUMO

The present study is an attempt to evaluate the in vitro anti-inflammatory and in silico anticancer potentials of the plant Cassia auriculata (CA). The aerial parts of CA were subjected to solvent extraction, and the extracts were fractionised by gas chromatography and mass spectrometry analysis for its phytochemical content. The antiinflammatory activity of the extracts were confirmed by the IC50 value of 125.02 µg/ml for red blood cell membrane stabilisation and 195.7 µg/ml for inhibition of protein denaturation activity. The interaction of bioactive compounds of CA ethanol extract with target protein was predicted through molecular docking studies, serine/threonine-protein kinase B (AKT1), responsible for development and progression of lung cancer using AutoDock tools. Extensive studies have been carried out on a range of kinase inhibitors targeting Akt, but obtaining promising results is a challenge yet due to its toxicity and resistance issues. Yohimbine, undecanoic acid 10-methyl-ethyl ester and chrysin significantly bind to the target protein with least binding energy. Hence, the present paper establishes the anti-inflammatory and anticancer capacities of CA ethanol extract as an alternative to the existing therapeutic approach to inflammation and cancer through a systematic in vitro and in silico approaches supplementing the findings.


Assuntos
Cassia/química , Compostos Fitoquímicos , Extratos Vegetais , Anti-Inflamatórios/química , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Simulação por Computador , Membrana Eritrocítica/efeitos dos fármacos , Humanos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/metabolismo , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/metabolismo
10.
Mol Divers ; 24(1): 45-60, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30798436

RESUMO

The traditional method of drug discovery process has been surpassed by a rational approach where computer-aided drug designing plays a vital role in the identification of leads from large compound databases. Further, natural products have an important role in drug discovery as these have been the source of most active ingredients of medicines. Herein, in silico structure- and ligand-based approaches have been applied to screen in-house IIIM natural product repository for Akt1 (serine/threonine protein kinases) which is a well-known therapeutic target for cancer due to its overexpression and preventing the cells from undergoing apoptosis. Combined ligand-based and structure-based strategies were applied on to the existing library comprising of about 700 pure natural products, and the compounds identified from screening were biologically evaluated for Akt1 inhibition using Akt1 kinase activity assay. Fourteen promising compounds showed significant inhibition at 500 nM through in vitro screening, and from them, eight were new for Akt1 inhibition. Through the MD studies of Akt1 with the most active compound IN00145, it was inferred that Lys179, Glu191, Glu228, Ala230, Glu234 and Asp292 are the important amino acid residues which provide stability to the Akt1-IN00145 complex. Lead optimization studies were also performed around the actives to design better and selective inhibitors for Akt1. The results emphasized the successful application of virtual screening to identify new Akt1 inhibitor scaffolds that can be developed into a drug candidate in drug discovery programme.


Assuntos
Produtos Biológicos/química , Desenho de Fármacos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-akt/química , Produtos Biológicos/farmacologia , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligantes , Conformação Molecular , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Relação Quantitativa Estrutura-Atividade , Curva ROC
11.
FEBS Lett ; 593(2): 175-186, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30489635

RESUMO

Baicalin is one of the main flavonoids of the dried root of Scutellaria baicalensis Georgi and is reported to exert beneficial effects on the regulation of glucose/lipid metabolism. However, understanding its specific target and unique mechanism for improving glucose utilization is a challenge. In this paper, target fishing with a baicalin probe reveals that baicalin interacts with AKT. An immunofluorescence assay further demonstrates the colocalization of baicalin with AKT in the cytoplasm. A competitive test and virtual docking show that baicalin might bind to the pleckstrin homology domain of AKT. This specific binding hampers AKT membrane translocation, activates the phosphorylation of AKT on Ser473, induces the downstream glycogen synthase kinase 3ß activation, and affects glycogen synthesis.


Assuntos
Flavonoides/farmacologia , Glucose/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Citoplasma/metabolismo , Flavonoides/química , Glicogênio/metabolismo , Células Hep G2 , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Fosforilação , Extratos Vegetais/farmacologia , Domínios Proteicos , Scutellaria baicalensis/química , Transdução de Sinais/efeitos dos fármacos
12.
Int J Biol Macromol ; 96: 200-213, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27956098

RESUMO

Akt, a serine/threonine protein kinase, is often hyper activated in breast and prostate cancers, but with poor prognosis. Allosteric inhibitors regulate aberrant kinase activity by stabilizing the protein in inactive conformation. Several natural compounds have been reported as inhibitors for kinases. In this study, to identify potential natural allosteric inhibitor for Akt1, we generated a seven-point pharmacophore model and screened it through natural compound library. Quercetin-7-O-ß-d-glucopyranoside or Q7G was found to be the best among selected molecules based on its hydrogen bond occupancy with key allosteric residues, persistent polar contacts and salt bridges that stabilize Akt1 in inactive conformation and minimum binding free energy during molecular dynamics simulation. Q7G induced dose-dependent inhibition of breast cancer cells (MDA MB-231) and arrested them in G1 and sub-G phase. This was associated with down-regulation of anti-apoptotic protein Bcl-2, up-regulation of cleaved caspase-3 and PARP. Expression of p-Akt (Ser473) was also down-regulated which might be due to Akt1 inhibition in inactive conformation. We further confirmed the Akt1 and Q7G interaction which was observed to have a dissociation constant (Kd) of 0.246µM. With these computational, biological and thermodynamic studies, we suggest Q7G as a lead molecule and propose for its further optimization.


Assuntos
Produtos Biológicos/farmacologia , Simulação de Dinâmica Molecular , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação Alostérica/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Produtos Biológicos/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Fosforilação/efeitos dos fármacos , Conformação Proteica , Relação Quantitativa Estrutura-Atividade , Termodinâmica , Interface Usuário-Computador
13.
Drug Des Devel Ther ; 10: 2137-54, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27445461

RESUMO

Molecular modeling has been employed in the search for lead compounds of chemotherapy to fight cancer. In this study, pharmacophore models have been generated and validated for use in virtual screening protocols for eight known anticancer drug targets, including tyrosine kinase, protein kinase B ß, cyclin-dependent kinase, protein farnesyltransferase, human protein kinase, glycogen synthase kinase, and indoleamine 2,3-dioxygenase 1. Pharmacophore models were validated through receiver operating characteristic and Güner-Henry scoring methods, indicating that several of the models generated could be useful for the identification of potential anticancer agents from natural product databases. The validated pharmacophore models were used as three-dimensional search queries for virtual screening of the newly developed AfroCancer database (~400 compounds from African medicinal plants), along with the Naturally Occurring Plant-based Anticancer Compound-Activity-Target dataset (comprising ~1,500 published naturally occurring plant-based compounds from around the world). Additionally, an in silico assessment of toxicity of the two datasets was carried out by the use of 88 toxicity end points predicted by the Lhasa's expert knowledge-based system (Derek), showing that only an insignificant proportion of the promising anticancer agents would be likely showing high toxicity profiles. A diversity study of the two datasets, carried out using the analysis of principal components from the most important physicochemical properties often used to access drug-likeness of compound datasets, showed that the two datasets do not occupy the same chemical space.


Assuntos
Simulação por Computador , Plantas Medicinais/química , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Bases de Dados Factuais , Desenho de Fármacos , Humanos , Modelos Moleculares , Proteínas Proto-Oncogênicas c-akt/metabolismo
14.
Pharm Biol ; 54(12): 2814-2821, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27307092

RESUMO

CONTEXT: The bulb of Allium sativum Linn (Alliaceae) has numerous medicinal values. Though the petroleum ether extract of the bulb has shown to exhibit antimycobacterial activity, the phytochemical(s) responsible for this inhibitory activity is not known. OBJECTIVE: To characterize the bioactive compounds in the petroleum ether extract of Allium sativum (garlic) that inhibit the growth of Mycobacterium tuberculosis H37Ra. MATERIALS AND METHODS: Bioactivity-guided fractionation was employed to isolate the bioactive compounds. Antimycobacterial activity was evaluated by well-diffusion method and microplate alamar blue assay (MABA). Infrared spectroscopy, mass spectrometry and nuclear magnetic resonance spectroscopy were used to characterize the bioactive compounds. Autodock was used to obtain information on molecular recognition, and molecular dynamics simulation was performed using GROMACS. RESULTS: The bioactive compounds that inhibited the growth of M. tuberculosis H37Ra were found to be lauric acid (LA) and myristic acid (MA). The minimal inhibitory concentration of LA and MA was found to be 22.2 and 66.7 µg/mL, respectively. In silico analysis revealed that these fatty acids could bind at the cleft between the N-terminal and C-terminal lobes of the cytosolic domain of serine/threonine protein kinase B (PknB). DISCUSSION AND CONCLUSION: The inhibition activity was dependent on the alkyl chain length of the fatty acid, and the amino acid residues involved in binding to fatty acid was found to be conserved across the Pkn family of proteins. The study indicates the possibility of using fatty acid derivatives, involving Pkn family of proteins, to inhibit the signal transduction processes in M. tuberculosis.


Assuntos
Alho , Ácidos Láuricos/metabolismo , Mycobacterium tuberculosis/metabolismo , Ácido Mirístico/metabolismo , Extratos Vegetais/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antituberculosos/isolamento & purificação , Antituberculosos/metabolismo , Antituberculosos/farmacologia , Simulação por Computador , Humanos , Ácidos Láuricos/isolamento & purificação , Ácidos Láuricos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Ácido Mirístico/isolamento & purificação , Ácido Mirístico/farmacologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Raízes de Plantas , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-akt/química
15.
Cell Signal ; 28(5): 384-390, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26852666

RESUMO

Resistance to insulin action is a key cause of diabetic complications, yet much remains unknown about the molecular mechanisms that contribute to the defect. Glucose-induced insulin resistance in peripheral tissues such as the retina is mediated in part by the hexosamine biosynthetic pathway (HBP). Glucosamine (GAM), a leading dietary supplement marketed to relieve the discomfort of osteoarthritis, is metabolized by the HBP, and in doing so bypasses the rate-limiting enzyme of the pathway. Thus, exogenous GAM consumption potentially exacerbates the resistance to insulin action observed with diabetes-induced hyperglycemia. In the present study, we evaluated the effect of GAM on insulin action in retinal Müller cells in culture. Addition of GAM to Müller cell culture repressed insulin-induced activation of the Akt/mTORC1 signaling pathway. However, the effect was not recapitulated by chemical inhibition to promote protein O-GlcNAcylation, nor was blockade of O-GlcNAcylation sufficient to prevent the effects of GAM. Instead, GAM induced ER stress and subsequent expression of the protein Regulated in DNA Damage and Development (REDD1), which was necessary for GAM to repress insulin-stimulated phosphorylation of Akt on Thr308. Overall, the findings support a model whereby GAM promotes ER stress in retinal Müller cells, resulting in elevated REDD1 expression and thus resistance to insulin action.


Assuntos
Células Ependimogliais/metabolismo , Glucosamina/farmacologia , Antagonistas da Insulina/farmacologia , Retina/metabolismo , Fatores de Transcrição/metabolismo , Acetilglucosamina/metabolismo , Animais , Células Cultivadas , Estresse do Retículo Endoplasmático , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/enzimologia , Insulina/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Retina/citologia , Retina/enzimologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Treonina/metabolismo , Fatores de Transcrição/biossíntese
16.
Int J Mol Sci ; 16(9): 22190-204, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26389883

RESUMO

This study aimed at investigating the possible mechanisms of hepatic protective activity of Cichorium intybus L. (chicory) in acute liver injury. Pathological observation, reactive oxygen species (ROS) detection and measurements of biochemical indexes on mouse models proved hepatic protective effect of Cichorium intybus L. Identification of active compounds in Cichorium intybus L. was executed through several methods including ultra performance liquid chromatography/time of flight mass spectrometry (UPLC-TOF-MS). Similarity ensemble approach (SEA) docking, molecular modeling, molecular docking, and molecular dynamics (MD) simulation were applied in this study to explore possible mechanisms of the hepato-protective potential of Cichorium intybus L. We then analyzed the chemical composition of Cichorium intybus L., and found their key targets. Furthermore, in vitro cytological examination and western blot were used for validating the efficacy of the selected compounds. In silico analysis and western blot together demonstrated that selected compound 10 in Cichorium intybus L. targeted Akt-1 in hepatocytes. Besides, compound 13 targeted both caspase-1 and Akt-1. These small compounds may ameliorate liver injury by acting on their targets, which are related to apoptosis or autophagy. The conclusions above may shed light on the complex molecular mechanisms of Cichorium intybus L. acting on hepatocytes and ameliorating liver injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Cichorium intybus/química , Fígado/efeitos dos fármacos , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Animais , Apoptose , Autofagia , Sítios de Ligação , Caspase 1/química , Caspase 1/genética , Caspase 1/metabolismo , Fígado/metabolismo , Camundongos , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
17.
Methods Mol Biol ; 819: 561-73, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22183558

RESUMO

We present an example-based description of virtual screening (VS) techniques used to identify new regulators of the Akt phosphatase PHLPP (PH domain Leucine repeat Protein Phosphatase). This enzyme opposes the effects of two kinases, Akt and PKC, which play a major role in cell growth and survival. Therefore, PHLPP is a potential therapeutic target in pathophysiologies where these pathways are either repressed, such as in diabetes and cardiovascular diseases, or over-activated as in cancer. To the best of our knowledge, no PHLPP inhibitors have been reported so far in the literature. In this study, we used a combination of chemical and virtual screening techniques that led to the identification of a number of inhibiting compounds with diverse scaffolds. These compounds bind PHLPP and inhibit cell death when tested in cellular assays. We employed GLIDE docking software to screen a library of more than 40,000 compounds selected from the NCI open depository (250,000 compounds) by similarity searches. We compare the efficiency at which we determined binding compounds from the chemical screen, and compare enrichment factors of the virtually discovered compounds over chemical screening.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Fosfoproteínas Fosfatases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interface Usuário-Computador , Inibidores Enzimáticos/análise , Inibidores Enzimáticos/farmacologia , Humanos , Modelos Moleculares , Fosfoproteínas Fosfatases/química , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-akt/química , Homologia Estrutural de Proteína
18.
J Biomol NMR ; 51(4): 449-56, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21964698

RESUMO

An easy to use and robust approach for amino acid type selective isotope labeling in insect cells is presented. It relies on inexpensive commercial media and can be implemented in laboratories without sophisticated infrastructure. In contrast to previous protocols, where either high protein amounts or high incorporation ratios were obtained, here we achieve both at the same time. By supplementing media with a well considered amount of yeast extract, similar protein amounts as with full media are obtained, without compromising on isotope incorporation. In single and dual amino acid labeling experiments incorporation ratios are consistently ≥90% for all amino acids tested. This enables NMR studies of eukaryotic proteins and their interactions even for proteins with low expression levels. We show applications with human kinases, where protein-ligand interactions are characterized by 2D [(15)N, (1)H]- and [(13)C, (1)H]-HSQC spectra.


Assuntos
Marcação por Isótopo/métodos , Proteínas Proto-Oncogênicas c-akt/análise , Proteínas Proto-Oncogênicas c-akt/química , Aminoácidos/análise , Aminoácidos/química , Aminoácidos/metabolismo , Animais , Baculoviridae/química , Células Cultivadas , Humanos , Insetos , Ressonância Magnética Nuclear Biomolecular/métodos
19.
Int J Mol Med ; 21(1): 91-7, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18097621

RESUMO

Selenium has been associated with an anti-cancer effect via the modulation of Akt. In order to investigate whether selenium modulates Akt by hitherto unidentified molecular mechanisms, we examined the effect of selenium on the stability and activity of Akt. Selenium induced destabilization of Akt which is coupled to its own enzyme activation. Mutation of T308 and S473 of Akt to alanine as well as the inhibition or depletion of upstream kinases for Akt activation blocked Akt degradation. These features of Akt degradation are reminiscent of the 'activation-induced suicidal degradation' mechanism. PTEN was also required for Akt destabilization as Akt activation alone was unable to elicit Akt degradation in the absence of PTEN. Conversely, PTEN introduction in PTEN-null prostate cancer cells restored the ability to degrade Akt upon selenium treatment. Collectively, selenium seems to achieve ultimate negative regulation of Akt signaling by destabilizing the protein, and this regulation mechanism might provide a paradigm for the anti-cancer activity of selenium.


Assuntos
Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Selênio/farmacologia , Sequência de Aminoácidos , Caspases/metabolismo , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Estabilidade Enzimática/efeitos dos fármacos , Humanos , Dados de Sequência Molecular , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA