Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34770925

RESUMO

Vibrio cholerae causes the diarrheal disease cholera which affects millions of people globally. The outer membrane protein U (OmpU) is the outer membrane protein that is most prevalent in V. cholerae and has already been recognized as a critical component of pathogenicity involved in host cell contact and as being necessary for the survival of pathogenic V. cholerae in the host body. Computational approaches were used in this study to screen a total of 37,709 natural compounds from the traditional Chinese medicine (TCM) database against the active site of OmpU. Following a sequential screening of the TCM database, we report three lead compounds-ZINC06494587, ZINC85510056, and ZINC95910434-that bind strongly to OmpU, with binding affinity values of -8.92, -8.12, and -8.78 kcal/mol, which were higher than the control ligand (-7.0 kcal/mol). To optimize the interaction, several 100 ns molecular dynamics simulations were performed, and the resulting complexes were shown to be stable in their vicinity. Additionally, these compounds were predicted to have good drug-like properties based on physicochemical properties and ADMET assessments. This study suggests that further research be conducted on these compounds to determine their potential use as cholera disease treatment.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Proteínas da Membrana Bacteriana Externa/química , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Vibrio cholerae/efeitos dos fármacos , Sítios de Ligação , Humanos , Ligação de Hidrogênio , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Ligação Proteica , Relação Estrutura-Atividade
2.
Proc Natl Acad Sci U S A ; 116(43): 21748-21757, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591200

RESUMO

The development of new antimicrobial drugs is a priority to combat the increasing spread of multidrug-resistant bacteria. This development is especially problematic in gram-negative bacteria due to the outer membrane (OM) permeability barrier and multidrug efflux pumps. Therefore, we screened for compounds that target essential, nonredundant, surface-exposed processes in gram-negative bacteria. We identified a compound, MRL-494, that inhibits assembly of OM proteins (OMPs) by the ß-barrel assembly machine (BAM complex). The BAM complex contains one essential surface-exposed protein, BamA. We constructed a bamA mutagenesis library, screened for resistance to MRL-494, and identified the mutation bamAE470K BamAE470K restores OMP biogenesis in the presence of MRL-494. The mutant protein has both altered conformation and activity, suggesting it could either inhibit MRL-494 binding or allow BamA to function in the presence of MRL-494. By cellular thermal shift assay (CETSA), we determined that MRL-494 stabilizes BamA and BamAE470K from thermally induced aggregation, indicating direct or proximal binding to both BamA and BamAE470K Thus, it is the altered activity of BamAE470K responsible for resistance to MRL-494. Strikingly, MRL-494 possesses a second mechanism of action that kills gram-positive organisms. In microbes lacking an OM, MRL-494 lethally disrupts the cytoplasmic membrane. We suggest that the compound cannot disrupt the cytoplasmic membrane of gram-negative bacteria because it cannot penetrate the OM. Instead, MRL-494 inhibits OMP biogenesis from outside the OM by targeting BamA. The identification of a small molecule that inhibits OMP biogenesis at the cell surface represents a distinct class of antibacterial agents.


Assuntos
Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/antagonistas & inibidores , Escherichia coli/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Triazinas/farmacologia , Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Proteínas da Membrana Bacteriana Externa/genética , Transporte Biológico/fisiologia , Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/fisiologia , Avaliação Pré-Clínica de Medicamentos , Farmacorresistência Bacteriana/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Testes de Sensibilidade Microbiana
3.
J Biomol NMR ; 73(6-7): 375-384, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31073665

RESUMO

The insertase BamA is an essential protein of the bacterial outer membrane. Its 16-stranded transmembrane ß-barrel contains a lateral gate as a key functional element. This gate is formed by the C-terminal half of the last ß-strand. The BamA barrel was previously found to sample different conformations in aqueous solution, as well as different gate-open, gate-closed, and collapsed conformations in X-ray crystallography and cryo-electron microscopy structures. Here, we report the successful identification of conformation-selective nanobodies that stabilize BamA in specific conformations. While the initial candidate generation and selection protocol was based on established alpaca immunization and phage display selection procedures, the final selection of nanobodies was enhanced by a solution NMR-based screening step to shortlist the targets for crystallization. In this way, three crystal structures of BamA-nanobody complexes were efficiently obtained, showing two types of nanobodies that indeed stabilized BamA in two different conformations, i.e., with open and closed lateral gate, respectively. Then, by correlating the structural data with high resolution NMR spectra, we could for the first time assign the BamA conformational solution ensemble to defined structural states. The new nanobodies will be valuable tools towards understanding the client insertion mechanism of BamA and towards developing improved antibiotics.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Modelos Moleculares , Conformação Proteica , Anticorpos de Domínio Único/química , Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Anticorpos de Domínio Único/farmacologia , Soluções
4.
Phytomedicine ; 36: 194-200, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29157815

RESUMO

BACKGROUND: Pseudomonas aeruginosa is a notorious multidrug resistant nosocomial pathogen. An efflux pump (MexAB-OprM) is the main contributor to the multidrug resistance in clinical isolates of P. aeruginosa. Epigallocatechin-3-gallate (EGCG), a polyphenolic compound extracted from green tea, exhibits antibacterial activity. It is unclear that molecular details of the antibacterial activity of EGCG, EGCG-effect on antibiotic susceptibility, and clinical relevance of EGCG in bacteria. PURPOSE: This study aimed to determine the roles of the efflux pump and an efflux pump inhibitor (phenylalanine-arginine ß-naphthylamide; PAßN) in the antibacterial activity of EGCG and the EGCG-effect on antibiotic susceptibility. METHODS: Twenty-two multidrug resistant clinical isolates of P. aeruginosa and a wild type P. aeruginosa PAO1 were used to determine antibacterial activity of EGCG and EGCG-effect on antibiotic susceptibility. An efflux pump (MexAB-OPrM) mutant strain, its complemented strain carrying an intact mexAB-oprM, and their parental strain were used to determine roles of MexAB-OprM in the antibacterial activity of EGCG and EGCG-mediated antibiotic susceptibility. PAßN was also used to evaluate EGCG as a possible efflux pump inhibitor. RESULTS: EGCG inhibited cellular growth and killed 100% of cells at 64-512 µg/ml and at 256-1024 µg/ml, respectively, in all tested 22 clinical isolates including the wild type strain. A subinhibitory concentration of EGCG significantly enhanced susceptibility to antibiotics, unexceptionally to chloramphenicol and tetracyclines (≥4-fold) of the clinical isolates. Both the antibacterial activity of EGCG and the EGCG-mediated antibiotic susceptibility were enhanced more in the efflux pump mutant strain (mexB::Gm) than the parental strain, suggesting additionally accumulated-EGCG produced the more antibacterial activity in the mutant strain. EGCG was synergistically interacted with PAßN with enhancing susceptibility to all tested antibiotics (up to >500-fold) at higher levels than either EGCG alone or PAßN alone, suggesting EGCG may also inhibit the efflux pump with additional accumulation of the antibiotics. CONCLUSION: The results demonstrate that EGCG exhibits antibacterial activity and enhances antibiotic effects against clinical isolates of P. aeruginosa. EGCG may inhibit the efflux pump (MexAB-OprM) through which are associated with the antibacterial activity of EGCG and the EGCG-mediated antibiotic susceptibility in P. aeruginosa.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Catequina/análogos & derivados , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Proteínas da Membrana Bacteriana Externa/genética , Catequina/farmacologia , Dipeptídeos/farmacologia , Farmacorresistência Bacteriana Múltipla/fisiologia , Humanos , Proteínas de Membrana Transportadoras/genética , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/isolamento & purificação
5.
BMC Complement Altern Med ; 17(1): 405, 2017 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-28806947

RESUMO

BACKGROUND: Holarrhena antidysenterica has been employed as an ethnobotanical plant for the treatment of dysentery, diarrhoea, fever, and bacterial infections. Biological activities of the principle compound, conessine including anti-diarrhoea and anti-plasmodial effects were documented. Our previous study reported potency of Holarrhena antidysenterica extract and conessine as resistance modifying agents against extensively drug-resistant Acinetobacter baumannii. This study aimed to investigate (i) whether conessine, a steroidal alkaloid compound, could act as a resistance modifying agent against multidrug-resistant Pseudomonas aeruginosa, and (ii) whether MexAB-OprM efflux pump involved in the mechanism. METHODS: Conessine combined with various antibiotics were determined for synergistic activity against P. aeruginosa PAO1 strain K767 (wild-type), K1455 (MexAB-OprM overexpressed), and K1523 (MexB deletion). H33342 accumulation assay was used to evaluate efflux pump inhibition while NPN uptake assay was assessed membrane permeabilization. RESULTS: Conessine significantly reduced MICs of all antibiotics by at least 8-fold in MexAB-OprM overexpressed strain. The levels were comparable to those obtained in wild-type strain for cefotaxime, levofloxacin, and tetracycline. With erythromycin, novobiocin, and rifampicin, MICs were 4- to 8-fold less than MICs of the wild-type strain. Loss of MexAB-OprM due to deletion of mexB affected susceptibility to almost all antibiotics, except novobiocin. Synergistic activities between other antibiotics (except novobiocin) and conessine observed in MexB deletion strain suggested that conessine might inhibit other efflux systems present in P. aeruginosa. Inhibition of H33342 efflux in the tested strains clearly demonstrated that conessine inhibited MexAB-OprM pump. In contrast, the mode of action as a membrane permeabilizer was not observed after treatment with conessine as evidenced by no accumulation of 1-N-phenylnaphthylamine. CONCLUSIONS: The results suggested that conessine could be applied as a novel efflux pump inhibitor to restore antibiotic activity by inhibiting efflux pump systems in P. aeruginosa. The findings speculated that conessine may also have a potential to be active against homologous resistance-nodulation-division (RND) family in other Gram-negative pathogens.


Assuntos
Alcaloides/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Holarrhena/química , Extratos Vegetais/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , 1-Naftilamina/análogos & derivados , Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Benzimidazóis , Sinergismo Farmacológico , Quimioterapia Combinada , Proteínas de Membrana Transportadoras , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/crescimento & desenvolvimento
6.
Virulence ; 8(7): 1170-1188, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28118090

RESUMO

The emergence of multiresistant Gram-negative bacteria requires new therapies for combating bacterial infections. Targeting the biogenesis of virulence factors could be an alternative strategy instead of killing bacteria with antibiotics. The outer membrane (OM) of Gram-negative bacteria acts as a physical barrier. At the same time it facilitates the exchange of molecules and harbors a multitude of proteins associated with virulence. In order to insert proteins into the OM, an essential oligomeric membrane-associated protein complex, the ß-barrel assembly machinery (BAM) is required. Being essential for the biogenesis of outer membrane proteins (OMPs) the BAM and also periplasmic chaperones may serve as attractive targets to develop novel antiinfective agents. Herein, we aimed to elucidate which proteins belonging to the OMP biogenesis machinery have the most important function in granting bacterial fitness, OM barrier function, facilitating biogenesis of dedicated virulence factors and determination of overall virulence. To this end we used the enteropathogen Yersinia enterocolitica as a model system. We individually knocked out all non-essential components of the BAM (BamB, C and E) as well as the periplasmic chaperones DegP, SurA and Skp. In summary, we found that the most profound phenotypes were produced by the loss of BamB or SurA with both knockouts resulting in significant attenuation or even avirulence of Ye in a mouse infection model. Thus, we assume that both BamB and SurA are promising targets for the development of new antiinfective drugs in the future.


Assuntos
Antibacterianos/farmacologia , Membrana Celular/efeitos dos fármacos , Yersiniose/microbiologia , Yersinia enterocolitica/metabolismo , Animais , Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Dobramento de Proteína , Estrutura Secundária de Proteína/efeitos dos fármacos , Yersinia enterocolitica/química , Yersinia enterocolitica/efeitos dos fármacos , Yersinia enterocolitica/genética
7.
Oncotarget ; 7(3): 2229-38, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26735581

RESUMO

Chicoric acid (CA) is a phenolic compound present in dietary supplements with a large spectrum of biological properties reported ranging from antioxidant, to antiviral, to immunostimulatory properties. Due to the fact that chicoric acid promotes phagocytic activity and was reported as an allosteric inhibitor of the PTP1B phosphatase, we examined the effect of CA on YopH phosphatase from pathogenic bacteria, which block phagocytic processes of a host cell. We performed computational studies of chicoric acid binding to YopH as well as validation experiments with recombinant enzymes. In addition, we performed similar studies for caffeic and chlorogenic acids to compare the results. Docking experiments demonstrated that, from the tested compounds, only CA binds to both catalytic and secondary binding sites of YopH. Our experimental results showed that CA reduces activity of recombinant YopH phosphatase from Yersinia enterocolitica and human CD45 phosphatase. The inhibition caused by CA was irreversible and did not induce oxidation of catalytic cysteine. We proposed that inactivation of YopH induced by CA is involved with allosteric inhibition by interacting with essential regions responsible for ligand binding.


Assuntos
Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Ácidos Cafeicos/química , Domínio Catalítico/efeitos dos fármacos , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Succinatos/química , Yersinia enterocolitica/enzimologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Sítios de Ligação , Ácido Clorogênico/química , Cisteína/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Fatores de Virulência , Yersinia enterocolitica/patogenicidade
8.
PLoS One ; 9(7): e101840, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25025665

RESUMO

Pseudomonas aeruginosa and Escherichia coli are resistant to wide range of antibiotics rendering the treatment of infections very difficult. A main mechanism attributed to the resistance is the function of efflux pumps. MexAB-OprM and AcrAB-TolC are the tripartite efflux pump assemblies, responsible for multidrug resistance in P. aeruginosa and E. coli respectively. Substrates that are more susceptible for efflux are predicted to have a common pharmacophore feature map. In this study, a new criterion of excluding compounds with efflux substrate-like features was used, thereby refining the selection process and enriching the inhibitor identification process. An in-house database of phytochemicals was created and screened using high-throughput virtual screening against AcrB and MexB proteins and filtered by matching with the common pharmacophore models (AADHR, ADHNR, AAHNR, AADHN, AADNR, AAADN, AAADR, AAANR, AAAHN, AAADD and AAADH) generated using known efflux substrates. Phytochemical hits that matched with any one or more of the efflux substrate models were excluded from the study. Hits that do not have features similar to the efflux substrate models were docked using XP docking against the AcrB and MexB proteins. The best hits of the XP docking were validated by checkerboard synergy assay and ethidium bromide accumulation assay for their efflux inhibition potency. Lanatoside C and diadzein were filtered based on the synergistic potential and validated for their efflux inhibition potency using ethidium bromide accumulation study. These compounds exhibited the ability to increase the accumulation of ethidium bromide inside the bacterial cell as evidenced by these increase in fluorescence in the presence of the compounds. With this good correlation between in silico screening and positive efflux inhibitory activity in vitro, the two compounds, lanatoside C and diadzein could be promising efflux pump inhibitors and effective to use in combination therapy against drug resistant strains of P. aeruginosa and E. coli.


Assuntos
Antibacterianos/farmacologia , Produtos Biológicos/farmacologia , Farmacorresistência Bacteriana Múltipla , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Sequência de Aminoácidos , Antibacterianos/química , Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Produtos Biológicos/química , Simulação por Computador , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Etídio/química , Etídio/metabolismo , Ensaios de Triagem em Larga Escala , Técnicas In Vitro , Ligantes , Proteínas de Membrana Transportadoras/química , Testes de Sensibilidade Microbiana , Modelos Moleculares , Conformação Molecular , Dados de Sequência Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Ligação Proteica , Reprodutibilidade dos Testes , Alinhamento de Sequência
10.
Adv Exp Med Biol ; 603: 367-75, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17966433

RESUMO

Yersinia pestis, Yersinia pseudotuberculosis and Yersinia enterocolitica, utilize a plasmid encoded type III secretion system (T3SS) to promote infection by delivering Yersinia outer proteins (Yops) into the cytosol of mammalian cells. This T3SS is absolutely required for Yersinia virulence, which makes T3SS an attractive target in the development of novel therapeutics for treatment of plague and other Yersinia infections. In this study, a new method for high throughput screening (HTS) of small molecules for the ability to inhibit type III secretion (T3S) in Y. pestis has been developed. In comparison with screening assays employed by others, this method is very simple and rapid, and thus well suited for examining very large compound sets. Using this method, we screened a diverse collection of libraries at the US National Screening Laboratory. The initial examination of 70,966 compounds and mixtures from 13 libraries resulted in 431 primary hits. Strong positive indications of inhibition were observed at a rate of 0.01%, while moderate and weak but potentially meaningful signals were observed at rates of 0.056% and 0.54% respectively. Further characterizations were conducted on selected primary hits in Y. pestis. Of the eight compounds examined in secondary assays, four show good promise as leads for structure activity relationship studies. They are a diverse group, each having chemical scaffolds not only distinct from one another, but also distinct from previously described candidate T3S inhibitors.


Assuntos
Antibacterianos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Yersinia pestis/efeitos dos fármacos , Animais , Antibacterianos/química , Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Proteínas da Membrana Bacteriana Externa/fisiologia , Células Cultivadas , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/estatística & dados numéricos , Humanos , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Proteínas Tirosina Fosfatases/fisiologia , Sensibilidade e Especificidade , Virulência/efeitos dos fármacos , Virulência/fisiologia , Yersinia pestis/patogenicidade , Yersinia pestis/fisiologia
11.
Bioorg Med Chem ; 15(22): 7087-97, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17869116

RESUMO

A series of 4-oxo-4H-pyrido[1,2-a]pyrimidine derivatives, substituted at the 2-position with piperidines bearing quaternary ammonium salt side chains, were synthesized and evaluated for their ability to potentiate the activity of the fluoroquinolone levofloxacin (LVFX) and the beta-lactam aztreonam (AZT) in Pseudomonas aeruginosa. Attachment of the charged entity using an N-ethylcarbamoyloxy linker led to the discovery of the highly soluble compound 22 (D13-9001), which maintained good potency in vitro and displayed excellent activity in vivo in a rat pneumonia model of P. aeruginosa.


Assuntos
Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Piperidinas/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Compostos de Amônio Quaternário/farmacologia , Animais , Antibacterianos/administração & dosagem , Antibacterianos/química , Avaliação Pré-Clínica de Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Feminino , Haplorrinos , Infusões Intravenosas , Masculino , Proteínas de Membrana Transportadoras , Testes de Sensibilidade Microbiana , Estrutura Molecular , Piperidinas/síntese química , Piperidinas/química , Compostos de Amônio Quaternário/administração & dosagem , Compostos de Amônio Quaternário/síntese química , Compostos de Amônio Quaternário/química , Ratos , Ratos Sprague-Dawley , Solubilidade , Estereoisomerismo
12.
Methods ; 42(3): 250-60, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17532512

RESUMO

Protein tyrosine phosphatases (PTPs) play vital roles in numerous cellular processes and are implicated in a growing number of human diseases, ranging from cancer to cardiovascular, immunological, infectious, neurological, and metabolic diseases. Here we present methods for developing small molecule inhibitors for these enzymes, starting with how to set up a high throughput chemical library screening for PTP inhibitors, how to confirm and prioritize hits, and how to circumnavigate possible pitfalls. Next, we present the relatively new hit generating method of in silico or virtual screening. We give an overview of existing software tools, describe how to choose and generate protein target structures and illustrate the procedure with examples. We then discuss how three-dimensional PTP structures can be analyzed in terms of their potential to bind small molecule inhibitors selectively over homologous proteins and how computer tools can be applied for lead optimization efforts. We finish with a perspective of how well these PTP inhibitors might perform as future drugs to treat human disease.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Sítios de Ligação , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos/métodos , Modelos Moleculares , Nitrofenóis/metabolismo , Compostos Organofosforados/metabolismo , Biblioteca de Peptídeos , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Proteínas Tirosina Fosfatases/análise , Corantes de Rosanilina
13.
Chem Biol ; 11(5): 703-11, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15157881

RESUMO

Nucleotide-glycosyltransferases (NDP-Gtfs) play key roles in a wide range of biological processes. It is difficult to probe the roles of individual glycosyltransferases or their products because, with few exceptions, selective glycosyltransferase inhibitors do not exist. Here, we investigate a high-throughput approach to identify glycosyltransferase inhibitors based on a fluorescent donor displacement assay. We have applied the screen to E. coli MurG, an enzyme that is both a potential antibiotic target and a paradigm for a large family of glycosyltransferases. We show that the compounds identified in the donor-displacement screen of MurG are selective for MurG over other enzymes that use similar or identical substrates, including structurally related enzymes. The donor displacement assay described here should be adaptable to many other NDP-Gtfs and represents a new strategy to identify selective NDP-Gtf inhibitors.


Assuntos
Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/química , Glicosiltransferases/antagonistas & inibidores , N-Acetilglucosaminiltransferases/antagonistas & inibidores , Animais , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Polarização de Fluorescência/métodos , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Cinética , Ligantes , N-Acetilglucosaminiltransferases/química , N-Acetilglucosaminiltransferases/metabolismo
14.
J Biol Chem ; 278(43): 41734-41, 2003 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-12888560

RESUMO

Yersinia are causative agents in human diseases ranging from gastrointestinal syndromes to Bubonic Plague. There is increasing risk of misuse of infectious agents, such as Yersinia pestis, as weapons of terror as well as instruments of warfare for mass destruction. YopH is an essential virulence factor whose protein-tyrosine phosphatase (PTP) activity is required for Yersinia pathogenicity. Consequently, there is considerable interest in developing potent and selective YopH inhibitors as novel anti-plague agents. We have screened a library of 720 structurally diverse commercially available carboxylic acids and identified 26 YopH inhibitors with IC50 values below 100 mum. The most potent and specific YopH inhibitor is aurintricarboxylic acid (ATA), which exhibits a Ki value of 5 nm for YopH and displays 6-120-fold selectivity in favor of YopH against a panel of mammalian PTPs. To determine whether ATA can block the activity of YopH in a cellular context, we have examined the effect of ATA on T-cell signaling in human Jurkat cells transfected with YopH. We show that YopH severely decreases the T-cell receptor-induced cellular tyrosine phosphorylation, ERK1/2 activity, and interleukin-2 transcriptional activity. We demonstrate that ATA can effectively block the inhibitory activity of YopH and restore normal T-cell function. These results provide a proof-of-concept for the hypothesis that small molecule inhibitors that selectively target YopH may be therapeutically useful. In addition, it is expected that potent and selective YopH inhibitors, such as ATA, should be useful reagents to delineate YopH's cellular targets in plague and other pathogenic conditions caused by Yersinia infection.


Assuntos
Ácido Aurintricarboxílico/farmacologia , Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Peste/microbiologia , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Fatores de Virulência/antagonistas & inibidores , Yersinia pestis/efeitos dos fármacos , Proteínas da Membrana Bacteriana Externa/genética , Avaliação Pré-Clínica de Medicamentos , Humanos , Concentração Inibidora 50 , Interleucina-2/biossíntese , Células Jurkat , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Tirosina Fosfatases/genética , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Transfecção , Fatores de Virulência/genética , Yersinia pestis/patogenicidade
15.
Antimicrob Agents Chemother ; 45(1): 105-16, 2001 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11120952

RESUMO

Whole-cell assays were implemented to search for efflux pump inhibitors (EPIs) of the three multidrug resistance efflux pumps (MexAB-OprM, MexCD-OprJ, MexEF-OprN) that contribute to fluoroquinolone resistance in clinical isolates of Pseudomonas aeruginosa. Secondary assays were developed to identify lead compounds with exquisite activities as inhibitors. A broad-spectrum EPI which is active against all three known Mex efflux pumps from P. aeruginosa and their close Escherichia coli efflux pump homolog (AcrAB-TolC) was discovered. When this compound, MC-207,110, was used, the intrinsic resistance of P. aeruginosa to fluoroquinolones was decreased significantly (eightfold for levofloxacin). Acquired resistance due to the overexpression of efflux pumps was also decreased (32- to 64-fold reduction in the MIC of levofloxacin). Similarly, 32- to 64-fold reductions in MICs in the presence of MC-207,110 were observed for strains with overexpressed efflux pumps and various target mutations that confer resistance to levofloxacin (e.g., gyrA and parC). We also compared the frequencies of emergence of levofloxacin-resistant variants in the wild-type strain at four times the MIC of levofloxacin (1 microg/ml) when it was used either alone or in combination with EPI. In the case of levofloxacin alone, the frequency was approximately 10(-7) CFU/ml. In contrast, with an EPI, the frequency was below the level of detection (<10(-11)). In summary, we have demonstrated that inhibition of efflux pumps (i) decreased the level of intrinsic resistance significantly, (ii) reversed acquired resistance, and (iii) resulted in a decreased frequency of emergence of P. aeruginosa strains that are highly resistant to fluoroquinolones.


Assuntos
Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Proteínas de Transporte/antagonistas & inibidores , Dipeptídeos/farmacologia , Quimioterapia Combinada/farmacologia , Inibidores Enzimáticos/farmacologia , Proteínas de Membrana Transportadoras , Pseudomonas aeruginosa/metabolismo , Anti-Infecciosos/farmacologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Transporte/genética , Cefalosporinas/metabolismo , Resistência Microbiana a Medicamentos , Escherichia coli/efeitos dos fármacos , Levofloxacino , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Ofloxacino/farmacologia , Plasmídeos/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA