Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Psychoneuroendocrinology ; 113: 104549, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31884322

RESUMO

Endogenous cannabinoids (endocannabinoids, eCB) are expressed throughout the body and contribute to regulation of the hypothalamo-pituitary-adrenal (HPA) axis and general stress reactivity. This study assessed the contributions of CB1 receptors (CB1R) in the modulation of basal and stress-induced neural and HPA axis activities. Catheterized adult male rats were placed in chambers to acclimate overnight, with their catheters connected and exteriorized from the chambers for relatively stress-free remote injections. The next morning, the CB1R antagonist AM251 (1 or 2 mg/kg) or vehicle was administered, and 30 min later, rats were exposed to loud noise stress (30 min) or no noise (basal condition). Blood, brains, pituitary and adrenal glands were collected immediately after the procedures for analysis of c-fos and CB1R mRNAs, corticosterone (CORT) and adrenocorticotropin hormone (ACTH) plasma levels. Basally, CB1R antagonism induced c-fos mRNA in the basolateral amygdala (BLA) and auditory cortex (AUD) and elevated plasma CORT, indicating disruption of eCB-mediated constitutive inhibition of activity. CB1R blockade also potentiated stress-induced hormone levels and c-fos mRNA in several regions such as the bed nucleus of the stria terminalis (BST), lateral septum (LS), and basolateral amygdala (BLA) and the paraventricular nucleus of the hypothalamus (PVN). CB1R mRNA was detected in all central tissues investigated, and the adrenal cortex, but at very low levels in the anterior pituitary gland. Interestingly, CB1R mRNA was rapidly and bidirectionally regulated in response to stress and/or antagonist treatment in some regions. eCBs therefore modulate the HPA axis by regulating both constitutive and activity-dependent inhibition at multiple levels.


Assuntos
Células Neuroendócrinas/fisiologia , Receptor CB1 de Canabinoide/fisiologia , Córtex Suprarrenal/metabolismo , Glândulas Suprarrenais/metabolismo , Hormônio Adrenocorticotrópico/sangue , Animais , Corticosterona/sangue , Endocanabinoides/farmacologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Hipotálamo/metabolismo , Masculino , Células Neuroendócrinas/efeitos dos fármacos , Células Neuroendócrinas/metabolismo , Sistemas Neurossecretores/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Piperidinas/farmacologia , Sistema Hipófise-Suprarrenal/metabolismo , Proteínas Proto-Oncogênicas c-fos/sangue , Pirazóis/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/efeitos dos fármacos , Receptor CB1 de Canabinoide/metabolismo , Restrição Física/psicologia , Estresse Fisiológico/fisiologia , Estresse Psicológico/fisiopatologia
2.
Behav Brain Res ; 336: 135-144, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28864207

RESUMO

The neuropeptide relaxin-3 (RLN3) binds with high affinity to its cognate receptor, relaxin-family peptide receptor 3 (RXFP3), and with lower affinity to RXFP1, the cognate receptor for relaxin. Intracerebroventricular (icv) administration of RLN3 in rats strongly increases food and water intake and alters the activity of the hypothalamic-pituitary-adrenal (HPA) and gonadal (HPG) axes, but the relative involvement of RXFP3 and RXFP1 in these effects is not known. Therefore, the effects of icv administration of equimolar (1.1 nmol) amounts of RLN3 and the RXFP3-selective agonist RXFP3-A2 on food and water intake, plasma levels of corticosterone, testosterone, and oxytocin and c-fos mRNA expression in key hypothalamic regions in male rats were compared. Food intake was increased by both RLN3 and RXFP3-A2, but the orexigenic effects of RXFP3-A2 were significantly stronger than RLN3, 30 and 60min after injection. Water intake and plasma corticosterone and testosterone levels were significantly increased by RLN3, but not by RXFP3-A2. Conversely, RXFP3-A2 but not RLN3 decreased oxytocin plasma levels. RLN3, but not RXFP3-A2, increased c-fos mRNA levels in the parvocellular (PVNp) and magnocellular (PVNm) paraventricular and supraoptic (SON) hypothalamic nuclei, in the ventral medial preoptic area (MPAv), and in the organum vasculosum of the lamina terminalis (OVLT). A significant increase in c-fos mRNA expression was induced in the perifornical lateral hypothalamic area (LHApf) by RLN3 and RXFP3-A2. These results suggest that RXFP1 is involved in the RLN3 stimulation of water intake and activation of the HPA and HPG axes. The reduced food intake stimulation by RLN3 compared to RXFP3-A2 may relate to activation of both orexigenic and anorexigenic circuits by RLN3.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores de Peptídeos/agonistas , Relaxina/metabolismo , Animais , Corticosterona/sangue , Ingestão de Líquidos/efeitos dos fármacos , Alimentos , Sistema Hipotálamo-Hipofisário , Hipotálamo , Masculino , Proteínas do Tecido Nervoso/farmacologia , Neurônios/metabolismo , Ocitocina/sangue , Sistema Hipófise-Suprarrenal , Proteínas Proto-Oncogênicas c-fos/sangue , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Relaxina/farmacologia , Testosterona/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA