Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Radiographics ; 44(2): e230133, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38236751

RESUMO

Parkinsonian syndromes are a heterogeneous group of progressive neurodegenerative disorders involving the nigrostriatal dopaminergic pathway and are characterized by a wide spectrum of motor and nonmotor symptoms. These syndromes are quite common and can profoundly impact the lives of patients and their families. In addition to classic Parkinson disease, parkinsonian syndromes include multiple additional disorders known collectively as Parkinson-plus syndromes or atypical parkinsonism. These are characterized by the classic parkinsonian motor symptoms with additional distinguishing clinical features. Dopamine transporter SPECT has been developed as a diagnostic tool to assess the levels of dopamine transporters in the striatum. This imaging assessment, which uses iodine 123 (123I) ioflupane, can be useful to differentiate parkinsonian syndromes caused by nigrostriatal degeneration from other clinical mimics such as essential tremor or psychogenic tremor. Dopamine transporter imaging plays a crucial role in diagnosing parkinsonian syndromes, particularly in patients who do not clearly fulfill the clinical criteria for diagnosis. Diagnostic clarification can allow early treatment in appropriate patients and avoid misdiagnosis. At present, only the qualitative interpretation of dopamine transporter SPECT is approved by the U.S. Food and Drug Administration, but quantitative interpretation is often used to supplement qualitative interpretation. The authors provide an overview of patient preparation, common imaging findings, and potential pitfalls that radiologists and nuclear medicine physicians should know when performing and interpreting dopamine transporter examinations. Alternatives to 123I-ioflupane imaging for the evaluation of nigrostriatal degeneration are also briefly discussed. ©RSNA, 2024 Test Your Knowledge questions for this article are available in the supplemental material. See the invited commentary by Intenzo and Colarossi in this issue.


Assuntos
Radioisótopos do Iodo , Nortropanos , Transtornos Parkinsonianos , Humanos , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Transtornos Parkinsonianos/diagnóstico por imagem , Transtornos Parkinsonianos/metabolismo , Tomografia Computadorizada de Emissão de Fóton Único/métodos
2.
BMC Med ; 21(1): 272, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491235

RESUMO

BACKGROUND: Coffee is the most widely consumed psychostimulant worldwide. Emerging evidence indicates that coffee consumption habit significantly reduces the risk of developing Parkinson's disease (PD). However, the effect of coffee consumption on nigrostriatal dopaminergic neurodegeneration is still largely unknown. We therefore aim to investigate the role of coffee consumption in nigrostriatal dopaminergic neurodegeneration using dopamine transporter (DAT) imaging in PD and healthy controls (HC). METHODS: A total of 138 PD patients and 75 HC with questionnaires about coffee consumption, and DAT scans were recruited from the Parkinson's Progression Markers Initiative cohort. Demographic, clinical, and striatal DAT characteristics were compared across subgroups of current, former, and never coffee consumers in PD and HC, respectively. Furthermore, partial correlation analyses were performed to determine whether there was a relationship between coffee cups consumed per day and striatal DAT characteristics in each striatal region. In addition, the factors that may have influenced the loss of nigrostriatal dopaminergic neurons were included in multiple linear regression analyses to identify significant contributing factors to DAT availability in each striatal region. RESULTS: PD patients had lower DAT availability in each striatal region than HC (p < 0.001). In PD patients, there were significant differences in DAT availability in the caudate (p = 0.008, Bonferroni corrected) across three PD subgroups. Specifically, post hoc tests showed that current coffee consumers had significantly lower DAT availability in the caudate than former coffee consumers (p = 0.01) and never coffee consumers (p = 0.022). In HC, there were significant differences in DAT availability in the caudate (p = 0.031, Bonferroni uncorrected) across three HC subgroups. Specifically, post hoc tests showed that current coffee consumers had significantly lower DAT availability in the caudate than former coffee consumers (p = 0.022). Moreover, correlation analysis revealed that cups per day were negatively correlated with DAT availability in the caudate in current consumers of PD patients (r = - 0.219, p = 0.047). In addition, multiple linear regression analyses showed that current coffee consumption remained an independent predictor of decreased DAT availability in the caudate in PD patients and HC. CONCLUSIONS: This study demonstrates that current coffee consumption is associated with decreased striatal DAT availability in the caudate. However, the effects of caffeine on striatal DAT may fade and disappear after quitting coffee consumption. TRIAL REGISTRATION: ClinicalTrials.gov, NCT01141023.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/complicações , Café , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/metabolismo
3.
CNS Neurosci Ther ; 29(9): 2608-2620, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37002793

RESUMO

AIMS: Electroacupuncture (EA) shows advantages in both clinical practice and depression animal models. Dopaminergic-related dysfunction in the prefrontal cortex (PFC) may be a hidden antidepressant mechanism of EA, where dopamine transporter (DAT) plays an essential role. This study aimed to investigate the synaptic transmission and DAT-related changes of EA in depression. METHODS: Male Sprague-Dawley rats were subjected to 3-week chronic unpredictable mild stress (CUMS). The successfully modeled rats were then randomly and equally assigned to CUMS, selective serotonin reuptake inhibitor (SSRI), and EA or SSRI + EA groups, followed by a 2-week treatment respectively. After monitoring body weight and behavioral tests of all rats, the ventromedial PFC (vmPFC) tissue was collected for electrophysiology and the expression detection of DAT, phosphorylated DAT (p-DAT), cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), and trace amine-associated receptor 1 (TAAR1). RESULTS: Depressive-like behaviors induced by CUMS were alleviated by EA, SSRI, and SSRI + EA treatments through behavioral tests. Compared with CUMS group, EA improved synaptic transmission in vmPFC by upregulating spontaneous excitatory postsynaptic currents amplitude. Molecularly, EA reversed the increased total DAT and p-DAT expression as well as the decreased ratio of p-DAT/total DAT along with the activation of TAAR1, cAMP, and PKA in vmPFC. CONCLUSION: We speculated that the antidepressant effect of EA was associated with enhanced synaptic transmission in vmPFC, and the upregulated phosphorylation of DAT relevant to TAAR1, cAMP, and PKA may be the potential mechanism.


Assuntos
Depressão , Eletroacupuntura , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Depressão/tratamento farmacológico , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Hipocampo/metabolismo , Antidepressivos , Transmissão Sináptica , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Córtex Pré-Frontal/metabolismo , Modelos Animais de Doenças
4.
Biol Trace Elem Res ; 201(4): 1639-1647, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35715717

RESUMO

Although it is known that regular physical activity is recommended as part of a healthy lifestyle, the number of data concerning efficacy of exercise and your relationship with a demand for iron during pregnancy is limited. The purpose of this study was to evaluate the relationship between iron supplementation and exercise during pregnancy on the behavior of rats. Molecular variables dopamine transporter (DAT) and dopamine receptor (D2) related to the locomotor behavior in response to the exercise and the iron supplemented diet were investigated. Sixty-day-old female Wistar rats were used. The pregnant rats were distributed into the following groups: standard diet (SD, n = 7), iron supplementation (IS, n = 9), exercise (EX, n = 10), and exercise + iron supplementation (EX + IS, n = 9). All rats in both the pregnant and non-pregnant groups were submitted to open-field tests. The iron supplementation diet was shown to reduce locomotor behaviors, with reduced central and peripheral ambulation, reduced rearing, and increased freezing. On the other hand, physical exercise caused an increase in central and peripheral ambulation, and in rearing. The expression of the D2 receptor protein and the dopamine transporter DAT did not show changes with the interventions over 21 days of pregnancy. In this context, the present study demonstrated that both iron supplementation and exercise exerted an influence during pregnancy on the behavior of rats, however, with different effects.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Ferro , Gravidez , Ratos , Feminino , Animais , Ratos Wistar , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Ferro/farmacologia , Ferro/metabolismo , Dieta , Suplementos Nutricionais , Dopamina
5.
Sci Rep ; 12(1): 3749, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260679

RESUMO

Drug-induced parkinsonism (DIP) is caused by a dopamine receptor blockade and is a major cause of misleading diagnosis of Parkinson's disease (PD). Striatal dopamine activity has been investigated widely in DIP; however, most studies with dopamine transporter imaging have focused on the clinical characteristics and prognosis. This study investigated differences in striatal subregional monoamine availability among patients with DIP, normal controls, and patients with early PD. Thirty-five DIP patients, the same number of age-matched PD patients, and 46 healthy controls were selected for this study. Parkinsonian motor status was examined. Brain magnetic resonance imaging and positron emission tomography with 18F-N-(3-fluoropropyl)-2beta-carbon ethoxy-3beta-(4-iodophenyl) nortropane were performed, and the regional standardized uptake values were analyzed with a volume-of-interest template and compared among the groups. The groups were evenly matched for age, but there were numerically more females in the DIP group. Parkinsonian motor symptoms were similar in the DIP and PD groups. Monoamine availability in the thalamus of the DIP group was lower than that of the normal controls and similar to that of the PD group. In other subregions (putamen, globus pallidus, and ventral striatum), monoamine availability in the DIP group and normal controls did not differ and was higher than that in the PD group. This difference compared to healthy subject suggests that low monoamine availability in the thalamus could be an imaging biomarker of DIP.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Estriado Ventral , Corpo Estriado/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Feminino , Humanos , Masculino , Doença de Parkinson/diagnóstico por imagem , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Tálamo/diagnóstico por imagem , Tálamo/metabolismo , Tomografia Computadorizada por Raios X , Estriado Ventral/metabolismo
6.
Nutr Neurosci ; 25(10): 2011-2022, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33926365

RESUMO

AIM: Individuals undernourished in utero or during early life are at high risk of developing obesity and metabolic disorders and show an increased preference for consuming sugary and fatty food. This study aimed at determining whether impaired taste detection and signalling in the lingual epithelium and the brain might contribute to this altered pattern of food intake. METHODS: The preference for feeding fat and sweet food and the expression in circumvallate papillae and hypothalamus of genes coding for sweet and fat receptors and transducing pathways were evaluated in adult rats born to control or calorie-restricted dams. Expression in the hypothalamus and the brain's reward system of genes involved in the homeostatic and hedonic control of food intake was also determined. RESULTS: Male and female undernourished animals exhibited increased expression in taste papillae and hypothalamus of T1R1, T1R2, CD36, gustducin, TRMP5 and PLC-ß2 genes, all of which modulate sweet and fat detection and intracellular signalling. However, the severity of the effect was greater in females than in males. Moreover, male, but not female, undernourished rats consumed more standard and sweetened food than their control counterparts and presented increased hypothalamic AgRP and NPY mRNAs levels together with enhanced dopamine transporter and dopamine receptor D2 expression in the ventral tegmental area. CONCLUSIONS: Maternal undernutrition induces sex-specific changes in food preferences and gene expression in taste papillae, hypothalamus and brain reward regions. The gene expression alterations in the male offspring are in line with their preference for consuming sugary and fatty food.


Assuntos
Desnutrição , Paladar , Proteína Relacionada com Agouti/metabolismo , Animais , Antígenos CD36/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Feminino , Hipotálamo/metabolismo , Masculino , Desnutrição/metabolismo , Ratos , Receptores Dopaminérgicos/metabolismo
7.
Medicine (Baltimore) ; 100(34): e27019, 2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34449475

RESUMO

ABSTRACT: Early and accurate identification of various conditions that can cause parkinsonian symptoms is important for determining treatment policies. Currently dopamine transporter (DAT) imaging using FP-CIT, glucose metabolism imaging using fluorodeoxyglucose, cerebral blood flow image using ethyl cysteinate dimer (ECD), and others are used for differentiation. However, the use of multiple modalities is inconvenient and costly. In the present retrospective study, we evaluated the correlation between regional brain uptake ratios (URs) in perfusion FP-CIT PET and ECD SPECT images.Twenty patients with Parkinson's symptoms underwent perfusion DAT positron emission tomography (18F-FP-CIT PET/CT) and cerebral blood flow tomography (99mTc-ECD SPECT) within a 2-week period. Perfusion 18F-FP-CIT PET/CT and 99mTc-ECD SPECT URs of 19 brain regions (bilateral frontal, temporal, parietal and occipital lobes, bilateral caudate nucleus, bilateral putamen, bilateral insula, bilateral cingulate gyrus, bilateral thalamus, and brainstem) were directly compared and correlations were analyzed.Average 18F-FP-CIT PET/CT regional perfusion URs were higher than 99mTc-ECD SPECT URs. Uptake ratios were well correlated in all 19 regions (except right putamen), and especially in dopamine poor regions (cerebral cortex). In left putamen, URs were significantly correlated, but the correlation coefficient was lower than those of other regions.A single tracer dual phase N-3-fluoropropyl-2-beta-carboxymethoxy-3-beta-(4-iodophenyl) nortropane test seems to be helpful for differential diagnosis of parkinsonian disorders. Large-scale, longitudinal studies on complementary diseases with parkinsonian patterns are required to investigate differences in correlations between perfusion 18F-FP-CIT PET/CT and 99mTc-ECD SPECT over time.


Assuntos
Encéfalo/diagnóstico por imagem , Transtornos Parkinsonianos/diagnóstico por imagem , Transtornos Parkinsonianos/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Idoso , Encéfalo/patologia , Cisteína/análogos & derivados , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Feminino , Radioisótopos de Flúor , Humanos , Masculino , Pessoa de Meia-Idade , Compostos de Organotecnécio , Transtornos Parkinsonianos/diagnóstico , Compostos Radiofarmacêuticos , Estudos Retrospectivos , Tropanos
8.
Pharmacol Res Perspect ; 9(5): e00855, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34423920

RESUMO

Several therapeutic options are currently available to treat excessive daytime sleepiness (EDS) in patients suffering from narcolepsy or obstructive sleep apnea. However, there are no comparisons between the various wake-promoting agents in terms of mechanism of action, efficacy, or safety. The goal of this study was to compare amphetamine, modafinil, solriamfetol, and pitolisant at their known primary pharmacological targets, histamine H3 receptors (H3R), dopamine, norepinephrine, and serotonin transporters, and in various in vivo preclinical models in relation to neurochemistry, locomotion, behavioral sensitization, and food intake. Results confirmed that the primary pharmacological effect of amphetamine, modafinil, and solriamfetol was to increase central dopamine neurotransmission, in part by inhibiting its transporter. Furthermore, solriamfetol increased levels of extracellular dopamine in the nucleus accumbens, and decreased the 3,4-dihydroxyphenyl acetic acid (DOPAC)/DA ratio in the striatum, as reported for modafinil and amphetamine. All these compounds produced hyperlocomotion, behavioral sensitization, and hypophagia, which are common features of psychostimulants and of compounds with abuse potential. In contrast, pitolisant, a selective and potent H3R antagonist/inverse agonist that promotes wakefulness, had no effect on striatal dopamine, locomotion, or food intake. In addition, pitolisant, devoid of behavioral sensitization by itself, attenuated the hyperlocomotion induced by either modafinil or solriamfetol. Therefore, pitolisant presents biochemical, neurochemical, and behavioral profiles different from those of amphetamine and other psychostimulants such as modafinil or solriamfetol. In conclusion, pitolisant is a differentiated therapeutic option, when compared with psychostimulants, for the treatment of EDS, as this agent does not show any amphetamine-like properties within in vivo preclinical models.


Assuntos
Anfetamina/farmacologia , Carbamatos/farmacologia , Corpo Estriado/efeitos dos fármacos , Distúrbios do Sono por Sonolência Excessiva/tratamento farmacológico , Comportamento Alimentar/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Modafinila/farmacologia , Fenilalanina/análogos & derivados , Piperidinas/farmacologia , Promotores da Vigília/farmacologia , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Inibidores da Captação Adrenérgica/farmacologia , Animais , Corpo Estriado/metabolismo , Distúrbios do Sono por Sonolência Excessiva/etiologia , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Avaliação Pré-Clínica de Medicamentos , Agonismo Inverso de Drogas , Antagonistas dos Receptores Histamínicos/farmacologia , Camundongos , Narcolepsia/tratamento farmacológico , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Fenilalanina/farmacologia , Receptores Histamínicos H3 , Apneia Obstrutiva do Sono/complicações
9.
Metabolism ; 123: 154839, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34331964

RESUMO

BACKGROUND AND AIMS: Serotonergic and dopaminergic systems in the brain are essential for homeostatic and reward-associated regulation of food intake and systemic energy metabolism. It is largely unknown how fasting influences these systems or if such effects are altered in humans with obesity. We therefore aimed to evaluate the effects of fasting on hypothalamic/thalamic serotonin transporter (SERT) and striatal dopamine transporter (DAT) availability in lean subjects and subjects with obesity. METHODS: In this randomized controlled cross-over trial, we assessed the effects of 12 vs 24 h of fasting on SERT and DAT availability in the hypothalamus/thalamus and striatum, respectively, using SPECT imaging in 10 lean men and 10 men with obesity. RESULTS: As compared with the 12-h fast, a 24-h fast increased hypothalamic SERT availability in lean men, but not in men with obesity. We observed high inter-individual variation in the effects of fasting on thalamic SERT and striatal DAT, with no differences between lean men and those with obesity. In all subjects, fasting-induced increases in circulating free fatty acid (FFA) concentrations were associated with an increase in hypothalamic SERT availability and a decrease in striatal DAT availability. Multiple regression analysis showed that changes in plasma insulin and FFAs together accounted for 44% of the observed variation in striatal DAT availability. CONCLUSION: Lean men respond to prolonged fasting by increasing hypothalamic SERT availability, whereas this response is absent in men with obesity. Inter-individual differences in the adaptations of the cerebral serotonergic and dopaminergic systems to fasting may, in part, be explained by changes in peripheral metabolic signals of fasting, including FFAs and insulin.


Assuntos
Jejum , Hipotálamo/fisiopatologia , Obesidade/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Idoso , Estudos de Casos e Controles , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/metabolismo , Estudos Cross-Over , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Humanos , Hipotálamo/diagnóstico por imagem , Hipotálamo/metabolismo , Insulina/metabolismo , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada de Emissão de Fóton Único
10.
J Pharmacol Sci ; 145(3): 289-295, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33602510

RESUMO

Gastrodin (Gas) represents the major active component of Gastrodia elata, a Chinese herb. Clinically, Gas is widely used for its sedative, anticonvulsive and neuroprotective properties. This work aimed to assess Gas for its efficacy in Tourette Syndrome (TS) treatment. Twenty-four rats were randomized to the blank control (n = 6) and experimental (n = 18) groups. The experimental group was administered continuous injection of 3, 3'-iminodipropionitrile (IDPN) intraperitoneally for 7 days, and subdivided into the IDPN + NS, IDPN + Hal, and IDPN + Gas groups (n = 6). The control and IDPN + NS groups received saline intragastrically, while the IDPN + Hal and IDPN + Gas groups were administered Gas and Haloperidol, respectively, for 8 weeks. Then, micro-positron emission tomography (PET) was performed for measuring the density and brain distribution of dopamine D2 receptors (D2Rs), dopamine transporters (DATs), 5-HT2A receptors (5-HT2ARs) and 5-HT transporters (SERTs). According to stereotypical behavior experiments, IDPN significantly induced abnormal stereotypical behaviors in rats in comparison with control animals. In addition, micro-PET revealed that by reducing the amounts of D2Rs and increasing those of DATs, Gas could significantly reduce stereotypical TS-like behaviors in this rat model system. Furthermore, Gas treatment reduced the density of SERTs, which could indirectly decrease DA release. The current study demonstrated that Gas could be effective in treating TS.


Assuntos
Álcoois Benzílicos/administração & dosagem , Álcoois Benzílicos/farmacologia , Dopamina/metabolismo , Glucosídeos/administração & dosagem , Glucosídeos/farmacologia , Fitoterapia , Serotonina/metabolismo , Síndrome de Tourette/tratamento farmacológico , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Gastrodia/química , Masculino , Imagem Molecular , Tomografia por Emissão de Pósitrons , Ratos Wistar , Receptor 5-HT2A de Serotonina/metabolismo , Receptores de Dopamina D2/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Síndrome de Tourette/diagnóstico por imagem , Síndrome de Tourette/metabolismo
11.
J Pharmacol Exp Ther ; 376(1): 118-126, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33082158

RESUMO

Dietary supplements often contain additives not listed on the label, including α-ethyl homologs of amphetamine such as N,α-diethylphenethylamine (DEPEA). Here, we examined the neurochemical and cardiovascular effects of α-ethylphenethylamine (AEPEA), N-methyl-α-ethylphenethylamine (MEPEA), and DEPEA as compared with the effects of amphetamine. All drugs were tested in vitro using uptake inhibition and release assays for monoamine transporters. As expected, amphetamine acted as a potent and efficacious releasing agent at dopamine transporters (DAT) and norepinephrine transporters (NET) in vitro. AEPEA and MEPEA were also releasers at catecholamine transporters, with greater potency at NET than DAT. DEPEA displayed fully efficacious release at NET but weak partial release at DAT (i.e., 40% of maximal effect). In freely moving, conscious male rats fitted with biotelemetry transmitters for physiologic monitoring, amphetamine (0.1-3.0 mg/kg, s.c.) produced robust dose-related increases in blood pressure (BP), heart rate (HR), and motor activity. AEPEA (1-10 mg/kg, s.c.) produced significant increases in BP but not HR or activity, whereas DEPEA and MEPEA (1-10 mg/kg, s.c.) increased BP, HR, and activity. In general, the phenethylamine analogs were approximately 10-fold less potent than amphetamine. Our results show that α-ethylphenethylamine analogs are biologically active. Although less potent than amphetamine, they produce cardiovascular effects that could pose risks to humans. Given that MEPEA and DEPEA increased locomotor activity, these substances may also have significant abuse potential. SIGNIFICANCE STATEMENT: The α-ethyl homologs of amphetamine have significant cardiovascular, behavioral, and neurochemical effects in rats. Given that these compounds are often not listed on the ingredient labels of dietary supplements, these compounds could pose a risk to humans using these products.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Butilaminas/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Metanfetamina/análogos & derivados , Movimento/efeitos dos fármacos , Fenetilaminas/farmacologia , Animais , Proteínas da Membrana Plasmática de Transporte de Catecolaminas/metabolismo , Suplementos Nutricionais/efeitos adversos , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Relação Dose-Resposta a Droga , Masculino , Metanfetamina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Ratos , Ratos Sprague-Dawley
12.
Brain Res Bull ; 162: 245-252, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32619693

RESUMO

The neurocircuitry underlying hunger, satiety, motivation to eat and food reward is complex, however a lot of mechanisms are still unknown. Two main cerebral areas are responsible for controlling feeding through hunger and food reward: the hypothalamus (HPT) and the ventral tegmental area (VTA), respectively. The dopaminergic system modulates both these areas and is essential to control food ingestion. Therefore, we aim to evaluate the effects of restrictive and hyperlipidic diets during pregnancy, lactation and during adult life of the offspring, on the expression of dopaminergic system genes in VTA and HPT of mice dams and their adult male offspring. We also measured diets' effect in locomotor activity in the open field (OF) test. Female mice were divided into control (CONT), restriction (RD) and hyperlipidic (HD) dietary groups, and mated with isogenic male mice. On the 9th postpartum day (PPD), dams were tested in the OF, and on the 22nd PPD cerebral areas were collected. After weaning, the offspring also were divided into one of three diet groups, independently of the diets provided to their dams. In the 80th PPD, the offspring was tested in the OF, and at 100th PPD, VTA and HPT were collected. Gene expression was analyzed by quantitative reverse transcription real-time polymerase chain reaction. The correlation between gene expression and locomotor activity was also assessed. In dams' VTA, both diets upregulated the expression of Th, Slc6a3/Dat1, Drd1 and Drd2 genes. In opposition, in the offspring the maternal diet was associated with a reduction in Th and Ddc gene expression. In the HPT, mice dams that received restriction or hyperlipidic diets had increased Th mRNA levels, but reduced the expression of Drd4 gene. The offspring diet had no effect on the expression of the studied genes in their adult lives. Both diets increased mice dam's locomotion in the OF, however none of them altered the offspring locomotor activity. We detected a positive correlation between the duration of total locomotion in the OF and Slc6a3/Dat1 gene expression in VTA of mice dams. In the HPT, a negative correlation of locomotion and Drd4 mRNA levels, and a positive correlation with Th gene expression was observed. Our results show that restriction and hyperlipidic diets alter mice dams' locomotor activity in the OF and modify the expression of dopaminergic system genes in VTA and HPT of mice dams and in VTA of the offspring.


Assuntos
Restrição Calórica , Dieta Hiperlipídica , Proteínas da Membrana Plasmática de Transporte de Dopamina/biossíntese , Lactação/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Receptores Dopaminérgicos/biossíntese , Fatores Etários , Animais , Animais Recém-Nascidos , Restrição Calórica/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Feminino , Expressão Gênica , Hipotálamo/metabolismo , Lactação/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Receptores Dopaminérgicos/genética , Tirosina 3-Mono-Oxigenase/biossíntese , Tirosina 3-Mono-Oxigenase/genética , Área Tegmentar Ventral/metabolismo
13.
Neurotox Res ; 38(3): 824-832, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32696437

RESUMO

Cocaine (COC) is a psychostimulant that acts by increasing catecholaminergic neurotransmission mainly due to its effects on the dopamine transporter (DAT). However, other neurotransmitter systems may also be regulated by COC, including the GABAergic system. Since the effect of COC in modulating gamma-aminobutyric acid (GABA) reuptake is not defined, we investigated the molecular mechanisms related to the increase in GABA uptake induced by acute COC exposure and its effects on locomotor activity in adolescent mice. Behavioral experiments showed that COC increased locomotor activity and decreased immobilization time in mice. A single COC exposure reduced both GABA uptake and GAT-1 protein levels. On the other hand, cyclic adenosine monophosphate (cAMP) levels increased after a COC challenge. The major changes induced by acute COC on behavioral and neurochemical assays were avoided by previous treatment with the selective D1 receptor antagonist SCH-23390 (0.5 mg/kg). Our findings suggest that GABA uptake naturally decreases during mice development from preadolescence until adulthood and that dopamine (DA) D1-like receptors are key players in the regulation of GABA uptake levels following a single COC exposure in adolescent mice.


Assuntos
Cocaína/farmacologia , Dopamina/metabolismo , Lobo Frontal/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Ácido gama-Aminobutírico/efeitos dos fármacos , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Cocaína/administração & dosagem , Proteínas da Membrana Plasmática de Transporte de Dopamina/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Lobo Frontal/metabolismo , Camundongos , Atividade Motora/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo
14.
J Neurosci ; 40(22): 4309-4322, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32317389

RESUMO

Classical studies suggest that growth hormone (GH) secretion is controlled by negative-feedback loops mediated by GH-releasing hormone (GHRH)- or somatostatin-expressing neurons. Catecholamines are known to alter GH secretion and neurons expressing TH are located in several brain areas containing GH-responsive cells. However, whether TH-expressing neurons are required to regulate GH secretion via negative-feedback mechanisms is unknown. In the present study, we showed that between 50% and 90% of TH-expressing neurons in the periventricular, paraventricular, and arcuate hypothalamic nuclei and locus ceruleus of mice exhibited STAT5 phosphorylation (pSTAT5) after an acute GH injection. Ablation of GH receptor (GHR) from TH cells or in the entire brain markedly increased GH pulse secretion and body growth in both male and female mice. In contrast, GHR ablation in cells that express the dopamine transporter (DAT) or dopamine ß-hydroxylase (DBH; marker of noradrenergic/adrenergic cells) did not affect body growth. Nevertheless, less than 50% of TH-expressing neurons in the hypothalamus were found to express DAT. Ablation of GHR in TH cells increased the hypothalamic expression of Ghrh mRNA, although very few GHRH neurons were found to coexpress TH- and GH-induced pSTAT5. In summary, TH neurons that do not express DAT or DBH are required for the autoregulation of GH secretion via a negative-feedback loop. Our findings revealed a critical and previously unidentified group of catecholaminergic interneurons that are apt to sense changes in GH levels and regulate the somatotropic axis in mice.SIGNIFICANCE STATEMENT Textbooks indicate until now that the pulsatile pattern of growth hormone (GH) secretion is primarily controlled by GH-releasing hormone and somatostatin neurons. The regulation of GH secretion relies on the ability of these cells to sense changes in circulating GH levels to adjust pituitary GH secretion within a narrow physiological range. However, our study identifies a specific population of tyrosine hydroxylase-expressing neurons that is critical to autoregulate GH secretion via a negative-feedback loop. The lack of this mechanism in transgenic mice results in aberrant GH secretion and body growth. Since GH plays a key role in cell proliferation, body growth, and metabolism, our findings provide a major advance to understand how the brain regulates the somatotropic axis.


Assuntos
Exocitose , Retroalimentação Fisiológica , Hormônio do Crescimento/metabolismo , Neurônios/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina beta-Hidroxilase/genética , Dopamina beta-Hidroxilase/metabolismo , Feminino , Hormônio Liberador de Hormônio do Crescimento/genética , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Hipotálamo/metabolismo , Locus Cerúleo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores da Somatotropina/metabolismo , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Tirosina 3-Mono-Oxigenase/genética
15.
Sci Rep ; 9(1): 16866, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31728018

RESUMO

It is well established that cannabis use promotes appetite. However, how cannabis interacts with the brain's appetite center, the hypothalamus, to stimulate feeding behavior is unknown. A growing body of evidence indicates that the hypothalamic transcriptome programs energy balance. Here, we tested the hypothesis that cannabis targets alternative polyadenylation (APA) sites within hypothalamic transcripts to regulate transcriptomic function. To do this, we used a novel cannabis vapor exposure model to characterize feeding in adult male Long Evans rats and aligned this behavioral response with APA events using a Whole Transcriptome Termini Sequencing (WTTS-Seq) approach as well as functional RNA abundance measurements with real-time quantitative polymerase chain reactions. We found that vapor cannabis exposure promoted food intake in free-feeding and behaviorally sated rats, validating the appetite stimulating properties of cannabis. Our WTTS-Seq analysis mapped 59 unique cannabis-induced hypothalamic APAs that occurred primarily within exons on transcripts that regulate synaptic function, excitatory synaptic transmission, and dopamine signaling. Importantly, APA insertions regulated RNA abundance of Slc6a3, the dopamine transporter, suggesting a novel genetic link for cannabis regulation of brain monoamine function. Collectively, these novel data indicate that a single cannabis exposure rapidly targets a key RNA processing mechanism linked to brain transcriptome function.


Assuntos
Apetite/efeitos dos fármacos , Canabinoides/farmacologia , Cannabis/química , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Ingestão de Alimentos/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Animais , Apetite/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Ingestão de Alimentos/genética , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Hipotálamo/metabolismo , Masculino , Nebulizadores e Vaporizadores , Poliadenilação/efeitos dos fármacos , Ratos , Ratos Long-Evans , Reação em Cadeia da Polimerase em Tempo Real , Transmissão Sináptica , Transcriptoma , Sequenciamento do Exoma
16.
Molecules ; 24(17)2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31480324

RESUMO

There is behavioral evidence for the interaction between crude khat extract and the endocannabinoid system, whereby the endocannabinoid system alters khat extract-mediated behavioral effects through modulation of the monoaminergic system. The objective of this study was to investigate the role of the endocannabinoid system on the neurobehavioral effect of khat extract in mice following concomitant administration of khat extract and the CB2R agonist, JWH133. Locomotor activity test, immunohistochemistry, and reverse transcriptase polymerase chain reaction technique were utilized to assess locomotor activity, tyrosine hydroxylase immunoreactivity, and expression of dopamine transporter mRNA gene. The results show sub-acute administration of khat extract alone increased locomotor activity in mice and co-administration of the CB2R agonist, JWH133, reduced khat extract induced hyperlocomotor activity. The data revealed that cell type specific deletion of CB2Rs on dopaminergic neurons increased the hyperlocomotor behavior of khat extract. Furthermore, the results revealed that khat extract attenuated MPTP induced motor deficits, which is enhanced by JWH133. Khat extract also increased expression of tyrosine hydroxylase positive cells and expression of dopamine transporter mRNA gene in wild type mice. Nevertheless, JWH133 did not alter the effect of khat extract on tyrosine hydroxylase immunoreactivity and dopamine transporter mRNA expression when given together with khat extract. Taken together, the results suggest that the CB2Rs selectively interact with khat extract-mediated locomotor effects and could be utilized as therapeutic target in central nervous system movement disorders associated with dopamine dysregulation.


Assuntos
Comportamento Animal/efeitos dos fármacos , Encéfalo/fisiologia , Catha/química , Extratos Vegetais/farmacologia , Receptor CB2 de Canabinoide/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Encéfalo/efeitos dos fármacos , Canabinoides/administração & dosagem , Canabinoides/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/fisiologia , Deleção de Genes , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor CB2 de Canabinoide/agonistas , Tirosina 3-Mono-Oxigenase/metabolismo
17.
J Ethnopharmacol ; 243: 112079, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31302206

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Zhi-Zi-Hou-Po decoction (ZZHPD), a classical Chinese prescription, has been reported to improve depressive behaviors in clinic. However, definite pharmacological effects and mechanisms of ZZHPD on monoaminergic system and hippocampal neurogenesis are ambiguous. It need to be further illuminated. AIM OF THE STUDY: Our study is designed to reveal pharmacological mechanisms of ZZHPD on depression through pharmacokinetics, monoamine neurotransmitters and neurogenesis. MATERIALS AND METHODS: Chronic unpredictable mild stress (CUMS) is used to establish rats model of depression. Then, the antidepressant effects of ZZHPD are evaluated by detecting body weight, sucrose preference and forced swimming test. The regulatory functions of ZZHPD on monoaminergic system are assessed by measuring monoamine neurotransmitters, neurotransmitter precursor substances, synthesized rate-limiting enzymes and transporters. Finally, potential molecular mechanism of ZZHPD on hippocampal neurogenesis is evaluated by investigating newborn immature neuron and newborn mature neuron. RESULTS: Our results show that ZZHPD remarkably normalizes CUMS-induced decline in weight gain, decrease of sucrose consumption rate in sucrose preference test and increase of immobility time in forced swimming test. Moreover, ZZHPD significantly reverses CUMS-induced reduction of 5-hydroxytryptamine (5-HT), dopamine (DA), tryptophan (Trp), tyrosine (Tyr), tryptophan hydroxylase2 (TPH2) and tyrosine hydroxylase (TH), whereas decreases level of serotonin transporter (SERT) in CUMS-induced rats. Finally, ZZHPD obviously improves CUMS-induced decrease of newborn immature neuron and newborn mature neuron in dentate gyrus of hippocampus. CONCLUSION: This study demonstrates that ZZHPD can alleviate CUMS-induced depression-like behaviors. It is probably attributed to the fact that ZZHPD could enhance monoaminergic system and hippocampal neurogenesis. Our findings provide the new perspectives on molecular targets of ZZHPD, and it will facilitate its clinical application.


Assuntos
Antidepressivos/farmacologia , Depressão/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Iridoides/farmacologia , Estresse Psicológico/metabolismo , Animais , Antidepressivos/uso terapêutico , Monoaminas Biogênicas/metabolismo , Doença Crônica , Depressão/tratamento farmacológico , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Medicamentos de Ervas Chinesas/farmacocinética , Medicamentos de Ervas Chinesas/uso terapêutico , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Iridoides/farmacocinética , Iridoides/uso terapêutico , Masculino , Neurogênese/efeitos dos fármacos , Ratos Sprague-Dawley , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Estresse Psicológico/tratamento farmacológico , Triptofano Hidroxilase/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
18.
Neuropsychopharmacol Rep ; 39(3): 247-251, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31132231

RESUMO

AIMS: Parkinson's disease (PD) is a chronic and progressive neurodegenerative disorder. Although diet may influence the development of PD, the precise mechanisms underlying relationship between diet and PD pathology are unknown. Here, we examined whether dietary intake of glucoraphanin (GF), the precursor of a natural antioxidant sulforaphane in cruciferous vegetables, can affect the reduction of dopamine transporter (DAT) in the mouse striatum after repeated administration of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). METHODS: Normal food pellet or 0.1% GF food pellet was given into male mice for 28 days from 8-week-old. Subsequently, saline (5 mL/kg × 3, 2-hour interval) or MPTP (10 mg/kg × 3, 2-hour interval) was injected into mice. Immunohistochemistry of DAT in the striatum was performed 7 days after MPTP injection. RESULTS: Repeated injections of MPTP significantly decreased the density of DAT-immunoreactivity in the mouse striatum. In contrast, dietary intake of 0.1% GF food pellet significantly protected against MPTP-induced reduction of DAT-immunoreactivity in the striatum. CONCLUSION: This study suggests that dietary intake of GF food pellet could prevent MPTP-induced dopaminergic neurotoxicity in the striatum of adult mice. Therefore, dietary intake of GF-rich cruciferous vegetables may have beneficial effects on prevention for development of PD.


Assuntos
Antioxidantes/uso terapêutico , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Glucosinolatos/uso terapêutico , Imidoésteres/uso terapêutico , Intoxicação por MPTP/tratamento farmacológico , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Suplementos Nutricionais , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Glucosinolatos/administração & dosagem , Glucosinolatos/farmacologia , Imidoésteres/administração & dosagem , Imidoésteres/farmacologia , Intoxicação por MPTP/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oximas , Sulfóxidos
19.
Neuroimage Clin ; 22: 101755, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30884365

RESUMO

Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are thought to be part of a spectrum: both have a clinical profile including symptoms associated with dopaminergic and serotonergic loss, yet few imaging studies have focused on serotonergic neurodegeneration in both disorders. We aimed to study degeneration of terminals with dopamine and serotonin transporter (DAT and SERT, respectively) in patients with early-stage PD and DLB relative to healthy controls, using 123I-N-ω-fluoropropyl-2ß-carbomethoxy-3ß-(4-iodophenyl)nortropane (123I-FP-CIT) single photon emission computed tomography (SPECT). We conducted region of interest (ROI) and voxel-based analyses on 123I-FP-CIT SPECT scans. Using the cerebellum as a reference region, we determined binding ratios (BRs) for bilateral ROIs in the DAT-rich striatum (head of the caudate nucleus and posterior putamen) and SERT-rich extrastriatal brain regions (thalamus, hypothalamus and hippocampus). We compared BRs in PD and DLB patients with BRs in healthy controls (all groups: n = 16). Both PD and DLB patients had lower striatal 123I-FP-CIT BRs than healthy controls for the bilateral caudate head (PD-left: F(1,29) = 28.778, P < .001, ω2 = 0.35; right: F(1,29) = 35.338, P < .001, ω2 = 0.42; DLB-left: F(1,29) = 28.241, P < .001, ω2 = 0.31; right: F(1,29) = 18.811, P < .001, ω2 = 0.26) and bilateral posterior putamen (PD-left: F(1,29) = 107.531, P < .001, ω2 = 0.77; right: F(1,29) = 87.525, P < .001, ω2 = 0.72; DLB-left: F(1,29) = 39.910, P < .001, ω2 = 0.48; right: F(1,29) = 26.882, P < .001, ω2 = 0.38). DLB patients had lower hypothalamic 123I-FP-CIT BRs than healthy controls (F(1,29) = 6.059, P = .020, ω2 = 0.12). In the voxel-based analysis, PD and DLB patients had significantly lower striatal binding than healthy controls. Both PD patients in the early disease stages and DLB patients have reduced availability of striatal DAT, and DLB patients lower hypothalamic SERT compared with healthy controls. These observations add to the growing body of evidence that PD and DLB are not merely dopaminergic diseases, thereby providing additional clinicopathological insights.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Hipocampo/metabolismo , Hipotálamo/metabolismo , Doença por Corpos de Lewy/metabolismo , Neostriado/metabolismo , Doença de Parkinson/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Tálamo/metabolismo , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Tropanos , Idoso , Estudos Transversais , Feminino , Hipocampo/diagnóstico por imagem , Humanos , Hipotálamo/diagnóstico por imagem , Doença por Corpos de Lewy/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Neostriado/diagnóstico por imagem , Doença de Parkinson/diagnóstico por imagem , Estudos Retrospectivos , Tálamo/diagnóstico por imagem
20.
Pain ; 160(2): 334-344, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30325872

RESUMO

Neuropathic pain represents a challenge to clinicians because it is resistant to commonly prescribed analgesics due to its largely unknown mechanisms. Here, we investigated a descending dopaminergic pathway-mediated modulation of trigeminal neuropathic pain. We performed chronic constriction injury of the infraorbital nerve from the maxillary branch of trigeminal nerve to induce trigeminal neuropathic pain in mice. Our retrograde tracing showed that the descending dopaminergic projection from hypothalamic A11 nucleus to spinal trigeminal nucleus caudalis is bilateral. Optogenetic/chemogenetic manipulation of dopamine receptors D1 and D2 in the spinal trigeminal nucleus caudalis produced opposite effects on the nerve injury-induced trigeminal neuropathic pain. Specific excitation of dopaminergic neurons in the A11 nucleus attenuated the trigeminal neuropathic pain through the activation of D2 receptors in the spinal trigeminal nucleus caudalis. Conversely, specific ablation of the A11 dopaminergic neurons exacerbated such pain. Our results suggest that the descending A11-spinal trigeminal nucleus caudalis dopaminergic projection is critical for the modulation of trigeminal neuropathic pain and could be manipulated to treat such pain.


Assuntos
Encéfalo/patologia , Antagonistas de Dopamina/uso terapêutico , Neurônios Dopaminérgicos/patologia , Receptores de Dopamina D2/metabolismo , Espiperona/uso terapêutico , Doenças do Nervo Trigêmeo/terapia , Animais , Benzazepinas/uso terapêutico , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Condicionamento Operante/fisiologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Lateralidade Funcional , Hiperalgesia/fisiopatologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Limiar da Dor/fisiologia , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Doenças do Nervo Trigêmeo/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA