Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neurosci Lett ; 709: 134374, 2019 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-31310785

RESUMO

Sensory cortex topographic maps consist of organized arrays of thalamocortical afferents (TCAs) that project into distinct areas of the cortex. Formation of topographic maps in sensory cortices is a prerequisite for functional maturation of the neocortex. Studies have shown that the formation of topographic maps and the maturation of thalamocortical synapses in the somatosensory cortex depend on the cyclic adenosine 5'-monophosphate-(cAMP)-protein kinase A (PKA) signaling pathway. AKAP5 is a scaffold protein (also called AKAP79 in humans or AKAP150 in rodents; AKAP79/150) that serves as a signaling hub that links cAMP and PKA signaling. Whether AKAP5 plays a role in topographic map formation and the maturation of thalamocortical synapses during development of the somatosensory cortex is still unknown. Here, we generated cortex-specific AKAP5-knockout mice (CxAKAP5KO) to examine its roles in somatosensory cortex development. We found that CxAKAP5KO mice displayed impaired cortical barrel maps. Electrophysiological recordings showed that the AMPA/NMDA ratio was reduced, and silent synapses were increased in thalamocortical synapses of CxAKAP5KO mice during postnatal development. Morphological analysis of layer IV cortical neurons demonstrated that dendritic refinement of these neurons was abnormal. These results indicate that AKAP5 is necessary for both topographic map formation and maturation of thalamocortical synapses as well as morphological development of cortical neurons in the somatosensory cortex.


Assuntos
Proteínas de Ancoragem à Quinase A/biossíntese , Neocórtex/metabolismo , Córtex Somatossensorial/metabolismo , Sinapses/metabolismo , Tálamo/metabolismo , Proteínas de Ancoragem à Quinase A/deficiência , Proteínas de Ancoragem à Quinase A/genética , Animais , Expressão Gênica , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neocórtex/citologia , Vias Neurais/citologia , Vias Neurais/metabolismo , Córtex Somatossensorial/citologia , Sinapses/genética , Tálamo/citologia
2.
J Assist Reprod Genet ; 36(7): 1363-1377, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31254143

RESUMO

PURPOSE: To investigate if the recombinant human oviduct-specific glycoprotein (rHuOVGP1)-enhanced tyrosine-phosphorylated (pY) proteins are components of specific structure(s) of the sperm tail and if rHuOVGP1 binds to the oocyte and enhances sperm-egg binding. METHODS: Immunofluorescent staining and confocal microscopy were performed to examine the localization of pY proteins, outer dense fiber (ODF), and A-Kinase Associated Protein 3 (AKAP3) in human sperm during capacitation. Western blot and immunoprecipitation were employed to analyze protein levels of pY proteins and AKAP3. Immunofluorescent staining was performed to examine the binding of rHuOVGP1 to human oocytes. The effect of rHuOVGP1 on enhancing sperm-zona binding was examined using hemizona assay. RESULTS: pY proteins were detected mainly in the fibrous sheath (FS) surrounding the ODF with a relatively weak immunoreaction in the neck and mid-piece. Western blot analysis revealed co-migration of the pY 105 kDa protein with AKAP3, which was further confirmed by immunoprecipitation correlating immunofluorescent results of co-localization of pY proteins with AKAP3 in the sperm tail. rHuOVGP1 binds specifically to the zona pellucida (ZP) of human oocytes. Prior incubation of sperm and/or ZP with rHuOVGP1 increased sperm-egg binding. CONCLUSIONS: The present study revealed that one of the major rHuOVGP1-enhanced pY proteins could be AKAP3 of the FS and that rHuOVGP1 is capable of binding to human ZP and its presence in the medium results in an increase in sperm-zona binding. Supplement of rHuOVGP1 in in vitro fertilization media could be beneficial for enhancement of the fertilizing ability of human sperm.


Assuntos
Proteínas de Ancoragem à Quinase A/genética , Glicoproteínas/genética , Capacitação Espermática/genética , Espermatozoides/metabolismo , Animais , Feminino , Fertilização in vitro , Humanos , Masculino , Camundongos , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Oviductos/metabolismo , Fosforilação , Reprodução/genética , Sêmen/metabolismo , Cauda do Espermatozoide/metabolismo , Interações Espermatozoide-Óvulo/genética , Tirosina/metabolismo , Zona Pelúcida/metabolismo
3.
J Cell Physiol ; 234(5): 5863-5879, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29271489

RESUMO

Maintenance of the endothelial cell (EC) barrier is critical to vascular homeostasis and a loss of barrier integrity results in increased vascular permeability. While the mechanisms that govern increased EC permeability have been under intense investigation over the past several decades, the processes regulating the preservation/restoration of the EC barrier remain poorly understood. Herein we show that the extracellular purines, adenosine (Ado) and adenosine 5'-[γ-thio]-triphosphate (ATPγS) can strengthen the barrier function of human lung microvascular EC (HLMVEC). This ability involves protein kinase A (PKA) activation and decreases in myosin light chain 20 (MLC20) phosphorylation secondary to the involvement of MLC phosphatase (MLCP). In contrast to Ado, ATPγS-induced PKA activation is accompanied by a modest, but significant decrease in cyclic adenosine monophosphate (cAMP) levels supporting the existence of an unconventional cAMP-independent pathway of PKA activation. Furthermore, ATPγS-induced EC barrier strengthening does not involve the Rap guanine nucleotide exchange factor 3 (EPAC1) which is directly activated by cAMP but is instead dependent upon PKA-anchor protein 2 (AKAP2) expression. We also found that AKAP2 can directly interact with the myosin phosphatase-targeting protein MYPT1 and that depletion of AKAP2 abolished ATPγS-induced increases in transendothelial electrical resistance. Ado-induced strengthening of the HLMVEC barrier required the coordinated activation of PKA and EPAC1 in a cAMP-dependent manner. In summary, ATPγS-induced enhancement of the EC barrier is EPAC1-independent and is instead mediated by activation of PKA which is then guided by AKAP2, in a cAMP-independent mechanism, to activate MLCP which dephosphorylates MLC20 resulting in reduced EC contraction and preservation.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Permeabilidade Capilar/efeitos dos fármacos , Microvasos/efeitos dos fármacos , Agonistas do Receptor Purinérgico P1/farmacologia , Receptores Purinérgicos P1/efeitos dos fármacos , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Trifosfato de Adenosina/farmacologia , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Impedância Elétrica , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HEK293 , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microvasos/metabolismo , Cadeias Leves de Miosina/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/genética , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosforilação , Receptores Purinérgicos P1/genética , Receptores Purinérgicos P1/metabolismo , Transdução de Sinais
4.
J Biol Chem ; 286(14): 12627-39, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21224388

RESUMO

Regulation of CaV1.2 channels in cardiac myocytes by the ß-adrenergic pathway requires a signaling complex in which the proteolytically processed distal C-terminal domain acts as an autoinhibitor of channel activity and mediates up-regulation by the ß-adrenergic receptor and PKA bound to A-kinase anchoring protein 15 (AKAP15). We examined the significance of this distal C-terminal signaling complex for CaV1.2 and CaV1.3 channels in neurons. AKAP15 co-immunoprecipitates with CaV1.2 and CaV1.3 channels. AKAP15 has overlapping localization with CaV1.2 and CaV1.3 channels in cell bodies and proximal dendrites and is closely co-localized with CaV1.2 channels in punctate clusters. The neuronal AKAP MAP2B, which also interacts with CaV1.2 and CaV1.3 channels, has complementary localization to AKAP15, suggesting different functional roles in calcium channel regulation. Studies with mice that lack the distal C-terminal domain of CaV1.2 channels (CaV1.2ΔDCT) reveal that AKAP15 interacts with neuronal CaV1.2 channels via their C terminus in vivo and is co-localized in punctate clusters of CaV1.2 channels via that interaction. CaV1.2ΔDCT neurons have reduced L-type calcium current, indicating that the distal C-terminal domain is required for normal functional expression in vivo. Deletion of the distal C-terminal domain impairs calcium-dependent signaling from CaV1.2 channels to the nucleus, as shown by reduction in phosphorylation of the cAMP response element-binding protein. Our results define AKAP signaling complexes of CaV1.2 and CaV1.3 channels in brain and reveal three previously unrecognized functional roles for the distal C terminus of neuronal CaV1.2 channels in vivo: increased functional expression, anchoring of AKAP15 and PKA, and initiation of excitation-transcription coupling.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Encéfalo/citologia , Canais de Cálcio Tipo L/metabolismo , Neurônios/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Animais , Canais de Cálcio Tipo L/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Eletroforese em Gel de Poliacrilamida , Eletrofisiologia , Hipocampo/citologia , Immunoblotting , Imuno-Histoquímica , Imunoprecipitação , Camundongos , Camundongos Mutantes , Fosforilação , Ligação Proteica , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
5.
J Biol Chem ; 286(8): 6697-706, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21156788

RESUMO

GluA1 (formerly GluR1) AMPA receptor subunit phosphorylation at Ser-831 is an early biochemical marker for long-term potentiation and learning. This site is a substrate for Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) and protein kinase C (PKC). By directing PKC to GluA1, A-kinase anchoring protein 79 (AKAP79) facilitates Ser-831 phosphorylation and makes PKC a more potent regulator of GluA1 than CaMKII. PKC and CaM bind to residues 31-52 of AKAP79 in a competitive manner. Here, we demonstrate that common CaMKII inhibitors alter PKC and CaM interactions with AKAP79(31-52). Most notably, the classical CaMKII inhibitors KN-93 and KN-62 potently enhanced the association of CaM to AKAP79(31-52) in the absence (apoCaM) but not the presence of Ca(2+). In contrast, apoCaM association to AKAP79(31-52) was unaffected by the control compound KN-92 or a mechanistically distinct CaMKII inhibitor (CaMKIINtide). In vitro studies demonstrated that KN-62 and KN-93, but not the other compounds, led to apoCaM-dependent displacement of PKC from AKAP79(31-52). In the absence of CaMKII activation, complementary cellular studies revealed that KN-62 and KN-93, but not KN-92 or CaMKIINtide, inhibited PKC-mediated phosphorylation of GluA1 in hippocampal neurons as well as AKAP79-dependent PKC-mediated augmentation of recombinant GluA1 currents. Buffering cellular CaM attenuated the ability of KN-62 and KN-93 to inhibit AKAP79-anchored PKC regulation of GluA1. Therefore, by favoring apoCaM binding to AKAP79, KN-62 and KN-93 derail the ability of AKAP79 to efficiently recruit PKC for regulation of GluA1. Thus, AKAP79 endows PKC with a pharmacological profile that overlaps with CaMKII.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Receptores de AMPA/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas de Ancoragem à Quinase A/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Ativação Enzimática/efeitos dos fármacos , Células HEK293 , Hipocampo/metabolismo , Humanos , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/genética , Receptores de AMPA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA