Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 41(12): 5817-5826, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35822492

RESUMO

Cancer is a major global health issue that has a high mortality rate. p53, which functions as a tumor suppressor, is critical in preventing tumor development by regulating the cell cycle and inducing apoptosis in damaged cells. However, the tumor suppressor function of p53 is effectively inhibited by its direct interaction with the hydrophobic cleft of MDM2 protein via multiple mechanisms As a result, restoring p53 activity by blocking the p53-MDM2 protein-protein interaction has been proposed as a compelling therapeutic strategy for cancer treatment. The use of molecular docking and phytochemical screening procedures are appraised to inhibit MDM2's hydrophobic cleft and disrupt the p53-MDM2 interaction. For this purpose, a library of 51 bioactive compounds from 10 medicinal plants was compiled and subjected to structure-based virtual screening. Out of these, only 3 compounds (Atalantoflavone, Cudraxanthone 1, and Ursolic acid) emerged as promising inhibitors of MDM2-p53 based on their binding affinities (-9.1 kcal/mol, -8.8 kcal/mol, and -8.8 kcal/mol respectively) when compared to the standard (-8.8 kcal/mol). Moreover, these compounds showed better pharmacokinetic and drug-like profiling than the standard inhibitor (Chromonotriazolopyrimidine 1). Finally, the 100 ns MD simulation analysis confirmed no significant perturbation in the conformational dynamics of the simulated binary complexes when compared to the standard. In particular, Ursolic acid was found to satisfy the molecular enumeration the most compared to the other inhibitors. Our overall molecular modeling finding shows why these compounds may emerge as potent arsenals for cancer therapeutics. Nonetheless, extensive experimental and clinical research is needed to augment their use in clinics.Communicated by Ramaswamy H. Sarma.


Assuntos
Neoplasias , Plantas Medicinais , Humanos , Simulação de Acoplamento Molecular , Proteína Supressora de Tumor p53/química , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Dimerização , Neoplasias/tratamento farmacológico , Ligação Proteica , Ácido Ursólico
2.
Funct Integr Genomics ; 22(5): 1031-1041, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35794284

RESUMO

Recent studies have suggested the potency of berberine (BBR) for multiple cancer treatments, including multiple myeloma (MM). However, the direct target and underlying mechanism of BBR remain largely understood in MM. Here, we demonstrated that BBR inhibited cell proliferation and acted synergistically with bortezomib in MM.1S cells. BBR treatment induced MM cell cycle arrest by downregulating several cell cycle-related proteins. Murine double minute 2 (MDM2) as a BBR-binding protein was identified by surface plasmon resonance image (SPRi) analysis and molecular docking. Overexpression of MDM2 is associated with MM progression and a poor prognosis. Knockdown MDM2 by siRNA transfection can repress MM malignant progression and attenuate the BBR sensitivity to MM.1S cells. BBR treatment induced the degradation of MDM2 through the ubiquitin-proteasome system and reactivated P53/P21 in MM cells. Overall, our data has illustrated that MDM2, as a binding protein of BBR for the first time, may serve as a potential therapeutic option for MM.


Assuntos
Berberina , Mieloma Múltiplo , Animais , Apoptose , Berberina/farmacologia , Berberina/uso terapêutico , Bortezomib/metabolismo , Carcinogênese , Linhagem Celular Tumoral , Humanos , Camundongos , Simulação de Acoplamento Molecular , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , RNA Interferente Pequeno , Proteína Supressora de Tumor p53/genética , Ubiquitina
3.
Adv Biol Regul ; 83: 100840, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34866036

RESUMO

Approaches to improve pancreatic cancer therapy are essential as this disease has a very bleak outcome. Approximately 80% of pancreatic cancers are pancreatic ductal adenocarcinomas (PDAC). A key regulatory gene frequently mutated (∼75%) in PDAC is the TP53 tumor suppressor gene which controls the transcription of multiple genes involved in cell cycle progression, apoptosis, cancer progression and other growth regulatory processes. The mouse double minute 2 homolog (MDM2) gene product is a nuclear-localized E3 ubiquitin ligase and negatively regulates the TP53 protein which results in its proteasomal degradation. Various MDM2 inhibitors have been isolated and examined in clinical trials, especially in patients with hematological malignancies. Nutlin-3a is one of the first MDM2 inhibitors isolated. Berberine (BBR) is a natural product found in many fruits and berries and used in traditional medicine for centuries. It has many biological effects, and some are anti-proliferative in nature. BBR may activate the expression of TP53 and inhibit cell cycle progression as well as other events important in cell growth. To understand more about the potential of compounds like BBR and chemical modified BBRs (NAX compounds) to sensitize PDAC cells to MDM2 inhibitors, we introduced either WT-TP53 or the pLXSN empty vector control into two PDAC cell lines, one lacking expression of TP53 (PANC-28) and one with gain-of-function mutant TP53 on both alleles (MIA-PaCa-2). Our results indicate that nutlin-3a was able to increase the sensitivity to BBR and certain NAX compounds. The effects of nutlin-3a were usually more substantial in those cells containing an introduced WT TP53 gene. These results highlight the importance of knowledge of the type of TP53 mutation that is present in cancer patients before the administration of drugs which function by stabilization of the TP53 protein.


Assuntos
Berberina , Neoplasias Pancreáticas , Apoptose , Berberina/farmacologia , Berberina/uso terapêutico , Linhagem Celular Tumoral , Humanos , Imidazóis , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Piperazinas , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
4.
ChemMedChem ; 17(4): e202100517, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-34806333

RESUMO

Small-molecule inhibitors of MDM2 that block the MDM2-p53 protein-protein interaction have been considered as potential therapeutic agents for the treatment of cancer. Here, we identify five highly potent inhibitors of MDM2 (termed as WY 1-5) that display significant inhibitory effects on MDM2-p53 interaction by using a combined strategy of pharmacophore modeling, virtual screening, and molecular docking studies. Among them, WY-5 is the most active MDM2 inhibitor with an IC50 value of 14.1±2.8 nM. Moreover, WY-5 significantly up-regulate the protein level of p53 in SK-Hep-1 cells harboring wild-type p53. In vitro anticancer study reveals that WY-5 markedly inhibits the survival of SK-Hep-1 cells. In vivo anticancer study suggests that WY-5 significantly inhibits the growth of SK-Hep-1 cells-derived xenograft in nude mice, with no observable toxicity. Our results demonstrate that WY-5 may be a promising candidate for the treatment of cancer harboring wild-type p53.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Moleculares , Estrutura Molecular , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Relação Estrutura-Atividade
5.
Circ Res ; 129(12): 1158-1174, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34747636

RESUMO

RATIONALE: Disturbed flow occurring in arterial branches and curvatures induces vascular endothelial cell (EC) dysfunction and atherosclerosis. We postulated that disturbed flow plays important role in modulating phosphoprotein expression profiles to regulate endothelial functions and atherogenesis. OBJECTIVE: The goal of this study is to discover novel site-specific phosphorylation alterations induced by disturbed flow in ECs to contribute to atherosclerosis. METHODS AND RESULTS: Quantitative phosphoproteomics analysis of ECs exposed to disturbed flow with low and oscillatory shear stress (0.5±4 dynes/cm2) versus pulsatile shear stress (12±4 dynes/cm2) revealed that oscillatory shear stress induces phospho-YY1S118 (serine [S]118 phosphorylation of Yin Yang 1) in ECs. Elevated phospho-YY1S118 level in ECs was further confirmed to be present in the disturbed flow regions in experimental animals and human atherosclerotic arteries. This disturbed flow-induced EC phospho-YY1S118 is mediated by CK2α (casein kinase 2α) through its direct interaction with YY1. Yeast 2-hybrid library screening and in situ proximity ligation assays demonstrate that phospho-YY1S118 directly binds ZKSCAN4 (zinc finger with KRAB [krüppel-associated box] and SCAN [SRE-ZBP, CTfin51, AW-1 and Number 18 cDNA] domains 4) to induce promoter activity and gene expression of HDM2 (human double minute 2), which consequently induces EC proliferation through downregulation of p53 and p21CIP1. Administration of apoE-deficient (ApoE-/-) mice with CK2-specific inhibitor tetrabromocinnamic acid or atorvastatin inhibits atherosclerosis formation through downregulations of EC phospho-YY1S118 and HDM2. Generation of novel transgenic mice bearing EC-specific overexpression of S118-nonphosphorylatable mutant of YY1 in ApoE-/- mice confirms the critical role of phospho-YY1S118 in promoting atherosclerosis through EC HDM2. CONCLUSIONS: Our findings provide new insights into the mechanisms by which disturbed flow induces endothelial phospho-YY1S118 to promote atherosclerosis, thus indicating phospho-YY1S118 as a potential molecular target for atherosclerosis treatment.


Assuntos
Aterosclerose/metabolismo , Células Endoteliais/metabolismo , Fator de Transcrição YY1/metabolismo , Animais , Aterosclerose/fisiopatologia , Sítios de Ligação , Circulação Sanguínea , Caseína Quinase II/metabolismo , Linhagem Celular , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Transcrição YY1/química , Fator de Transcrição YY1/genética , Dedos de Zinco
6.
Pharm Res ; 38(6): 1067-1079, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34100216

RESUMO

PURPOSE: Glioblastoma (GBM) is a malignant brain tumor with a poor long-term prognosis due to recurrence from highly resistant GBM cancer stem cells (CSCs), for which the current standard of treatment with temozolomide (TMZ) alone will unlikely produce a viable cure. In addition, CSCs regenerate rapidly and overexpress methyl transferase which overrides the DNA-alkylating mechanism of TMZ, leading to resistance. The objective of this research was to apply the concepts of nanotechnology to develop a multi-drug therapy, TMZ and idasanutlin (RG7388, a potent mouse double minute 2 (MDM2) antagonist), loaded in functionalized nanoparticles (NPs) that target the GBM CSC subpopulation, reduce the cell viability and provide possibility of in vivo preclinical imaging. METHODS: Polymer-micellar NPs composed of poly(styrene-b-ethylene oxide) (PS-b-PEO) and poly(lactic-co-glycolic) acid (PLGA) were developed by a double emulsion technique loading TMZ and/or RG7388. The NPs were covalently bound to a 15-nucleotide base-pair CD133 aptamer to target the CD133 antigen expressed on the surfaces of GBM CSCs. For diagnostic functionality, the NPs were labelled with radiotracer Zirconium-89 (89Zr). RESULTS: NPs maintained size range less than 100 nm, a low negative charge and exhibited the ability to target and kill the CSC subpopulation when TMZ and RG7388 were used in combination. The targeting function of CD133 aptamer promoted killing in GBM CSCs providing impetus for further development of targeted nanosystems for localized therapy in future in vivo models. CONCLUSIONS: This work has provided a potential clinical application for targeting GBM CSCs with simultaneous diagnostic imaging.


Assuntos
Antígeno AC133/metabolismo , Neoplasias Encefálicas/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Glioblastoma/metabolismo , Nanopartículas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Desenvolvimento de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Glioblastoma/tratamento farmacológico , Humanos , Camundongos , Micelas , Nanopartículas/administração & dosagem , Células-Tronco Neoplásicas/efeitos dos fármacos , Polímeros/administração & dosagem , Polímeros/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Pirrolidinas/administração & dosagem , Pirrolidinas/metabolismo , Temozolomida/administração & dosagem , Temozolomida/metabolismo , para-Aminobenzoatos/administração & dosagem , para-Aminobenzoatos/metabolismo
7.
Med Sci (Paris) ; 37(4): 397-399, 2021 Apr.
Artigo em Francês | MEDLINE | ID: mdl-33908859

RESUMO

TITLE: La protéine MDM2 favorise la mort cellulaire en affectant la bioénergétique mitochondriale. ABSTRACT: Pour la sixième année, dans le cadre du module d'enseignement « Physiopathologie de la signalisation ¼ proposé par l'université Paris-sud, les étudiants du Master « Biologie Santé ¼ de l'université Paris-Saclay se sont confrontés à l'écriture scientifique. Ils ont sélectionné une quinzaine d'articles scientifiques récents dans le domaine de la signalisation cellulaire présentant des résultats originaux, via des approches expérimentales variées, sur des thèmes allant des relations hôte-pathogène aux innovations thérapeutiques, en passant par la signalisation hépatique et le métabolisme. Après un travail préparatoire réalisé avec l'équipe pédagogique, les étudiants, organisés en binômes, ont ensuite rédigé, guidés par des chercheurs, une Nouvelle soulignant les résultats majeurs et l'originalité de l'article étudié. Ils ont beaucoup apprécié cette initiation à l'écriture d'articles scientifiques et, comme vous pourrez le lire, se sont investis dans ce travail avec enthousiasme ! Trois de ces Nouvelles sont publiées dans ce numéro, les autres le seront dans des prochains numéros.


Assuntos
Morte Celular/fisiologia , Metabolismo Energético/fisiologia , Mitocôndrias/metabolismo , NADH Desidrogenase/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Respiração Celular/fisiologia , Humanos , Neoplasias/metabolismo
8.
Phytomedicine ; 85: 153534, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33773191

RESUMO

BACKGROUND: Lung cancer is a leading fatal malignancy due to the high incidence of treatment failure. Dysfunction of the tumor suppressor p53 contributes to cancer initiation, progression, and therapeutic resistance. Targeting MDM2, a negative regulator of p53, has recently attracted interest in cancer drug research as it may restore tumor suppressive function. PURPOSE: The present study aimed to investigate the effect of 3,4-dihydroxy-5,4'-dimethoxybibenzyl (DS-1) on targeting MDM2 and restoring p53 function in lung cancer cells. METHODS: The efficacy of DS-1 alone or in combination with cisplatin in lung cancer cells was determined by MTT, nuclear staining, and annexin V/PI assay. The expression of apoptosis-related proteins was determined by western blot analysis. To evaluate the role of DS-1 on the stabilization and degradation of p53, cycloheximide chasing assay and immunoprecipitation were conducted, and the active form of p53 was investigated by immunofluorescent staining assay. To confirm and demonstrate the site interaction between DS-1 and the MDM2 protein, in silico computational analysis was performed. RESULTS: DS-1 exhibited a cytotoxic effect and sensitized lung cancer cells to cisplatin-induced apoptosis. DS-1 caused a significant increase in the cellular level of p53 protein, while the active form of p53 (phosphorylation at Ser15) was unaltered. DS-1 treatment in combination with cisplatin could enhance activated p-p53 (Ser15) and p53 downstream signaling (Bax, Bcl-2, and Akt), leading to a higher level of apoptosis. Immunoprecipitation analysis revealed that DS-1 decreased the p53-ubiquitin complex, a prerequisite step in p53 proteasomal degradation. Molecular docking simulation further evidenced that DS-1 interacts with MDM2 within the p53-binding domain by carbon-hydrogen bond interaction at Lys27, π-alkyl interactions at Ile37 and Leu30, and van der Waals interactions at Ile75, Val51, Val69, Phe67, Met38, Tyr43, Gly34, and Phe31. Treatment by DS-1 and cisplatin in patient-derivated primary lung cancer cells showed consistent effects by increasing cisplatin sensitivity. CONCLUSIONS: Our findings provide evidence that DS-1 is an MDM2 inhibitor and its underlying mechanism involves MDM2 binding and p53 induction, which may benefit the development of this compound for lung cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Bibenzilas/farmacologia , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo , Adulto , Idoso , Linhagem Celular Tumoral , Cisplatino/farmacologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
J Cancer Res Ther ; 17(1): 242-247, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33723162

RESUMO

BACKGROUND: Nowadays, some studies have shown the effect of hypericin on cancer cells. However, considering the cytotoxicity of this plant and signs of anticancer activity in the plant, unfortunately, there is still no proper treatment for leukemia cancer cells. Therefore, the present study aims to evaluate the anticancer effect of hypericin in the treatment of leukemia cancer and its possible mechanism of action. METHODS: In this study, the K562 cell line was treated with different concentrations of hypericin for 24 and 48 h. Detection of cell death was performed by 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2-tetrazolium bromide assay. The rate of cell apoptosis was measured by Annexin V/propidium iodide assay using flow cytometry. The expression of Bax, Bcl2, Myc, Mdm2, and P53 genes was evaluated by real-time polymerase chain reaction test, and immunocytochemistry (ICC) analysis was used for further evaluation of P53. RESULTS: The results showed that hypericin has a dose-dependent cytotoxic effect on the K562 (in much less dose compared with cisplatin). According to flow cytometry results, cell apoptosis after exposure to hypericin for 24 h was 53%, and ICC analysis on p53 confirmed this. Furthermore, after 24 h of exposure to hypericin with IC50 concentration, the expression of P53 and Bax genes increased and the expression of the Bcl2, Myc, and Mdm2 gene decreased. CONCLUSION: The results showed that hypericin exerts its cytotoxicity on K562 cancer cells by downregulating Mdm2 and Myc. Based on the data acquired from the present study and many investigations till now, hypericin can be a good option for leukemia cancer cells treatment.


Assuntos
Antracenos/farmacologia , Apoptose , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Leucemia Mieloide/tratamento farmacológico , Perileno/análogos & derivados , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Antineoplásicos/farmacologia , Regulação para Baixo , Humanos , Células K562 , Leucemia Mieloide/patologia , Perileno/farmacologia , Compostos Fitoquímicos/farmacologia , Regulação para Cima
10.
Nat Commun ; 12(1): 986, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579943

RESUMO

Epigallocatechin gallate (EGCG) from green tea can induce apoptosis in cancerous cells, but the underlying molecular mechanisms remain poorly understood. Using SPR and NMR, here we report a direct, µM interaction between EGCG and the tumor suppressor p53 (KD = 1.6 ± 1.4 µM), with the disordered N-terminal domain (NTD) identified as the major binding site (KD = 4 ± 2 µM). Large scale atomistic simulations (>100 µs), SAXS and AUC demonstrate that EGCG-NTD interaction is dynamic and EGCG causes the emergence of a subpopulation of compact bound conformations. The EGCG-p53 interaction disrupts p53 interaction with its regulatory E3 ligase MDM2 and inhibits ubiquitination of p53 by MDM2 in an in vitro ubiquitination assay, likely stabilizing p53 for anti-tumor activity. Our work provides insights into the mechanisms for EGCG's anticancer activity and identifies p53 NTD as a target for cancer drug discovery through dynamic interactions with small molecules.


Assuntos
Apoptose/efeitos dos fármacos , Catequina/análogos & derivados , Catequina/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/química , Proteína Supressora de Tumor p53/química , Sítios de Ligação , Linhagem Celular Tumoral , Epitopos , Humanos , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Espalhamento a Baixo Ângulo , Chá , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Difração de Raios X
11.
Int J Mol Sci ; 21(20)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081324

RESUMO

Iron is crucial to satisfy several mitochondrial functions including energy metabolism and oxidative phosphorylation. Patients affected by Myelodysplastic Syndromes (MDS) and acute myeloid leukemia (AML) are frequently characterized by iron overload (IOL), due to continuous red blood cell (RBC) transfusions. This event impacts the overall survival (OS) and it is associated with increased mortality in lower-risk MDS patients. Accordingly, the oral iron chelator Deferasirox (DFX) has been reported to improve the OS and delay leukemic transformation. However, the molecular players and the biological mechanisms laying behind remain currently mostly undefined. The aim of this study has been to investigate the potential anti-leukemic effect of DFX, by functionally and molecularly analyzing its effects in three different leukemia cell lines, harboring or not p53 mutations, and in human primary cells derived from 15 MDS/AML patients. Our findings indicated that DFX can lead to apoptosis, impairment of cell growth only in a context of IOL, and can induce a significant alteration of mitochondria network, with a sharp reduction in mitochondrial activity. Moreover, through a remarkable reduction of Murine Double Minute 2 (MDM2), known to regulate the stability of p53 and p73 proteins, we observed an enhancement of p53 transcriptional activity after DFX. Interestingly, this iron depletion-triggered signaling is enabled by p73, in the absence of p53, or in the presence of a p53 mutant form. In conclusion, we propose a mechanism by which the increased p53 family transcriptional activity and protein stability could explain the potential benefits of iron chelation therapy in terms of improving OS and delaying leukemic transformation.


Assuntos
Deferasirox/farmacologia , Quelantes de Ferro/farmacologia , Leucemia Mieloide Aguda/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Humanos , Ferro/metabolismo , Mitocôndrias/efeitos dos fármacos , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-mdm2/metabolismo
12.
Molecules ; 25(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32752095

RESUMO

Ovarian cancer is considered to be one of the most serious malignant tumors in women. Natural compounds have been considered as important sources in the search for new anti-cancer agents. Saponins are characteristic components of tea (Camellia sinensis) flower and have various biological activities, including anti-tumor effects. In this study, a high purity standardized saponin extract, namely Baiye No.1 tea flower saponin (BTFS), which contained Floratheasaponin A and Floratheasaponin D, were isolated from tea (Camellia sinensis cv. Baiye 1) flowers by macroporous resin and preparative liquid chromatography. Then, the component and purity were detected by UPLC-Q-TOF/MS/MS. This high purity BTFS inhibited the proliferation of A2780/CP70 cancer cells dose-dependently, which is evidenced by the inhibition of cell viability, reduction of colony formation ability, and suppression of PCNA protein expression. Further research found BTFS induced S phase cell cycle arrest by up-regulating p21 proteins expression and down-regulating Cyclin A2, CDK2, and Cdc25A protein expression. Furthermore, BTFS caused DNA damage and activated the ATM-Chk2 signaling pathway to block cell cycle progression. Moreover, BTFS trigged both extrinsic and intrinsic apoptosis-BTFS up-regulated the expression of death receptor pathway-related proteins DR5, Fas, and FADD and increased the ratio of pro-apoptotic/anti-apoptotic proteins of the Bcl-2 family. BTFS-induced apoptosis seems to be related to the AKT-MDM2-p53 signaling pathway. In summary, our results demonstrate that BTFS has the potential to be used as a nutraceutical for the prevention and treatment of ovarian cancer.


Assuntos
Apoptose/efeitos dos fármacos , Camellia sinensis/química , Extratos Vegetais/química , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Saponinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Camellia sinensis/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ciclina A2/genética , Ciclina A2/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Feminino , Flores/química , Flores/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/isolamento & purificação , Ácido Oleanólico/farmacologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Saponinas/química , Saponinas/isolamento & purificação , Proteína Supressora de Tumor p53/metabolismo
13.
Bioorg Chem ; 100: 103900, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32428745

RESUMO

Three new and complementary approaches to S-arylation of 2-thiohydantoins have been developed: copper-catalyzed cross coupling with either arylboronic acids or aryl iodides under mild conditions, or direct nucleophilic substitution in activated aryl halides. For 38 diverse compounds, reaction yields for all three methods have been determined. Selected by molecular docking, they have been tested on androgen receptor activation, and p53-Mdm2 regulation, and A549, MCF7, VA13, HEK293T, PC3, LnCAP cell lines for cytotoxicity, Two of them turned out to be promising as androgen receptor activators (likely by allosteric regulation), and another one is shown to activate the p53 cascade. It is hoped that 2-thiohydantoin S-arylidenes are worth further studies as biologically active compounds.


Assuntos
Androgênios/química , Androgênios/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Tioidantoínas/química , Tioidantoínas/farmacologia , Regulação Alostérica/efeitos dos fármacos , Androgênios/síntese química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Química Sintética , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Receptores Androgênicos/metabolismo , Tioidantoínas/síntese química , Proteína Supressora de Tumor p53/metabolismo
14.
J Biol Chem ; 295(33): 11420-11434, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32461254

RESUMO

Modification-dependent and -independent biomolecular interactions, including protein-protein, protein-DNA/RNA, protein-sugar, and protein-lipid interactions, play crucial roles in all cellular processes. Dysregulation of these biomolecular interactions or malfunction of the associated enzymes results in various diseases; therefore, these interactions and enzymes are attractive targets for therapies. High-throughput screening can greatly facilitate the discovery of drugs for these targets. Here, we describe a biomolecular interaction detection method, called phase-separated condensate-aided enrichment of biomolecular interactions in test tubes (CEBIT). The readout of CEBIT is the selective recruitment of biomolecules into phase-separated condensates harboring their cognate binding partners. We tailored CEBIT to detect various biomolecular interactions and activities of biomolecule-modifying enzymes. Using CEBIT-based high-throughput screening assays, we identified known inhibitors of the p53/MDM2 (MDM2) interaction and of the histone methyltransferase, suppressor of variegation 3-9 homolog 1 (SUV39H1), from a compound library. CEBIT is simple and versatile, and is likely to become a powerful tool for drug discovery and basic biomedical research.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Mapeamento de Interação de Proteínas/métodos , Descoberta de Drogas/métodos , Humanos , Metiltransferases/antagonistas & inibidores , Metiltransferases/metabolismo , Transição de Fase , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo
15.
Aging (Albany NY) ; 12(7): 6240-6259, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32276266

RESUMO

Esophageal carcinoma (EsC) is a clinically challenging neoplastic disease. Genistein, a natural isoflavone product, has anti-tumor properties. Through in vitro and in vivo studies, we found that genistein suppressed EsC cell proliferation in a time- and concentration-dependent manner. In addition, genistein markedly promoted apoptosis and arrested cell cycle at the G0/G1 phase in a concentration-dependent manner. Furthermore, high concentrations of genistein have no adverse effect on normal esophageal epithelial cells. Mechanistically, genistein treatment strikingly reduced the expression of cell cycle-associated genes, and up-regulated the expression of cell apoptosis-related genes in EsC cells. Additionally, genistein dramatically decreased epidermal growth factor receptor (EGFR) expression and attenuated its down-stream signaling molecules STAT3, MDM2, Akt and JAK1/2 phosphorylation, resulting in inhibited nuclear translocation of STAT3 and MDM2, thereby inhibiting the JAK1/2-STAT3 and AKT/MDM2/p53 signaling pathways. In xenograft nude mice, genistein administration strikingly impaired tumor growth in a dose-dependent manner. Moreover, similar disturbances in molecular mechanisms were observed in vivo. Taken together, genistein suppressed the JAK1/2-STAT3 and AKT/MDM2/p53 signaling pathways by decreasing EGFR expression, leading to cell apoptosis, cell cycle arrest, and proliferation inhibition in EsC cells. Our findings suggest that genistein may be a promising alternative adjuvant therapy for patients with EsC.


Assuntos
Carcinoma , Neoplasias Esofágicas , Genisteína/farmacologia , Janus Quinase 1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/efeitos dos fármacos , Carcinoma/tratamento farmacológico , Carcinoma/metabolismo , Carcinoma/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Humanos , Camundongos , Fitoestrógenos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Life Sci ; 245: 117358, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32001262

RESUMO

AIMS: Inhibition of P53-MDM2/X interaction is known as an effective cancer therapy strategy. In this regard, pDI peptide was introduced previously with the potential of targeting MDM2. In this research, the large-scale peptide mutation screening was used to achieve the best sequence of pDI with the highest affinity for inhibition activity against MDM2/X. MAIN METHODS: Three mutant peptides of pDI as dual inhibitor peptides including single mutations of pDIm/4W, pDIm/11M and double mutations of pDIdm/4W11M were presented with the high affinities to inhibit both MDM2/X. The selected mutants were then evaluated comprehensively to confirm their ability as potent MDM2/X inhibitors, using a theoretical simulation approach. KEY FINDINGS: MD simulations analyses confirmed their dual inhibition potential against both MDM2/X interactions with p53 protein. The developed pDIm and mainly pDIdm peptides showed stable conformations over the simulation time with conserved secondary structure and effective interaction with MDM2/X by physical binding such as hydrogen bonding. Besides, umbrella sampling free energy calculation indicated higher binding energy, ΔGbinding, of pDIm-MDM2/X and pDIdm-MDM2/X compared to pDI-MDM2/X. SIGNIFICANCE: The optimized and improved mutant pDI, pDIdm, with more effective ΔGbinding values of -30 and -25 kcal/mol to MDMX and MDM2, respectively, is recommended as a promising anticancer agent and suitable candidate for experimental evaluations.


Assuntos
Antineoplásicos/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Relação Estrutura-Atividade , Proteína Supressora de Tumor p53/antagonistas & inibidores
17.
Eur J Cancer ; 126: 93-103, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31927215

RESUMO

INTRODUCTION: Uveal melanoma (UM) is a rare and malignant intraocular tumour with a dismal prognosis. Despite a good control of the primary tumour by radiation or surgery, up to 50% of patients subsequently develop metastasis for which no efficient treatment is yet available. METHODOLOGY: To identify therapeutic opportunities, we performed an in vitro screen of 30 combinations of different inhibitors of pathways that are dysregulated in UM. Effects of drug combinations on viability, cell cycle and apoptosis were assessed in eight UM cell lines. The best synergistic combinations were further evaluated in six UM patient-derived xenografts (PDXs). RESULTS: We demonstrated that the Bcl-2/XL/W inhibitor (ABT263) sensitised the UM cell lines to other inhibitors, mainly to mammalian target of rapamycin (mTOR), mitogen-activated protein kinase kinase (MEK) and murine double minute 2 (MDM2) inhibitors. mTOR (RAD001) and MEK1/2 (trametinib) inhibitors were efficient as single agents, but their combinations with ABT263 displayed no synergism in UM PDXs. In contrast, the combination of ABT263 with MDM2 inhibitor (HDM201) showed a trend for a synergistic effect. CONCLUSION: We showed that inhibition of Bcl-2/XL/W sensitised the UM cell lines to other treatments encouraging investigation of the underlying mechanisms. Furthermore, our findings highlighted Bcl-2/XL/W and MDM2 co-inhibition as a promising strategy in UM.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Melanoma/tratamento farmacológico , Neoplasias Uveais/tratamento farmacológico , Compostos de Anilina/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Combinação de Medicamentos , Everolimo/administração & dosagem , Humanos , Imidazóis/administração & dosagem , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Piridonas/administração & dosagem , Pirimidinas/administração & dosagem , Pirimidinonas/administração & dosagem , Pirróis/administração & dosagem , Sulfonamidas/administração & dosagem , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Neoplasias Uveais/metabolismo , Neoplasias Uveais/patologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/metabolismo
18.
Epigenetics Chromatin ; 12(1): 69, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31722724

RESUMO

BACKGROUND: Neural tube defects (NTDs) are common congenital malformations resulting in failure of the neural tube closure during early embryonic development. Although it is known that maternal folate deficiency increases the risk of NTDs, the mechanism remains elusive. RESULTS: Herein, we report that histone H2A monoubiquitination (H2AK119ub1) plays a role in neural tube closure. We found that the folate antagonist methotrexate induced H2AK119ub1 in mouse embryonic stem cells. We demonstrated that an increase in H2AK119ub1 downregulated expression of the neural tube closure-related genes Cdx2, Nes, Pax6, and Gata4 in mouse embryonic stem cells under folate deficiency conditions. We also determined that the E3 ligase Mdm2 was responsible for the methotrexate-induced increase in H2AK119ub1 and downregulation of neural tube closure-related genes. Surprisingly, we found that Mdm2 is required for MTX-induced H2A ubiquitination and is recruited to the sites of DSB, which is dependent on DNA damage signaling kinase ATM. Furthermore, folic acid supplementation restored H2AK119ub1 binding to neural tube closure-related genes. Downregulation of these genes was also observed in both brain tissue of mouse and human NTD cases, and high levels of H2AK119ub1 were found in the corresponding NTDs samples with their maternal serum folate under low levels. Pearson correlation analysis showed a significant negative correlation between expression of the neural precursor genes and H2AK119ub1. CONCLUSION: Our results indicate that folate deficiency contributes to the onset of NTDs by altering H2AK119ub1 and subsequently affecting expression of neural tube closure-related genes. This may be a potential risk factor for NTDs in response to folate deficiency.


Assuntos
Regulação para Baixo , Histonas/metabolismo , Defeitos do Tubo Neural/patologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Fator de Transcrição CDX2/genética , Fator de Transcrição CDX2/metabolismo , Dano ao DNA , Regulação para Baixo/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Ácido Fólico/metabolismo , Ácido Fólico/farmacologia , Ácido Fólico/uso terapêutico , Metotrexato/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Defeitos do Tubo Neural/metabolismo , Defeitos do Tubo Neural/prevenção & controle , Fator de Transcrição PAX6/genética , Fator de Transcrição PAX6/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ubiquitinação
19.
Comput Biol Chem ; 83: 107105, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31473433

RESUMO

The p53 protein, also called guardian of the genome, plays a critical role in the cell cycle regulation and apoptosis. This protein is frequently inactivated in several types of human cancer by abnormally high levels of its negative regulator, mouse double minute 2 (MDM2). As a result, restoration of p53 function by inhibiting p53-MDM2 protein-protein interaction has been pursued as a compelling strategy for cancer therapy. To date, a limited number of small-molecules have been reported as effective p53-MDM2 inhibitors. X-ray structures of MDM2 in complex with some ligands are available in Protein Data Bank and herein, these data have been exploited to efficiently identify new p53-MDM2 interaction antagonists through a hierarchical virtual screening strategy. For this purpose, the first step was aimed at compiling a focused library of 686,630 structurally suitable compounds, from PubChem database, similar to two known effective inhibitors, Nutlin-3a and DP222669. These compounds were subjected to the subsequent structure-based approaches (quantum polarized ligand docking and molecular dynamics simulation) to select potential compounds with highest binding affinity for MDM2 protein. Additionally, ligand binding energy, ADMET properties and PAINS analysis were also considered as filtering criteria for selecting the most promising drug-like molecules. On the basis of these analyses, three top-ranked hit molecules, CID_118439641, CID_60452010 and CID_3106907, were found to have acceptable pharmacokinetics properties along with superior in silico inhibitory ability towards the p53-MDM2 interaction compared to known inhibitors. Molecular docking and molecular dynamics results well confirmed the interactions of the final selected compounds with critical residues within p53 binding site on the MDM2 hydrophobic clefts with satisfactory thermodynamics stability. Consequently, the new final scaffolds identified by the presented computational approach could offer a set of guidelines for designing promising anti-cancer agents targeting p53-MDM2 interaction.


Assuntos
Simulação por Computador , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Teoria Quântica , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína Supressora de Tumor p53/antagonistas & inibidores , Animais , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Ligantes , Camundongos , Modelos Moleculares , Estrutura Molecular , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Bibliotecas de Moléculas Pequenas/química , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo
20.
Mol Med Rep ; 20(5): 4101-4110, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31545441

RESUMO

p53 and mouse double minute 2 homolog (MDM2) serve key regulatory roles in the apoptosis of synovial cells. The present study aimed to investigate the effects of electroacupuncture (EA) at the 'Zusanli' (ST36) and 'Xuanzhong' (GB39) acupoints on apoptosis in an adjuvant arthritis (AA) rat model. A total of 40 male Sprague­Dawley rats were randomly divided into Control, AA, AA + EA and AA + sham EA groups (n=10 rats in each group). Rats in all the groups, with the exception of the control group, were injected with Complete™ Freund's adjuvant into the bilateral hindlimb footpad to establish the AA model. Rats in the AA + EA group were treated with EA at the ST36 and GB39 acupoints. Rats in the AA + sham EA group were treated with percutaneous electrical stimulation at a position of 5 mm away from the ST36 and GB39 acupoints. The arthritis index scores and hindlimb paw volumes of the rats in each group were recorded. Subsequently, pathological changes in the synovial tissue were evaluated by hematoxylin and eosin (H&E) staining, and the apoptotic rate of the synovial cells was detected by TUNEL staining. In addition, the expression levels of the apoptosis­associated proteins, Bax, phorbol­12­myristate­13­acetate­induced protein 1 (Noxa) and p53 upregulated modulator of apoptosis (PUMA), were determined by western blot analysis. The expression of both the gene and protein of p53 and MDM2 in synovial tissue was detected by reverse transcription­quantitative polymerase chain reaction (RT­qPCR) and western blot analysis, respectively. The results indicated that the arthritis index scores and hindlimb paw volumes upon EA stimulation were significantly decreased compared with those of the AA group (P<0.05). H&E staining revealed that the synovial inflammation of EA stimulation was significantly decreased compared with the AA group (P<0.05). The TUNEL assay results indicated that the apoptotic rate of synovial cells in the AA + EA group was significantly increased compared with that in the AA group (P<0.05). Furthermore, an increased expression of proapoptotic proteins was confirmed by the increased expression levels of Bax, Noxa and PUMA in the AA + EA group. The results of RT­qPCR and western blot analysis demonstrated that, compared with the AA group, EA stimulation led to a marked increase in p53 (P<0.05) and a significant decrease in MDM2 (P<0.05) gene and protein expression. Taken together, these results demonstrated that EA performed on the ST36 and GB39 acupoints led to a significant amelioration in AA injury of model rats, by regulating the p53 signaling pathway and inducing apoptosis.


Assuntos
Pontos de Acupuntura , Apoptose , Eletroacupuntura , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/genética , Artrite Experimental/etiologia , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Artrite Experimental/terapia , Modelos Animais de Doenças , Masculino , Modelos Biológicos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Ratos , Membrana Sinovial/citologia , Membrana Sinovial/metabolismo , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA