Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 353
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 37(7): 123, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34160683

RESUMO

Lipopeptides are important secondary metabolites produced by microbes. They find applications in environmental decontamination and in the chemical, pharmaceutical and food industries. However, their production is expensive. In the present work we propose three strategies to lower the production costs of surfactin. First, the coproduction of surfactin and arginase in a single growth. Second, extract the fraction of surfactin that adsorbs to the biomass and is removed from the growth medium through centrifugation. Third, use microbial biomass for the remediation of organic and inorganic contaminants. The coproduction of surfactin and arginase was evaluated by factorial design experiments using the LB medium supplemented with arginine. The best conditions for surfactin production were 22 h of growth at 37 °C using LB supplemented with arginine 7.3 g/L. Almost similar conditions were found to produce highest levels of arginase, 24 h and 6.45 g/L arginine. Decontamination of phenol and copper from artificial samples was attained by treatment with residues from lipopeptide production. Thus, cell suspensions and wash-waters used to extract surfactin from the biomass. Cell suspensions were used to successfully remove hydroquinone. Cell suspensions and wash-waters containing surfactin were successfully used to recover copper from solution. Specific monitoring methods were used for phenol and metal solutions, respectively a biosensor based on tyrosinase and either atomic absorption flame ionization spectrometry or absorbance coupled to the Arduino™ platform. Therefore, we report three alternative strategies to lower the production costs in lipopeptide production, which include the effective recovery of copper and phenol from contaminated waters using residues from surfactin production. Sustainable and profitable production of surfactin can be achieved by a coproduction strategy of lipopeptides and enzymes. Lipopeptides are collected in the supernatant and enzymes in the biomass. In addition, lipopeptides that coprecipitate with biomass can be recovered by washing. Lipopeptide wash-waters find applications in remediation and cells can also be used for environmental decontamination.


Assuntos
Arginase/biossíntese , Bacillus/enzimologia , Bacillus/crescimento & desenvolvimento , Bacillus/metabolismo , Lipopeptídeos/biossíntese , Peptídeos Cíclicos/biossíntese , Bacillus/genética , Proteínas de Bactérias/biossíntese , Biomassa , Reatores Biológicos , Cobre/metabolismo , Meios de Cultura , DNA Bacteriano , Microbiologia Ambiental , Recuperação e Remediação Ambiental , Hidroquinonas/metabolismo , Fenol/metabolismo
2.
Molecules ; 26(6)2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33801012

RESUMO

Staphylococcus aureus is still one of the leading causes of both hospital- and community-acquired infections. Due to the very high percentage of drug-resistant strains, the participation of drug-tolerant biofilms in pathological changes, and thus the limited number of effective antibiotics, there is an urgent need to search for alternative methods of prevention or treatment for S. aureus infections. In the present study, biochemically characterized (HPLC/UPLC-QTOF-MS) acetonic, ethanolic, and water extracts from fruits and bark of Viburnum opulus L. were tested in vitro as diet additives that potentially prevent staphylococcal infections. The impacts of V. opulus extracts on sortase A (SrtA) activity (Fluorimetric Assay), staphylococcal protein A (SpA) expression (FITC-labelled specific antibodies), the lipid composition of bacterial cell membranes (LC-MS/MS, GC/MS), and biofilm formation (LIVE/DEAD BacLight) were assessed. The cytotoxicity of V. opulus extracts to the human fibroblast line HFF-1 was also tested (MTT reduction). V. opulus extracts strongly inhibited SrtA activity and SpA expression, caused modifications of S. aureus cell membrane, limited biofilm formation by staphylococci, and were non-cytotoxic. Therefore, they have pro-health potential. Nevertheless, their usefulness as diet supplements that are beneficial for the prevention of staphylococcal infections should be confirmed in animal models in the future.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Fibroblastos , Staphylococcus aureus Resistente à Meticilina/fisiologia , Extratos Vegetais/farmacologia , Viburnum/química , Aminoaciltransferases/biossíntese , Antibacterianos/química , Proteínas de Bactérias/biossíntese , Linhagem Celular , Cisteína Endopeptidases/biossíntese , Fibroblastos/metabolismo , Fibroblastos/microbiologia , Fibroblastos/patologia , Frutas/química , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Casca de Planta/química , Extratos Vegetais/química
3.
Microb Cell Fact ; 20(1): 39, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33557832

RESUMO

BACKGROUND: Cyanobacteria are promising hosts for the production of various industrially important compounds such as succinate. This study focuses on introduction of the glyoxylate shunt, which is naturally present in only a few cyanobacteria, into Synechocystis PCC 6803. In order to test its impact on cell metabolism, engineered strains were evaluated for succinate accumulation under conditions of light, darkness and anoxic darkness. Each condition was complemented by treatments with 2-thenoyltrifluoroacetone, an inhibitor of succinate dehydrogenase enzyme, and acetate, both in nitrogen replete and deplete medium. RESULTS: We were able to introduce genes encoding the glyoxylate shunt, aceA and aceB, encoding isocitrate lyase and malate synthase respectively, into a strain of Synechocystis PCC 6803 engineered to overexpress phosphoenolpyruvate carboxylase. Our results show that complete expression of the glyoxylate shunt results in higher extracellular succinate accumulation compared to the wild type control strain after incubation of cells in darkness and anoxic darkness in the presence of nitrate. Addition of the inhibitor 2-thenoyltrifluoroacetone increased succinate titers in all the conditions tested when nitrate was available. Addition of acetate in the presence of the inhibitor further increased the succinate accumulation, resulting in high levels when phosphoenolpyruvate carboxylase was overexpressed, compared to control strain. However, the highest succinate titer was obtained after dark incubation of an engineered strain with a partial glyoxylate shunt overexpressing isocitrate lyase in addition to phosphoenolpyruvate carboxylase, with only 2-thenoyltrifluoroacetone supplementation to the medium. CONCLUSIONS: Heterologous expression of the glyoxylate shunt with its central link to the tricarboxylic acid cycle (TCA) for acetate assimilation provides insight on the coordination of the carbon metabolism in the cell. Phosphoenolpyruvate carboxylase plays an important role in directing carbon flux towards the TCA cycle.


Assuntos
Proteínas de Bactérias , Glioxilatos/metabolismo , Engenharia Metabólica , Fosfoenolpiruvato Carboxiquinase (ATP) , Ácido Succínico/metabolismo , Synechocystis , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Fosfoenolpiruvato Carboxiquinase (ATP)/biossíntese , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Synechocystis/genética , Synechocystis/metabolismo
4.
Sci Rep ; 10(1): 9547, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32533032

RESUMO

For centuries, herbs have been used by traditional therapists around the world to treat gastrointestinal tract disorders, such as gastritis. We hypothesized that the anti-Helicobacter pylori properties of phytoncide, which is extracted from pinecone waste, would facilitate use as a natural gastroprotective product to treat gastrointestinal tract disorders. Thus, we investigated in vitro antibacterial efficacy against H. pylori by agar diffusion assay. To determine the gastroprotective properties of phytoncide, we conducted hematoxylin and eosin staining, performed assays for the detection of the cytotoxin gene, and evaluated pro-inflammatory cytokine expression in H. pylori-infected C57BL/6 mice. Phytoncide significantly inhibited the survival of H. pylori in the gastrointestinal system of C57BL/6 mice. Reduction of gastric severity in H. pylori-infected mice was associated with reductions in the expression levels of pro-inflammatory cytokines in the gastric mucosa, and of the cytotoxin CagA gene in phytoncide treated groups (P < 0.05 and P < 0.01). In conclusion, phytoncide significantly inhibited the growth of H. pylori in gastro tissue, possibly due to the abundant α-pinene present in the phytoncide as detected by HPLC analysis. Further studies are needed to validate our findings, but we suggest that phytoncide has the potential to be used as a natural ingredient in anti-H. pylori products.


Assuntos
Antibacterianos/uso terapêutico , Gastrite/prevenção & controle , Infecções por Helicobacter/prevenção & controle , Helicobacter pylori/efeitos dos fármacos , Monoterpenos/uso terapêutico , Pinus/química , Extratos Vegetais/uso terapêutico , Amoxicilina/farmacologia , Amoxicilina/uso terapêutico , Animais , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/biossíntese , Antígenos de Bactérias/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Cromatografia Líquida de Alta Pressão , Claritromicina/farmacologia , Claritromicina/uso terapêutico , Citocinas/biossíntese , Citocinas/genética , DNA Bacteriano/genética , Avaliação Pré-Clínica de Medicamentos , Flores/química , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/metabolismo , Gastrite/microbiologia , Glycyrrhiza , Infecções por Helicobacter/tratamento farmacológico , Helicobacter pylori/genética , Helicobacter pylori/imunologia , Imunoglobulina G/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monoterpenos/isolamento & purificação , Monoterpenos/farmacologia , Omeprazol/farmacologia , Omeprazol/uso terapêutico , Organismos Livres de Patógenos Específicos
5.
Prep Biochem Biotechnol ; 50(6): 578-584, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32011972

RESUMO

Lipase based formulations has been a rising interest to laundry detergent industry for their eco-friendly property over phosphate-based counterparts and compatibility with chemical detergents ingredients. A thermo-stable Anoxybacillus sp. ARS-1 isolated from Taptapani Hotspring, India was characterized for optimum lipase production employing statistical model central composite design (CCD) under four independent variables (temperature, pH, % moisture and bio-surfactant) by solid substrate fermentation (SSF) using mustard cake. The output was utilized to find the effect of parameters and their interaction employing response surface methodology (RSM). A quadratic regression with R2 = 0.955 established the model to be statically best fitting and a predicted highest lipase production of 29.4 IU/g at an optimum temperature of 57.5 °C, pH 8.31, moisture 50% and 1.2 mg of bio-surfactant. Experimental production of 30.3 IU/g lipase at above conditions validated the fitness of model. Anoxybacillus sp. ARS-1 produced lipase was found to resist almost all chemical detergents as well as common laundry detergent, proving it to be a prospective additive for incorporation.


Assuntos
Anoxybacillus/enzimologia , Proteínas de Bactérias/biossíntese , Detergentes/química , Lipase/biossíntese , Modelos Estatísticos , Anoxybacillus/genética , DNA Bacteriano/genética , Detergentes/farmacologia , Estabilidade Enzimática/efeitos dos fármacos , Fermentação , Concentração de Íons de Hidrogênio , Índia , Mostardeira/química , Filogenia , Óleos de Plantas/química , RNA Ribossômico 16S/genética , Temperatura
6.
Arch Anim Nutr ; 74(4): 257-270, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31718315

RESUMO

The study evaluated the effects of soybean oil (SO) and dietary copper levels on nutrient digestion, ruminal fermentation, enzyme activity, microflora and microbial protein synthesis in dairy bulls. Eight Holstein rumen-cannulated bulls (14 ± 0.2 months of age and 326 ± 8.9 kg of body weight) were allocated into a replicated 4 × 4 Latin square design in a 2 × 2 factorial arrangement with factors being 0 or 40 g/kg dietary dry matter (DM) of SO and 0 or 7.68 mg/kg DM of Cu from copper sulphate (CS). The basal diet contained per kg DM 500 g of corn silage, 500 g of concentrate, 28 g of ether extract (EE) and 7.5 mg of Cu. The SO × CS interaction was significant (p < 0.05) for ruminal propionate proportion and acetate to propionate ratio. Dietary SO addition increased (p < 0.05) intake and total tract digestibility of EE but did not affect average daily gain (ADG) of bulls. Dietary CS addition did not affect nutrient intake but increased (p < 0.05) ADG and total tract digestibility of DM, organic matter, crude protein and neutral detergent fibre. Ruminal pH was not affected by treatments. Dietary SO addition did not affect ruminal total volatile fatty acids (VFA) concentration, decreased (p < 0.05) acetate proportion and ammonia N and increased (p < 0.05) propionate proportion. Dietary CS addition did not affect ammonia N, increased (p < 0.05) total VFA concentration and acetate proportion and decreased (p < 0.05) propionate proportion. Acetate to propionate ratio decreased (p < 0.05) with SO addition and increased (p < 0.05) with CS addition. Dietary SO addition decreased (p < 0.05) activity of carboxymethyl cellulase, cellobiase and xylanase as well as population of fungi, protozoa, methanogens, Ruminococcus albus and R. flavefaciens but increased (p < 0.05) α-amylase activity and population of Prevotella ruminicola and Ruminobacter amylophilus. Dietary CS addition increased (p < 0.05) activity of cellulolytic enzyme and protease as well as population of total bacteria, fungi, protozoa, methanogens, primary cellulolytic and proteolytic bacteria. Microbial protein synthesis was unchanged with SO addition but increased (p < 0.05) with CS addition. The results indicated that the addition of CS promoted nutrient digestion and ruminal fermentation by stimulating microbial growth and enzyme activity but did not relieve the negative effects of SO addition on ruminal fermentation in dairy bulls.


Assuntos
Bactérias/metabolismo , Bovinos/fisiologia , Sulfato de Cobre/metabolismo , Digestão , Rúmen/enzimologia , Rúmen/microbiologia , Óleo de Soja/metabolismo , Ração Animal/análise , Animais , Proteínas de Bactérias/biossíntese , Cobre/administração & dosagem , Cobre/metabolismo , Sulfato de Cobre/administração & dosagem , Indústria de Laticínios , Dieta/veterinária , Suplementos Nutricionais/análise , Fermentação , Microbioma Gastrointestinal/fisiologia , Masculino , Nutrientes/fisiologia , Óleo de Soja/administração & dosagem
7.
Int J Antimicrob Agents ; 55(2): 105863, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31870597

RESUMO

Cefepime/zidebactam (WCK 5222) is a ß-lactam/ß-lactam enhancer antibiotic designed to retain in vitro activity against Enterobacteriaceae that simultaneously produce metallo-ß-lactamase (MBL) and serine-ß-lactamase (SBL). Aztreonam (ATM) plus ceftazidime/avibactam (CZA) or meropenem/vaborbactam (M/V) is an attractive option for coverage of such strains, but clinical laboratories are not equipped to distinguish which is the more potent regimen to inform treatment decisions. We evaluated Enterobacteriaceae that expressed MBL and ≥1 SBL (n=15) using gradient diffusion strip (GDS) methods to (1) determine the minimum inhibitory concentration (MIC) of WCK 5222 and (2) compare the in vitro potency of CZA+ATM vs. M/V+ATM. All isolates were non-susceptible to ATM, CZA, and M/V and were inhibited by WCK 5222 at cefepime concentrations ≥2 log2 dilutions below the susceptible-dose dependent breakpoint of 8 mg/L (MIC50/90, 1/2 mg/L). Activity of CZA+ATM vs. M/V+ATM was compared using the zone of hope (ZOH) product, quantitated by multiplying the length (in mm) of inhibited growth adjacent to each GDS from the point of intersection. The median (interquartile range) ZOH product for CZA+ATM and M/V+ATM was 75.4 (62.8-93.7) and 23.5 (14.1-60.4), respectively (P=0.002). In strains with one carbapenemase (the MBL), the median ZOH products were not statistically different, but in strains with an OXA-type carbapenemase (n=6), the median product for CZA+ATM and M/V+ATM was 78.1 and 20.7, respectively (P=0.004). Thus, CZA+ATM may offer enhanced coverage over M/V+ATM of Enterobacteriaceae co-expressing MBL and SBL. Further preclinical in vivo evaluations of WCK 5222 monotherapy are warranted.


Assuntos
Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Proteínas de Bactérias/biossíntese , Cefalosporinas/farmacologia , Ciclo-Octanos/farmacologia , Enterobacteriaceae/efeitos dos fármacos , beta-Lactamases/biossíntese , Enterobacteriaceae/enzimologia , Humanos , Técnicas In Vitro , Testes de Sensibilidade Microbiana
8.
Infect Immun ; 87(12)2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31527126

RESUMO

Severe manifestations of group A Streptococcus (GAS) infections are associated with massive tissue destruction and high mortality. Clindamycin (CLI), a bacterial protein synthesis inhibitor, is recommended for treating patients with severe invasive GAS infection. Nonetheless, the subinhibitory concentration of CLI induces the production of GAS virulent exoproteins, such as streptolysin O (SLO) and NADase, which would enhance bacterial virulence and invasiveness. A better understanding of the molecular mechanism of how CLI triggers GAS virulence factor expression will be critical to develop appropriate therapeutic approaches. The present study shows that CLI activates SLO and NADase expressions in the emm1-type CLI-susceptible wild-type strain but not in covS or control of virulence sensor (CovS) phosphatase-inactivated mutants. Supplementation with Mg2+, which is a CovS phosphatase inhibitor, inhibits the CLI-mediated SLO upregulation in a dose-dependent manner in CLI-susceptible and CLI-resistant strains. These results not only reveal that the phosphorylation of response regulator CovR is essential for responding to CLI stimuli, but also suggest that inhibiting the phosphatase activity of CovS could be a potential strategy for the treatment of invasive GAS infection with CLI.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Clindamicina/farmacologia , Histidina Quinase/metabolismo , Proteínas Repressoras/metabolismo , Streptococcus pyogenes/metabolismo , Estreptolisinas/biossíntese , Proteínas de Bactérias/biossíntese , Histidina Quinase/antagonistas & inibidores , Histidina Quinase/genética , Magnésio/farmacologia , Monoéster Fosfórico Hidrolases/metabolismo , Streptococcus pyogenes/patogenicidade
9.
J Infect ; 79(3): 245-252, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31276705

RESUMO

INTRODUCTION: There is scarce information on the prognosis of urinary tract infections (UTI) caused by KPC carbapenemase-producing Klebsiella pneumoniae (KPC-Kp). OBJETIVE: To investigate the association between KPC-Kp aetiology and clinical failure and all cause mortality and to explore the impact of inappropriate empirical treatment. MATERIAL AND METHODS: This is a retrospective observational study of hospitalized patients with UTI due to K. pneumoniae. We explored clinical failure at day 21 and 30-day all-cause mortality using different models of adjusted analysis. RESULTS: We analyzed 142 episodes of UTI; 46 episodes (32.4%) were due to KPC-Kp and 96 episodes (67.6%) were due to non-KPC-Kp strains (62 wild type and 34 EBSL producer). Clinical failure was more frequent in the KPC-Kp group (41.3% vs. 15.6%, p = 0.001). KPC-Kp aetiology and inappropriate empirical therapy were associated in the non-adjusted analysis with clinical failure. When analysed in separate adjusted models, both were found to be associated; inappropriate empirical treatment (OR 2.51; 95% CI, 1.03-6.12; p = 0.04) and KPC-Kp (OR 2.73; 95% CI, 1.03-7.22; p = 0.04) were associated with increased risk of failure. All-cause 30-day mortality was higher in patients with KPC-Kp UTI (39.1% vs. 15.6%, p = 0.002). Bacteraemia was more frequent in patients with KPC-Kp etiology (23.9% vs. 10.4%; p = 0.034). In both cases, the association was not confirmed in the adjusted analysis. CONCLUSION: KPC-Kp UTI is associated with higher clinical failure and may be due to an increase in inappropriate empirical treatment.


Assuntos
Proteínas de Bactérias/genética , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/mortalidade , Klebsiella pneumoniae/genética , Infecções Urinárias/microbiologia , Infecções Urinárias/mortalidade , beta-Lactamases/genética , Idoso , Idoso de 80 Anos ou mais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/biossíntese , Causas de Morte , Feminino , Humanos , Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae/efeitos dos fármacos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Vigilância da População , Prognóstico , Curva ROC , Estudos Retrospectivos , Infecções Urinárias/tratamento farmacológico , beta-Lactamases/biossíntese
10.
Appl Microbiol Biotechnol ; 103(10): 4033-4043, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30937497

RESUMO

Corynebacterium glutamicum was only examined in the early 2000s as a possible microorganism for the production of the polyamide cyanophycin (multi-L-arginyl-poly-[L-aspartic acid], CGP). CGP is a potential precursor for the synthesis of polyaspartic acid and CGP-derived dipeptides which may be of use in peptide-based clinical diets, as dietary supplements, or in livestock feeds. In the past, C. glutamicum was disregarded for CGP production due to low CGP contents and difficulties in isolating the polymer. However, considering recent advances in CGP research, the capabilities of this organism were revisited. In this study, several cyanophycin synthetases (CphA) as well as expression vectors and cultivation conditions were evaluated. The ability of C. glutamicum to incorporate additional amino acids such as lysine and glutamic acid was also examined. The strains C. glutamicum pVWEx1::cphAΔ1 and C. glutamicum pVWEx1::cphABP1 accumulated up to 14% of their dry weight CGP, including soluble CGP containing more than 40 mol% of the alternative side-chain amino acid lysine. The soluble, lysine-rich form of the polymer was not detected in C. glutamicum in previous studies. Additionally, an incorporation of up to 6 mol% of glutamic acid into the backbone of CGP synthesized by C. glutamicum pVWEx1::cphADh was detected. The strain accumulated up to 17% of its dry weight in soluble CGP. Although glutamic acid had previously been found to replace arginine in the side chain, this is the first time that glutamic acid was found to substitute aspartic acid in the backbone.


Assuntos
Proteínas de Bactérias/biossíntese , Corynebacterium glutamicum/metabolismo , Ácido Glutâmico/metabolismo , Lisina/metabolismo , Engenharia Metabólica/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ácido Glutâmico/genética , Lisina/genética , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
11.
Metab Eng ; 53: 1-13, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30684584

RESUMO

Medium-chain (C6-C10) chemicals are important components of fuels, commodities and fine chemicals. Numerous exciting achievements have proven reversed ß-oxidation cycle as a promising platform to synthesize these chemicals. However, under native central carbon metabolism, energetic and redox constraints limit the efficient operation of reversed ß-oxidation cycle. Current fermentative platform has to use different chemically and energetically inefficient ways for acetyl-CoA and NADH biosynthesis, respectively. The characteristics such as supplementation of additional acetate and formate or high ATP requirement makes this platform incompatible with large-scale production. Here, an artificial micro-aerobic metabolism for energy and carbon-efficient conversion of glycerol to MCFAs was constructed to present solutions towards these barriers. After evaluating numerous bacteria pathways under micro-aerobic conditions, one synthetic metabolic step enabling biosynthesis of acetyl-CoA and NADH simultaneously, without any energy cost and additional carbon requirement, and reducing loss of carbon to carbon dioxide-emitting reactions, was conceived and successfully constructed. The pyruvate dehydrogenase from Enterococcus faecalis was identified and biochemically characterized, demonstrating the most suitable characteristics. Furthermore, the carbon and energy metabolism in Escherichia coli was rewired by the clustered regularly interspaced short palindromic repeats interference system, inhibiting native fermentation pathways outcompeting this synthetic step. The present engineered strain exhibited a 15.7-fold increase in MCFA titer compared with that of the initial strain, and produced 15.67 g/L MCFAs from the biodiesel byproduct glycerol in 3-L bioreactor without exogenous feed of acetate or formate, representing the highest MCFA titer reported to date. This work demonstrates this artificial micro-aerobic metabolism has the potential to enable the cost-effective, large-scale production of fatty acids and other value-added reduced chemicals.


Assuntos
Metabolismo Energético , Escherichia coli , Ácidos Graxos/biossíntese , Engenharia Metabólica , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Reatores Biológicos , Enterococcus faecalis/enzimologia , Enterococcus faecalis/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Graxos/genética , Complexo Piruvato Desidrogenase/biossíntese , Complexo Piruvato Desidrogenase/genética
12.
Bull Environ Contam Toxicol ; 102(3): 391-398, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30535824

RESUMO

Microcystis growth and physiological responses to chloramphenicol (CAP)-stress were explored at different phosphorus (P) concentrations during 20-day exposure. Under CAP-stress, Microcystis exhibited (i) stronger total protein synthesis and antioxidant defenses at 5 mg/L P than 0.05-0.5 mg/L P in early test period (before day 8), and (ii) greater CAP-removal via biodegradation at 5 mg/L P in mid-late period. Due to above mechanisms, 5 mg/L P largely alleviated the inhibitory effect of CAP on Microcystis growth until test end, thus minimizing CAP toxicity to Microcystis, compared with 0.05-0.5 mg/L P. Moreover, microcystin-production and -release by Microcystis under CAP-stress were also P-dependent. These results suggested that under CAP-stress, although Microcystis growth was more inhibited at 0.05-0.5 mg/L P, higher microcystin-release and CAP residual at 0.05-0.5 mg/L P than at 5 mg/L P still caused eco-risks, which had important implication for risk assessment during Microcystis-dominated blooms and CAP pollution co-occurrence in different waters.


Assuntos
Cloranfenicol/toxicidade , Microcystis/efeitos dos fármacos , Fósforo/toxicidade , Poluentes Químicos da Água/toxicidade , Proteínas de Bactérias/biossíntese , Eutrofização/efeitos dos fármacos , Microcistinas/metabolismo , Microcystis/enzimologia
13.
Int J Biol Macromol ; 121: 1227-1239, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30352229

RESUMO

A novel extracellular protease (SAPRH) was hyper-produced (9000 U/mL) from Bacillus safensis RH12, a newly isolated enzyme from a Tunisian offshore oil field. The enzyme was purified to homogeneity, using salt-precipitation, heat-treatment and FPLC anion-exchange chromatography. The purified enzyme was a monomer of molecular mass of ~28 kDa. The NH2-terminal 23 amino-acid sequence of SAPRH showed high homology with those of Bacillus-proteases. SAPRH displayed optimal activity at pH 9 and 60 °C. It was strongly inhibited by phenylmethanesulfonyl fluoride (PMSF) and diiodopropyl fluorophosphates (DFP), indicating that it belongs to the serine-proteases family. Moreover, SAPRH was extremely stable at a broad range of temperature and pH retaining 85% of its activity at 50 °C and 75% at pH 11. The enzyme exhibited excellent stability and compatibility with surfactants and commercial detergents, revealing 90% stability with SDS and 100% stability with Class commercial laundry detergent. One of the most distinctive properties is its catalytic efficiency, which is higher than that of Alcalase 2.5 L, typeDX (commercial enzyme) and SAPB from B. pumilus CBS. Interestingly, the results of the wash performance analysis demonstrated considerably good de-staining at 40 °C for 30 min with low supplementation (500 U/mL). Accordingly, such a protease could be considered as a good detergent-additive in detergent industry.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Detergentes/farmacologia , Endopeptidases/isolamento & purificação , Endopeptidases/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/biossíntese , Cálcio/farmacologia , Corantes/metabolismo , Fibra de Algodão , Interações Medicamentosas , Endopeptidases/biossíntese , Inibidores Enzimáticos/farmacologia , Estabilidade Enzimática/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Cinética , Filogenia , Polímeros/farmacologia
14.
Artif Cells Nanomed Biotechnol ; 46(sup3): S18-S27, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30033763

RESUMO

Early evaluation of iron overload (IO) and prompt iron-chelation therapy reduce the haematopoietic damage wrought by IO-induced reactive oxygen species (ROS). We examined whether MagA could simultaneously increase the sensitivity of magnetic resonance imaging (MRI) for iron measurement and attenuate oxidative damage to the haematopoietic microenvironment. After generation of a transgenic (Tg) mouse model, MRI, transmission electron microscopy and cytotoxicity assays were used to assess various parameters in mesenchymal stem cells (MSCs). Transverse relaxation rate (R2*) of MagA-expressing MSCs in the presence of iron supplement was higher compared with that of control cells. Besides, R2* value of liver from IO magA Tg mice was higher than that of wild type mice. Moreover, MagA contributed to reduce the cytotoxicity of iron against MSCs, reduce expression of p-p38 mitogen-activated protein kinase and ferritin, and reduce inhibition of the osteogenic differentiation caused by IO. These data support the use of magA as a reporter gene for cell tracking with MRI and indicate exciting new possibilities for use of MagA in the attenuation of injury due to oxidative stress caused by exogenous iron.


Assuntos
Proteínas de Bactérias , Medula Óssea , Proteínas de Transporte de Cátions , Genes Reporter , Hematopoese , Sobrecarga de Ferro , Ferro/metabolismo , Imageamento por Ressonância Magnética , Células-Tronco Mesenquimais/metabolismo , Nicho de Células-Tronco , Animais , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Medula Óssea/diagnóstico por imagem , Medula Óssea/metabolismo , Proteínas de Transporte de Cátions/biossíntese , Proteínas de Transporte de Cátions/genética , Sobrecarga de Ferro/diagnóstico por imagem , Sobrecarga de Ferro/genética , Sobrecarga de Ferro/metabolismo , Camundongos , Camundongos Transgênicos
15.
Biotechnol Lett ; 40(9-10): 1271-1287, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29968134

RESUMO

Gram-negative bacilli such as Pseudomonas spp., Pseudoalteromonas sp., Angiococcus sp., Archangium sp., Burkholderia spp., Chromobacterium sp., Chondromyces sp., Cystobacter sp., Jahnella sp., Janthinobacterium sp., Lysobacter spp., Paraliomyxa sp., Photobacterium spp., Photorhabdus sp., Pontibacter sp., Ruegeria sp., Serratia sp., Sorangium sp., Sphingomonas sp., and Xenorhabdus spp. produce an enormous array of short peptides of 30 residues or fewer that are potential pharmaceutical drugs and/or biocontrol agents. The need for novel lead antibiotic compounds is urgent due to increasing drug resistance, and this review summarises 150 Gram-negative bacilli-derived compounds reported since 2000, including 40 cyclic lipopeptides from Pseudomonas spp.; nine aromatic peptides; eight glycopeptides; 45 different cyclic lipopeptides; 24 linear lipopeptides; eight thiopeptides; one lasso peptide; ten typical cyclic peptides; and five standard linear peptides. The current and potential therapeutic applications of these peptides, including structures and antituberculotic, anti-cyanobacterial, antifungal, antibacterial, antiviral, insecticidal, and antiprotozoal activities are discussed.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Bactérias Gram-Negativas/química , Peptídeos/farmacologia , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Bactérias Gram-Negativas/metabolismo , Lipopeptídeos/química , Lipopeptídeos/farmacologia , Testes de Sensibilidade Microbiana , Peptídeos/química , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia
16.
Protein Expr Purif ; 152: 46-55, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30055246

RESUMO

In this study, protease Pph_Pro1 from Pseudoalteromonas phenolica, possessing extracellular proteolytic activity and salt tolerance, was investigated for cloning, expression, and purification purposes. Through optimization, it was determined that optimum soluble recombinant expression was achieved when Pph_Pro1 was co-expressed with the pTf16 vector chaperone in LB medium supplemented with CaCl2. Pph_Pro1 was purified using osmotic shock and immobilized metal-affinity chromatography (IMAC). Isolated Pph_Pro1 activity was measured as 0.44 U/mg using casein as a substrate. Interestingly, Pph_Pro1 displayed halophilic, alkaliphilic, and unexpected thermostable properties. Furthermore, it was resistant to several hydrophilic and hydrophobic organic solvents. Substrate specificity and kinetic values such as Km and Vmax were determined with casein, bovine serum albumin (BSA), and algal waste protein as substrates, indicating that the Pph_Pro1 protease enzyme had a greater affinity for casein. Based on the remarkable characteristics of this Pph_Pro1 protease enzyme, it can potentially be utilized in many biotechnological industries.


Assuntos
Proteínas de Bactérias/genética , Escherichia coli/genética , Peptídeo Hidrolases/genética , Pseudoalteromonas/enzimologia , Proteínas Recombinantes de Fusão/genética , Proteínas de Algas/química , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/isolamento & purificação , Cloreto de Cálcio/farmacologia , Caseínas/química , Cromatografia de Afinidade , Clonagem Molecular , Meios de Cultura/química , Meios de Cultura/farmacologia , Ensaios Enzimáticos , Estabilidade Enzimática , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Peptídeo Hidrolases/biossíntese , Peptídeo Hidrolases/isolamento & purificação , Proteólise , Pseudoalteromonas/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/isolamento & purificação , Salinidade , Tolerância ao Sal/fisiologia , Soroalbumina Bovina/química , Especificidade por Substrato
17.
Ann Clin Microbiol Antimicrob ; 17(1): 24, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29859115

RESUMO

BACKGROUND: Acinetobacter baumannii causes difficult-to-treat nosocomial infections, which often lead to morbidity due to the development of antimicrobial drug resistance and expression of virulence genes. Data regarding the association of resistance to colistin, a last treatment option, and the virulence gene expression of A. baumannii is scarce. METHODS: We evaluated the MLVA genotype, antimicrobial resistance, and biofilm formation of 100 A. baumannii isolates from burn patients, and further compared the in vitro and in vivo expression of four virulence genes among five colistin-resistant A. baumannii (Cst-R-AB) isolates. Five Cst-R-AB isolates were tested; one from the present study, and four isolated previously. RESULTS: Our results showed that reduced expression of recA, along with increased in vivo expression of lpsB, dnaK, and blsA; are associated with colistin resistance among Cst-R-AB isolates. Differences in virulence gene expressions among Cst-R-AB isolates, may in part explain common discrepant in vitro vs. in vivo susceptibility data during treatment of infections caused by Cst-R-AB. CONCLUSIONS: Our findings highlight the intricate relationship between colistin-resistance and virulence among A. baumannii isolates, and underscore the importance of examining the interactions between virulence and antimicrobial resistance toward efforts to control the spread of multidrug-resistant A. baumannii (MDR-AB) isolates, and also to reduce disease severity in burn patients with MDR-AB infection.


Assuntos
Acinetobacter baumannii/genética , Acinetobacter baumannii/patogenicidade , Antibacterianos/uso terapêutico , Biofilmes/crescimento & desenvolvimento , Colistina/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/efeitos dos fármacos , Proteínas da Membrana Bacteriana Externa/biossíntese , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Queimaduras/microbiologia , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Humanos , Manosiltransferases/biossíntese , Manosiltransferases/genética , Testes de Sensibilidade Microbiana , Recombinases Rec A/biossíntese , Recombinases Rec A/genética , Virulência/genética
18.
Bioprocess Biosyst Eng ; 41(8): 1177-1183, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29700657

RESUMO

Conventional biosurfactants have high production costs. Therefore, the use of low-cost carbon sources for their production is attractive for industry. The ability to remain stable under various environmental conditions further extends industrial application. Here we aimed to evaluate the stability of a new lipopeptide produced by Corynebacterium aquaticum using fish residue as an unconventional energy source. The biosurfactant was produced using 3% fish residue, 2% of the microorganism, and mineral medium. Biosurfactant characterization was performed by thin layer chromatography (TLC), as well as by testing its infrared, surface tension, emulsifying activity, and ionic character. The stability of the biosurfactant was evaluated by testing its surface tension at a range of temperatures, pH, and saline concentrations, as well as after 6 months of storage. The biosurfactant was characterized as a lipopeptide due to its retention time, which was coincident with the amino acid and lipid chains obtained in the TLC analysis, being confirmed by some regions of absorption verified in the infrared analysis. The surface tension and emulsifying activity of the biosurfactant were 27.8 mN/m and 87.6%, respectively, and showed anionic character. The biosurfactant was stable at temperatures of 20 to 121 °C, in saline concentrations of 1 to 7%, and at pH close to neutrality. Based on our findings, it is possible to use unconventional sources of energy to produce a lipopeptide biosurfactant that can act under various environments.


Assuntos
Proteínas de Bactérias/biossíntese , Corynebacterium/crescimento & desenvolvimento , Lipopeptídeos/biossíntese , Tensoativos/metabolismo
19.
Appl Environ Microbiol ; 84(9)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29475867

RESUMO

In many pro- and eukaryotes, a retinal-based proton pump equips the cell to drive ATP synthesis with (sun)light. Such pumps, therefore, have been proposed as a plug-in for cyanobacteria to artificially increase the efficiency of oxygenic photosynthesis. However, little information on the metabolism of retinal, their chromophore, is available for these organisms. We have studied the in vivo roles of five genes (sll1541, slr1648, slr0091, slr1192, and slr0574) potentially involved in retinal metabolism in Synechocystis sp. strain PCC 6803. With a gene deletion approach, we have shown that Synechocystis apo-carotenoid-15,15-oxygenase (SynACO), encoded by gene sll1541, is an indispensable enzyme for retinal synthesis in Synechocystis, presumably via asymmetric cleavage of ß-apo-carotenal. The second carotenoid oxygenase (SynDiox2), encoded by gene slr1648, competes with SynACO for substrate(s) but only measurably contributes to retinal biosynthesis in stationary phase via an as-yet-unknown mechanism. In vivo degradation of retinal may proceed through spontaneous chemical oxidation and via enzyme-catalyzed processes. Deletion of gene slr0574 (encoding CYP120A1), but not of slr0091 or of slr1192, causes an increase (relative to the level in wild-type Synechocystis) in the retinal content in both the linear and stationary growth phases. These results suggest that CYP120A1 does contribute to retinal degradation. Preliminary data obtained using 13C-labeled retinal suggest that conversion to retinol and retinoic acid and subsequent further oxidation also play a role. Deletion of sll1541 leads to deficiency in retinal synthesis and allows the in vivo reconstitution of far-red-absorbing holo-proteorhodopsin with exogenous retinal analogues, as demonstrated here for all-trans 3,4-dehydroretinal and 3-methylamino-16-nor-1,2,3,4-didehydroretinal.IMPORTANCE Retinal is formed by many cyanobacteria and has a critical role in most forms of life for processes such as photoreception, growth, and stress survival. However, the metabolic pathways in cyanobacteria for synthesis and degradation of retinal are poorly understood. In this paper we identify genes involved in its synthesis, characterize their role, and provide an initial characterization of the pathway of its degradation. This led to the identification of sll1541 (encoding SynACO) as the essential gene for retinal synthesis. Multiple pathways for retinal degradation presumably exist. These results have allowed us to construct a strain that expresses a light-dependent proton pump with an action spectrum extending beyond 700 nm. The availability of this strain will be important for further work aimed at increasing the overall efficiency of oxygenic photosynthesis.


Assuntos
Proteínas de Bactérias/genética , Sequência de Bases , Deleção de Sequência , Synechocystis/genética , Proteínas de Bactérias/biossíntese , Expressão Gênica , Rodopsinas Microbianas , Synechocystis/metabolismo
20.
Infect Dis (Lond) ; 50(7): 507-513, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29316830

RESUMO

BACKGROUND: Pneumonia caused by carbapenemase-producing Klebsiella pneumoniae (CP-KP) are increasingly encountered in hospitals worldwide, causing high mortality due to lack of treatment options. The goal of this study was to assess the efficacy of tigecycline and minocycline for CP-KP hospital-acquired pneumonia (HAP) by using Monte Carlo simulation. METHODS: A total of 164 non-duplicated CP-KP strains were collected from sputum or blood in patients with HAP. The MICs for antimicrobials were determined by the agar dilution method. A 10,000-patient Monte Carlo Simulation based on a PK/PD model incorporating the MICs and population pharmacokinetic parameters were conducted to calculate probability of target attainment (PTA) at each MIC value and total cumulative fraction of response (CFR). RESULTS: The susceptibility rate of tigecycline and minocycline were 79.9% and 41.5%, respectively. At recommended doses, an optimal PTA of 90% was obtained for treating HAP caused by CP-KP with MICs of tigecycline ≤0.5 mg/L or minocycline ≤4 mg/L. The CFR of tigecycline at the recommended dose and double dose (100 mg q12h) were 71.2% and 90.2%, respectively. The CFR of minocycline at recommended dose and double dose (200 mg q12h) was 53.4% and 77.2%, respectively. CONCLUSIONS: The findings of this study suggest that the recommended dose of tigecycline was not effective in HAP caused by CP-KP, and a higher CFR indicating a better clinical efficacy can be gained by doubling the dose (100 mg q12h). minocycline (200 mg q12h) might be a potential alternative of tigecycline to against strains with MICs ≤ 8 mg/L.


Assuntos
Antibacterianos/uso terapêutico , Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae/efeitos dos fármacos , Minociclina/análogos & derivados , Minociclina/uso terapêutico , Pneumonia Bacteriana/tratamento farmacológico , Antibacterianos/efeitos adversos , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/efeitos dos fármacos , Proteínas de Bactérias/genética , Infecção Hospitalar/tratamento farmacológico , Infecção Hospitalar/microbiologia , Humanos , Infecções por Klebsiella/sangue , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/isolamento & purificação , Testes de Sensibilidade Microbiana , Minociclina/efeitos adversos , Minociclina/farmacocinética , Minociclina/farmacologia , Modelos Estatísticos , Método de Monte Carlo , Pneumonia Bacteriana/sangue , Pneumonia Bacteriana/microbiologia , Escarro/microbiologia , Tigeciclina , beta-Lactamases/biossíntese , beta-Lactamases/deficiência , beta-Lactamases/efeitos dos fármacos , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA