Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Biol Pharm Bull ; 43(12): 1839-1846, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33268701

RESUMO

Polygala tenuifolia Willd. is a traditional Chinese herbal medicine that is widely used in treating nervous system disorders. Triterpene saponins in P. tenuifolia (polygala saponins) have excellent biological activity. As a precursor for the synthesis of presenegin, oleanolic acid (OA) plays an important role in the biosynthesis of polygala saponins. However, the mechanism behind the biosynthesis of polygala saponins remains to be elucidated. In this study, we found that CYP716A249 (GenBank: ASB17946) oxidized the C-28 position of ß-amyrin to produce OA. Using quantitative real-time PCR, we observed that CYP716A249 had the highest expression in the roots of 2-year-old P. tenuifolia, which provided a basis for the selection of samples for gene cloning. To identify the function of CYP716A249, the strain R-BE-20 was constructed by expressing ß-amyrin synthase in yeast. Then, CYP716A249 was co-expressed with ß-amyrin synthase to construct the strain R-BPE-20 by using the lithium acetate method. Finally, we detected ß-amyrin and OA by ultra-HPLC-Q Exactive hybrid quadrupole-Orbitrap high-resolution accurate mass spectrometry and GC-MS. The results of this study provide insights into the biosynthesis pathway of polygala saponins.


Assuntos
Clonagem Molecular/métodos , Polygala/genética , Polygala/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/genética , Triterpenos/metabolismo , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , Sistema Enzimático do Citocromo P-450/biossíntese , Sistema Enzimático do Citocromo P-450/genética , Regulação da Expressão Gênica de Plantas , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/genética , Ácido Oleanólico/metabolismo , Filogenia , Saccharomyces cerevisiae , Saponinas/biossíntese , Saponinas/genética
2.
Methods Mol Biol ; 1621: 37-46, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28567641

RESUMO

The wheat germ cell-free protein synthesis system has been used as a eukaryotic protein production system since it was first reported in 1964. Although initially the productivity of this system was not very high, it has now become one of the most versatile protein production systems, thanks to the enhancements made by several groups. In this chapter, we report a protein production method for plant receptor kinases using the wheat cell-free system. We describe a method for the preparation of a cell-free extract from wheat germ, the split-primer PCR method for preparation of transcription templates, and the bilayer cell-free protein synthesis method.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Sistema Livre de Células/metabolismo , Biossíntese de Proteínas , Receptores de Superfície Celular/genética , Sementes/química , Triticum/química , Arabidopsis/enzimologia , Proteínas de Arabidopsis/biossíntese , Primers do DNA/genética , Primers do DNA/metabolismo , DNA Complementar/genética , DNA Complementar/metabolismo , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Isoenzimas/biossíntese , Isoenzimas/genética , Extratos Vegetais/química , Reação em Cadeia da Polimerase/métodos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Superfície Celular/biossíntese , Transcrição Gênica
3.
PLoS Genet ; 12(7): e1006228, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27472382

RESUMO

Pollen-stigma interactions are essential for pollen germination. The highly regulated process of pollen germination includes pollen adhesion, hydration, and germination on the stigma. However, the internal signaling of pollen that regulates pollen-stigma interactions is poorly understood. KINßγ is a plant-specific subunit of the SNF1-related protein kinase 1 complex which plays important roles in the regulation of plant development. Here, we showed that KINßγ was a cytoplasm- and nucleus-localized protein in the vegetative cells of pollen grains in Arabidopsis. The pollen of the Arabidopsis kinßγ mutant could not germinate on stigma, although it germinated normally in vitro. Further analysis revealed the hydration of kinßγ mutant pollen on the stigma was compromised. However, adding water to the stigma promoted the germination of the mutant pollen in vivo, suggesting that the compromised hydration of the mutant pollen led to its defective germination. In kinßγ mutant pollen, the structure of the mitochondria and peroxisomes was destroyed, and their numbers were significantly reduced compared with those in the wild type. Furthermore, we found that the kinßγ mutant exhibited reduced levels of reactive oxygen species (ROS) in pollen. The addition of H2O2 in vitro partially compensated for the reduced water absorption of the mutant pollen, and reducing ROS levels in pollen by overexpressing Arabidopsis CATALASE 3 resulted in compromised hydration of pollen on the stigma. These results indicate that Arabidopsis KINßγ is critical for the regulation of ROS levels by mediating the biogenesis of mitochondria and peroxisomes in pollen, which is required for pollen-stigma interactions during pollination.


Assuntos
Proteínas de Arabidopsis/genética , Germinação/genética , Mitocôndrias/genética , Pólen/genética , Polinização/genética , Proteínas Serina-Treonina Quinases/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/biossíntese , Catalase/biossíntese , Catalase/genética , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Proteínas Mutantes/biossíntese , Proteínas Mutantes/genética , Peroxissomos/genética , Pólen/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Água/metabolismo
4.
Sci Rep ; 6: 28298, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27324083

RESUMO

As a resource allocation strategy, plant growth and defense responses are generally mutually antagonistic. Brassinosteroid (BR) regulates many aspects of plant development and stress responses, however, genetic evidence of its integrated effects on plant growth and stress tolerance is lacking. We overexpressed the Arabidopsis BR biosynthetic gene AtDWF4 in the oilseed plant Brassica napus and scored growth and stress response phenotypes. The transgenic B. napus plants, in comparison to wild type, displayed increased seed yield leading to increased overall oil content per plant, higher root biomass and root length, significantly better tolerance to dehydration and heat stress, and enhanced resistance to necrotrophic fungal pathogens Leptosphaeria maculans and Sclerotinia sclerotiorum. Transcriptome analysis supported the integrated effects of BR on growth and stress responses; in addition to BR responses associated with growth, a predominant plant defense signature, likely mediated by BES1/BZR1, was evident in the transgenic plants. These results establish that BR can interactively and simultaneously enhance abiotic and biotic stress tolerance and plant productivity. The ability to confer pleiotropic beneficial effects that are associated with different agronomic traits suggests that BR-related genes may be important targets for simultaneously increasing plant productivity and performance under stress conditions.


Assuntos
Proteínas de Arabidopsis/genética , Brassica napus/crescimento & desenvolvimento , Sistema Enzimático do Citocromo P-450/genética , Sementes/crescimento & desenvolvimento , Adaptação Fisiológica , Arabidopsis/genética , Proteínas de Arabidopsis/biossíntese , Ascomicetos/fisiologia , Vias Biossintéticas , Brassica napus/genética , Brassica napus/metabolismo , Brassinosteroides/biossíntese , Sistema Enzimático do Citocromo P-450/biossíntese , Desidratação/genética , Desidratação/metabolismo , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Melhoramento Genético , Doenças das Plantas/microbiologia , Óleos de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Sementes/genética , Sementes/metabolismo , Transcriptoma
5.
Biomed Res Int ; 2014: 521794, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25530962

RESUMO

The phytohormone abscisic acid (ABA) plays an important role in plant development and environmental stress response. Additionally, ABA also regulates secondary metabolism such as artemisinin in the medicinal plant Artemisia annua L. Although an earlier study showed that ABA receptor, AaPYL9, plays a positive role in ABA-induced artemisinin content improvement, many components in the ABA signaling pathway remain to be elucidated in Artemisia annua L. To get insight of the function of AaPYL9, we isolated and characterized an AaPYL9-interacting partner, AaPP2C1. The coding sequence of AaPP2C1 encodes a deduced protein of 464 amino acids, with all the features of plant type clade A PP2C. Transcriptional analysis showed that the expression level of AaPP2C1 is increased after ABA, salt, and drought treatments. Yeast two-hybrid and bimolecular fluorescence complementation assays (BiFC) showed that AaPYL9 interacted with AaPP2C1. The P89S, H116A substitution in AaPYL9 as well as G199D substitution or deletion of the third phosphorylation site-like motif in AaPP2C1 abolished this interaction. Furthermore, constitutive expression of AaPP2C1 conferred ABA insensitivity compared with the wild type. In summary, our data reveals that AaPP2C1 is an AaPYL9-interacting partner and involved in the negative modulation of the ABA signaling pathway in A. annua L.


Assuntos
Ácido Abscísico/genética , Proteínas de Arabidopsis/genética , Artemisininas/metabolismo , Fosfoproteínas Fosfatases/genética , Ácido Abscísico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/biossíntese , Artemisia annua/genética , Artemisia annua/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Germinação/genética , Mutação , Fosfoproteínas Fosfatases/biossíntese , Fosfoproteínas Fosfatases/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Transdução de Sinais/genética , Estresse Fisiológico/genética
6.
Metab Eng ; 24: 18-29, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24747046

RESUMO

The sesquiterpenoid (+)-nootkatone is a highly demanded and highly valued aroma compound naturally found in grapefruit, pummelo or Nootka cypress tree. Extraction of (+)-nootkatone from plant material or its production by chemical synthesis suffers from low yields and the use of environmentally harmful methods, respectively. Lately, major attention has been paid to biotechnological approaches, using cell extracts or whole-cell systems for the production of (+)-nootkatone. In our study, the yeast Pichia pastoris initially was applied as whole-cell biocatalyst for the production of (+)-nootkatone from (+)-valencene, the abundant aroma compound of oranges. Therefore, we generated a strain co-expressing the premnaspirodiene oxygenase of Hyoscyamus muticus (HPO) and the Arabidopsis thaliana cytochrome P450 reductase (CPR) that hydroxylated extracellularly added (+)-valencene. Intracellular production of (+)-valencene by co-expression of valencene synthase from Callitropsis nootkatensis resolved the phase-transfer issues of (+)-valencene. Bi-phasic cultivations of P. pastoris resulted in the production of trans-nootkatol, which was oxidized to (+)-nootkatone by an intrinsic P. pastoris activity. Additional overexpression of a P. pastoris alcohol dehydrogenase and truncated hydroxy-methylglutaryl-CoA reductase (tHmg1p) significantly enhanced the (+)-nootkatone yield to 208mg L(-1) cell culture in bioreactor cultivations. Thus, metabolically engineered yeast P. pastoris represents a valuable, whole-cell system for high-level production of (+)-nootkatone from simple carbon sources.


Assuntos
Proteínas de Arabidopsis , Engenharia Metabólica , Pichia , Sesquiterpenos/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , Cupressus/enzimologia , Cupressus/genética , Hyoscyamus/enzimologia , Hyoscyamus/genética , Pichia/enzimologia , Pichia/genética , Sesquiterpenos Policíclicos
7.
Metab Eng ; 21: 71-80, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24269612

RESUMO

To produce beneficial phenolic acids for medical and commercial purposes, researchers are interested in improving the normally low levels of salvianolic acid B (Sal B) produced by Salvia miltiorrhiza. Here, we present a strategy of combinational genetic manipulation to enrich the precursors available for Sal B biosynthesis. This approach, involving the lignin pathway, requires simultaneous, ectopic expression of an Arabidopsis Production of Anthocyanin Pigment 1 transcription factor (AtPAP1) plus co-suppression of two endogenous, key enzyme genes: cinnamoyl-CoA reductase (SmCCR) and caffeic acid O-methyltransferase (SmCOMT). Compared with the untransformed control, we achieved a greater accumulation of Sal B (up to 3-fold higher) along with a reduced lignin concentration. This high-Sal B phenotype was stable in roots during vegetative growth and was closely correlated with increased antioxidant capacity for the corresponding plant extracts. Although no outward change in phenotype was apparent, we characterized the molecular phenotype through integrated analysis of transcriptome and metabolome profiling. Our results demonstrated the far-reaching consequences of phenolic pathway perturbations on carbohydrate metabolism, respiration, photo-respiration, and stress responses. This report is the first to describe the production of valuable end products through combinational genetic manipulation in S. miltiorrhiza plants. Our strategy will be effective in efforts to metabolically engineer multi-branch pathway(s), such as the phenylpropanoid pathway, in economically significant medicinal plants.


Assuntos
Benzofuranos/metabolismo , Engenharia Metabólica , Plantas Geneticamente Modificadas , Salvia miltiorrhiza , Aldeído Oxirredutases/biossíntese , Aldeído Oxirredutases/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , Metiltransferases/biossíntese , Metiltransferases/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/metabolismo , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
8.
FEBS Lett ; 587(4): 364-9, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23313251

RESUMO

Metabolic engineering approaches to increase plant oil levels can generally be divided into categories which increase fatty acid biosynthesis ('Push'), are involved in TAG assembly ('Pull') or increase TAG storage/decrease breakdown ('Accumulation'). In this study, we describe the surprising synergy when Push (WRI1) and Pull (DGAT1) approaches are combined. Co-expression of these genes in the Nicotiana benthamiana transient leaf expression system resulted in TAG levels exceeding those expected from an additive effect and biochemical tracer studies confirmed increased flux of carbon through fatty acid and TAG synthesis pathways. Leaf fatty acid profile also synergistically shifts from polyunsaturated to monounsaturated fatty acids.


Assuntos
Proteínas de Arabidopsis/biossíntese , Diacilglicerol O-Aciltransferase/biossíntese , Ácidos Graxos/biossíntese , Nicotiana/metabolismo , Folhas de Planta/metabolismo , Fatores de Transcrição/biossíntese , Triglicerídeos/biossíntese , Proteínas de Arabidopsis/genética , Diacilglicerol O-Aciltransferase/genética , Ácidos Graxos/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Ácidos Graxos Insaturados/biossíntese , Ácidos Graxos Insaturados/metabolismo , Expressão Gênica , Técnicas de Transferência de Genes , Folhas de Planta/enzimologia , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes/biossíntese , Nicotiana/enzimologia , Fatores de Transcrição/genética , Triglicerídeos/metabolismo , Regulação para Cima
9.
J Plant Physiol ; 169(5): 516-22, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22209219

RESUMO

Microspores develop inside the anther, where they are surrounded by nourishing tapetal cells. However, many cellular processes occurring during microspore development in the locule are poorly characterized. The actin cytoskeleton is known to play a crucial role in various aspects of the plant developmental process. During pollen tube tip growth, actin cytoskeleton serves as an efficient molecular transportation track, although how it functions in pollen development is unknown. The plant actin bundler PLIM2s have been shown to regulate actin bundling in different cells. Here, we investigate the biological function of three Arabidopsis pollen-specific LIM proteins, PLIM2a, PLIM2b, and PLIM2c (collectively, PLIM2s), in pollen development and tube growth. Variable degrees of suppressed expression of the PLIM2s by RNA interference resulted in aberrant phenotypes. Complete suppression of the PLIM2s totally disrupted pollen development, producing abortive pollen grains and rendering the transgenic plants sterile. Partial suppression of the PLIM2s arrested pollen tube growth to a lesser extent, resulting in short and swollen pollen tubes. Finally, the PLIM2c promoter initiated expression in pollen during stamen filament elongation, and the PLIM2c protein was located on particle structures in the developing pollen grains in Arabidopsis. These suggest that the actin bundler, PLIM2s, are an important factor for Arabidopsis pollen development and tube growth.


Assuntos
Citoesqueleto de Actina/fisiologia , Actinas/metabolismo , Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Tubo Polínico/crescimento & desenvolvimento , Actinas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , Pólen/crescimento & desenvolvimento , Tubo Polínico/anatomia & histologia
10.
Biochemistry ; 50(31): 6633-41, 2011 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-21710975

RESUMO

Plant nodulin-26 intrinsic proteins (NIPs) are members of the aquaporin superfamily that serve as multifunctional transporters of uncharged metabolites. In Arabidopsis thaliana, a specific NIP pore subclass, known as the NIP II proteins, is represented by AtNIP5;1 and AtNIP6;1, which encode channel proteins expressed in roots and leaf nodes, respectively, that participate in the transport of the critical cell wall nutrient boric acid. Modeling of the protein encoded by the AtNIP7;1 gene shows that it is a third member of the NIP II pore subclass in Arabidopsis. However, unlike AtNIP5;1 and AtNIP6;1 proteins, which form constitutive boric acid channels, AtNIP7;1 forms a channel with an extremely low intrinsic boric acid transport activity. Molecular modeling and molecular dynamics simulations of AtNIP7;1 suggest that a conserved tyrosine residue (Tyr81) located in transmembrane helix 2 adjacent to the aromatic arginine (ar/R) pore selectivity region stabilizes a closed pore conformation through interaction with the canonical Arg220 in ar/R region. Substitution of Tyr81 with a Cys residue, characteristic of established NIP boric acid channels, results in opening of the AtNIP7;1 pore that acquires a robust, transport activity for boric acid as well as other NIP II test solutes (glycerol and urea). Substitution of a Phe for Tyr81 also opens the channel, supporting the prediction from MD simulations that hydrogen bond interaction between the Tyr81 phenol group and the ar/R Arg may contribute to the stabilization of a closed pore state. Expression analyses show that AtNIP7;1 is selectively expressed in developing anther tissues of young floral buds of A. thaliana, principally in developing pollen grains of stage 9-11 anthers. Because boric acid is both an essential nutrient as well as a toxic compound at high concentrations, it is proposed that Tyr81 modulates transport and may provide an additional level of regulation for this transporter in male gametophyte development.


Assuntos
Aquaporinas/química , Proteínas de Arabidopsis/química , Arabidopsis/química , Ácidos Bóricos/química , Proteínas de Transporte/química , Regulação da Expressão Gênica de Plantas , Pólen/química , Tirosina/química , Substituição de Aminoácidos/genética , Aquaporinas/biossíntese , Aquaporinas/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , Ácidos Bóricos/metabolismo , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Sequência Conservada , Flores/química , Flores/genética , Flores/crescimento & desenvolvimento , Família Multigênica , Especificidade de Órgãos/genética , Fenilalanina/genética , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Estrutura Secundária de Proteína/genética , Tirosina/genética
11.
Plant Cell Physiol ; 51(12): 2047-59, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21047814

RESUMO

We identified two phenylquinazoline compounds in a large-scale screening for cytokinin antagonists in yeast expressing the Arabidopsis cytokinin receptor cytokinin response 1/histidine kinase 4 (CRE1). After chemical modifications, we obtained compound S-4893, which non-competitively inhibited binding of the natural ligand 2-isopentenyladenine to CRE1. S-4893 antagonized cytokinin-induced activation of the Arabidopsis response regulator 5 promoter in Arabidopsis. Importantly, S-4893 had no detectable intrinsic cytokinin agonist activity in Arabidopsis or in the transformed yeast system. Cytokinin bioassay further demonstrated that S-4893 antagonized cytokinin-induced stimulation of callus formation and inhibition of root elongation. S-4893 also promoted seminal, crown and lateral root growth in rice, suggesting that S-4893 could potentially promote root growth in a variety of agronomically important plants. We believe S-4893 will be a useful tool in functional studies of cytokinin action in a wide range of plants and a lead compound for the development of useful root growth promoters in agriculture.


Assuntos
Proteínas de Arabidopsis/antagonistas & inibidores , Arabidopsis/crescimento & desenvolvimento , Oryza/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Quinazolinas/farmacologia , Receptores de Superfície Celular/antagonistas & inibidores , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , Citocininas/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos , Isopenteniladenosina/farmacologia , Oryza/genética , Oryza/fisiologia , Reguladores de Crescimento de Plantas/antagonistas & inibidores , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/fisiologia , Ligação Proteica , Proteínas Quinases/biossíntese , Proteínas Quinases/genética , Quinazolinas/síntese química , Quinazolinas/química , Quinazolinas/isolamento & purificação , Receptores de Superfície Celular/biossíntese , Receptores de Superfície Celular/genética , Plântula/crescimento & desenvolvimento , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/síntese química , Leveduras/genética , Leveduras/metabolismo
12.
Plant Physiol Biochem ; 47(2): 86-93, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19056285

RESUMO

l-Rhamnose (Rha) is an important constituent of pectic polysaccharides, a major component of the cell walls of Arabidopsis, which is synthesized by three enzymes encoded by AtRHM1, AtRHM2/AtMUM4, and AtRHM3. Despite the finding that RHM1 is involved in root hair formation in Arabidopsis, experimental evidence is still lacking for the in vivo enzymatic activity and subcellular compartmentation of AtRHM1 protein. AtRHM1 displays high similarity to the other members of RHM family in Arabidopsis and in other plant species such as rice and grape. Expression studies with AtRHM1 promoter-GUS fusion gene showed that AtRHM1 was expressed almost ubiquitously, with stronger expression in roots and cotyledons of young seedlings and inflorescences. GFP::AtRHM1 fusion protein was found to be localized in the cytosol of cotyledon cells and of petiole cells of cotyledon, indicating that AtRHM1 is a cytosol-localized protein. The overexpression of AtRHM1 gene in Arabidopsis resulted in an increase of rhamnose content as much as 40% in the leaf cell wall compared to the wild type as well as an alteration in the contents of galactose and glucose. Fourier-transform infrared analyses revealed that surplus rhamnose upon AtRHM1 overexpression contributes to the construction of rhamnogalacturonan.


Assuntos
Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , Arabidopsis/enzimologia , Parede Celular/metabolismo , Genes de Plantas , Glucosiltransferases/biossíntese , Glucosiltransferases/genética , Ramnose/biossíntese , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Parede Celular/genética , Cotilédone , Citosol , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Pectinas/biossíntese , Pectinas/genética , Raízes de Plantas , Plantas Geneticamente Modificadas , Ramnose/genética , Alinhamento de Sequência
13.
FEBS Lett ; 582(29): 4077-82, 2008 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-19022253

RESUMO

Pollination includes processes where water and/or solute movements must be finely regulated, suggesting participation of aquaporins. Using information available from different transcriptional profilings of Arabidopsis thaliana mature pollen, we showed that the only aquaporins that are selectively and highly expressed in mature pollen are two TIPs: AtTIP1;3 and AtTIP5;1. Pollen exhibited a lower number and more exclusive type of aquaporin expressed genes when compared to other single cell transcriptional profilings. When characterized using Xenopus oocyte swelling assays, AtTIP1;3 and AtTIP5;1 showed intermediate water permeabilities. Although they displayed neither glycerol nor boric acid permeability they both transported urea. In conclusion, these results suggest a function for AtTIP1;3 and AtTIP5;1 as specific water and urea channels in Arabidopsis pollen.


Assuntos
Aquaporinas/metabolismo , Proteínas de Arabidopsis/biossíntese , Arabidopsis/metabolismo , Pólen/metabolismo , Ureia/metabolismo , Água/metabolismo , Animais , Aquaporinas/biossíntese , Aquaporinas/genética , Proteínas de Arabidopsis/genética , Transporte Biológico/genética , Regulação da Expressão Gênica de Plantas , Transcrição Gênica , Xenopus
14.
Plant Mol Biol ; 64(6): 683-97, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17579812

RESUMO

Various aspects of plant development and stress physiology are mediated by Ca(2+) signaling. Ca(2+) sensors, such as calmodulin, detect these signals and direct downstream signaling pathways by binding and activating diverse targets. Plants possess many unique, putative Ca(2+) sensors, including a large family (50 in Arabidopsis) of calmodulin-like proteins termed CMLs. Some of these CMLs have been implicated in Ca(2+)-based stress response but most remain unstudied. We generated transgenic plants expressing CML::GUS reporter genes for members of a subfamily of CMLs (CML37, CML38 and CML39) which allowed us to investigate their expression patterns in detail. We found that CML::GUS genes displayed unique tissue, cell-type, and temporal patterns of expression throughout normal development, particularly in the flower, and in response to a variety of stimuli, including biotic and abiotic stress, hormone and chemical treatments. Our findings are supported by semiquantitative reverse-transcription PCR as well as analyses of microarray databases. Analysis of purified, recombinant CMLs demonstrated their ability to bind Ca(2+) in vitro. Collectively, our data suggest that these CMLs likely play important roles as sensors in Ca(2+)-mediated developmental and stress response pathways and provide a framework of spatial and temporal expression to direct future studies aimed at elucidating their physiological roles.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Calmodulina/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/biossíntese , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/química , Calmodulina/biossíntese , Calmodulina/genética , DNA Complementar/metabolismo , Perfilação da Expressão Gênica , Genes de Plantas , Peróxido de Hidrogênio/química , Análise de Sequência com Séries de Oligonucleotídeos , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
15.
Proc Natl Acad Sci U S A ; 104(11): 4742-7, 2007 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-17360594

RESUMO

beta-Ketoacyl-acyl carrier protein (ACP) synthase II (KASII) elongates 16:0-ACP to 18:0-ACP in the plastid, where it competes with three other enzymes at the first major branch point in fatty acid biosynthesis. Despite its key metabolic location, the influence of KASII in determining seed oil composition remains unclear, in part because the biochemical consequences of the fab1-1 mutation were unresolved. Thus, fab1-1, and a newly identified knockout allele, fab1-2, were analyzed in the context of the hypothesis that modulating KASII activity is sufficient to convert the composition of a temperate seed oil into that of a palm-like tropical oil. No homozygous fab1-2 individuals were identified in progeny of self-fertilized heterozygous fab1-2 plants, approximately 1/4 of which aborted before the torpedo stage, suggesting that fab1-2 represents a complete loss of function and results in lethality when homozygous. Consistent with this hypothesis, homozygous fab1-2 plants were identified when a fab1-1 transgene was introduced, demonstrating that fab1-1 encodes an active KASII. Strong seed-specific hairpin-RNAi reductions in FAB1 expression resulted in abortion of approximately 1/4 of the embryos in an apparent phenocopy of fab1-2 homozygosity. In less severe FAB1 hairpin-RNAi individuals, embryos developed normally and exhibited a 1:2:1 segregation ratio for palmitate accumulation. Thus, early embryo development appears sensitive to elevated 16:0, whereas at later stages, up to 53% of 16:0, i.e., a 7-fold increase over wild-type levels, is tolerated. These results resolve the role of KASII in seed metabolism and demonstrate that modulation of Arabidopsis KASII levels is sufficient to convert its temperate oilseed composition to that of a palm-like tropical oil.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/biossíntese , Proteínas de Arabidopsis/biossíntese , Óleos/metabolismo , Sementes/metabolismo , Alelos , Arabidopsis/genética , Ácidos Graxos/metabolismo , Genes de Plantas , Genótipo , Heterozigoto , Homozigoto , Modelos Genéticos , Óleo de Palmeira , Óleos de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Interferência de RNA , Transgenes
16.
J Cell Sci ; 119(Pt 11): 2282-90, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16723734

RESUMO

The Arabidopsis thaliana wall-associated kinases (WAKs) bind to pectin with an extracellular domain and also contain a cytoplasmic protein kinase domain. WAKs are required for cell elongation and modulate sugar metabolism. This work shows that in leaf protoplasts a WAK1-GFP fusion protein accumulates in a cytoplasmic compartment that contains pectin. The WAK compartment contains markers for the Golgi, the site of pectin synthesis. The migration of WAK1-GFP to the cell surface is far slower than that of a cell surface receptor not associated with the cell wall, is influenced by the presence of fucose side chains on one or more unidentified molecules that might include pectin, and is dependent upon cellulose synthesis on the plasma membrane. WAK is crosslinked into a detergent-insoluble complex within the cytoplasmic compartment before it appears on the cell surface, and this is independent of fucose modification or cellulose synthesis. Thus, the assembly and crosslinking of WAKs may begin at an early stage within a cytoplasmic compartment rather than in the cell wall itself, and is coordinated with synthesis of surface cellulose.


Assuntos
Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Quinases/metabolismo , Arabidopsis , Proteínas de Arabidopsis/biossíntese , Biomarcadores/metabolismo , Celulose/biossíntese , Clonagem Molecular , Complexo de Golgi/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Membrana/biossíntese , Pectinas/biossíntese , Pectinas/metabolismo , Proteínas Quinases/biossíntese , Transporte Proteico/fisiologia , Protoplastos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo
17.
Planta ; 224(4): 782-91, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16622707

RESUMO

Pectin methylesterases (PME, EC. 3.1.1.11) are enzymes that demethylesterify plant cell wall pectins in muro. In Arabidopsis thaliana, putative PME proteins are thought to be encoded by a 66-member gene family. This study used real-time RT-PCR to gain an overview of the expression of the entire family at eight silique developmental stages, in flower buds and in vegetative tissue in the Arabidopsis. Only 15% of the PMEs were not expressed at any of the developmental stages studied. Among expressed PMEs, expression data could be clustered into five distinct groups: 19 PMEs highly or uniquely expressed in floral buds, 4 PMEs uniquely expressed at mid-silique developmental stages, 16 PMEs highly or uniquely expressed in silique at late developmental stages, 16 PMEs mostly ubiquitously expressed, and 1 PME with a specific expression pattern, i.e. not expressed during early silique development. Comparison of expression and phylogenetic profiles showed that, within phylogenetic group 2, all but one PME belong to the floral bud expression group. Similar results were shown for a subset of one of the phylogenetic group, which differed from others by containing most of the PMEs that do not possess any PRO part next to their catalytic part. Expression data were confirmed by two promoter:GUS transgenic plant analysis revealing a PME expressed in pollen and one in young seeds. Our results highlight the high diversity of PME expression profiles. They are discussed with regard to the role of PMEs in fruit development and cell growth.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/enzimologia , Hidrolases de Éster Carboxílico/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/fisiologia , Hidrolases de Éster Carboxílico/biossíntese , Hidrolases de Éster Carboxílico/fisiologia , Parede Celular/metabolismo , Flores/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Família Multigênica , Pectinas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/metabolismo
18.
Plant Physiol Biochem ; 44(1): 1-6, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16531059

RESUMO

Mitochondria play an important role during sporogenesis in plants. The steady state levels of the nuclear-encoded mitochondrial complex I (nCI), PSST, TYKY and NADHBP transcripts increase in flowers of male-sterile plants with impairment of mitochondrial function generated by the expression of the unedited version of ATP9 (u-ATP9). This suggests a nuclear control of nCI genes in response to the mitochondrial flaw. To evaluate this hypothesis, transgenic plants carrying the GUS reporter gene, under the control of the PSST, TYKY and NADHBP promoters, were constructed. We present evidence that suppression by antisense strategy of the expression of u-ATP9 restores the normal levels of three nCI transcripts, indicating that the increase in PSST, TYKY and NADHBP in plants with a mitochondrial flaw occurs at the transcriptional level. The data presented here support the hypothesis that a mitochondrial dysfunction triggers a retrograde signaling which induce some nuclear-encoded mitochondrial genes. Moreover, these results demonstrate that this is a valuable experimental model for studying nucleus-mitochondria cross-talk events.


Assuntos
Proteínas de Arabidopsis/antagonistas & inibidores , Arabidopsis/fisiologia , Complexo I de Transporte de Elétrons/biossíntese , ATPases Mitocondriais Próton-Translocadoras/antagonistas & inibidores , Transgenes/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , Complexo I de Transporte de Elétrons/genética , Fertilidade , Genes Reporter , Germinação , ATPases Mitocondriais Próton-Translocadoras/biossíntese , ATPases Mitocondriais Próton-Translocadoras/genética , Plantas Geneticamente Modificadas , Pólen/fisiologia , Regiões Promotoras Genéticas , Transdução de Sinais , Ativação Transcricional , Transgenes/genética
19.
New Phytol ; 169(1): 209-18, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16390432

RESUMO

Fusaric acid (FA) is a toxin produced by Fusarium species. Most studies on FA have reported toxic effects (for example, alteration of cell growth, mitochondrial activity and membrane permeability) at concentrations greater than 10(-5) m. FA participates in fungal pathogenicity by decreasing plant cell viability. However, FA is also produced by nonpathogenic Fusarii, potential biocontrol agents of vascular wilt fusaria. The aim of this study was to determine whether FA, at nontoxic concentrations, could induce plant defence responses. Nontoxic concentrations of FA were determined from cell-growth and O2-uptake measurements on suspensions of Arabidopsis thaliana cells. Ion flux variations were analysed from electrophysiological and pH measurements. H2O2 and cytosolic calcium were quantified by luminescence techniques. FA at nontoxic concentrations (i.e. below 10(-6) m) was able to induce the synthesis of phytoalexin, a classic delayed plant response to pathogen. FA could also induce rapid responses putatively involved in signal transduction, such as the production of reactive oxygen species, and an increase in cytosolic calcium and ion channel current modulations. FA can thus act as an elicitor at nanomolar concentrations.


Assuntos
Arabidopsis/fisiologia , Ácido Fusárico/toxicidade , Transdução de Sinais , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/biossíntese , Cálcio/metabolismo , Células Cultivadas , Concentração de Íons de Hidrogênio , Indóis/metabolismo , Potenciais da Membrana , Oxigênio/metabolismo , Técnicas de Patch-Clamp , Extratos Vegetais/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos , Terpenos , Tiazóis/metabolismo , Fitoalexinas
20.
Plant Physiol ; 138(4): 2124-33, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16055690

RESUMO

Previously, in an effort to better understand the male contribution to fertilization, we completed a maize (Zea mays) sperm expressed sequence tag project. Here, we used this resource to identify promoters that would direct gene expression in sperm cells. We used reverse transcription-polymerase chain reaction to identify probable sperm-specific transcripts in maize and then identified their best sequence matches in the Arabidopsis (Arabidopsis thaliana) genome. We tested five different Arabidopsis promoters for cell specificity, using an enhanced green fluorescent protein reporter gene. In pollen, the AtGEX1 (At5g55490) promoter is active in the sperm cells and not in the progenitor generative cell or in the vegetative cell, but it is also active in ovules, roots, and guard cells. The AtGEX2 (At5g49150) promoter is active only in the sperm cells and in the progenitor generative cell, but not in the vegetative cell or in other tissues. A third promoter, AtVEX1 (At5g62850) [corrected] was active in the vegetative cell during the later stages of pollen development; the other promoters tested (At1g66770 and At1g73350) did not function in pollen. Comparisons among GEX1 and GEX2 homologs from maize, rice (Oryza sativa), Arabidopsis, and poplar (Populus trichocarpa) revealed a core binding site for Dof transcription factors. The AtGEX1 and AtGEX2 promoters will be useful for manipulating gene expression in sperm cells, for localization and functional analyses of sperm proteins, and for imaging of sperm dynamics as they are transported in the pollen tube to the embryo sac.


Assuntos
Proteínas de Arabidopsis/biossíntese , Arabidopsis/metabolismo , Pólen/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Membrana , Dados de Sequência Molecular , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA