Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.225
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Plant Sci ; 344: 112079, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38588981

RESUMO

The cotton boll weevil (CBW, Anthonomus grandis) stands as one of the most significant threats to cotton crops (Gossypium hirsutum). Despite substantial efforts, the development of a commercially viable transgenic cotton event for effective open-field control of CBW has remained elusive. This study describes a detailed characterization of the insecticidal toxins Cry23Aa and Cry37Aa against CBW. Our findings reveal that CBW larvae fed on artificial diets supplemented exclusively with Cry23Aa decreased larval survival by roughly by 69%, while supplementation with Cry37Aa alone displayed no statistical difference compared to the control. However, the combined provision of both toxins in the artificial diet led to mortality rates approaching 100% among CBW larvae (LC50 equal to 0.26 PPM). Additionally, we engineered transgenic cotton plants by introducing cry23Aa and cry37Aa genes under control of the flower bud-specific pGhFS4 and pGhFS1 promoters, respectively. Seven transgenic cotton events expressing high levels of Cry23Aa and Cry37Aa toxins in flower buds were selected for greenhouse bioassays, and the mortality rate of CBW larvae feeding on their T0 and T1 generations ranged from 75% to 100%. Our in silico analyses unveiled that Cry23Aa displays all the hallmark characteristics of ß-pore-forming toxins (ß-PFTs) that bind to sugar moieties in glycoproteins. Intriguingly, we also discovered a distinctive zinc-binding site within Cry23Aa, which appears to be involved in protein-protein interactions. Finally, we discuss the major structural features of Cry23Aa that likely play a role in the toxin's mechanism of action. In view of the low LC50 for CBW larvae and the significant accumulation of these toxins in the flower buds of both T0 and T1 plants, we anticipate that through successive generations of these transgenic lines, cotton plants engineered to overexpress cry23Aa and cry37Aa hold promise for effectively managing CBW infestations in cotton crops.


Assuntos
Toxinas de Bacillus thuringiensis , Proteínas de Bactérias , Endotoxinas , Gossypium , Proteínas Hemolisinas , Larva , Plantas Geneticamente Modificadas , Gorgulhos , Gossypium/genética , Gossypium/parasitologia , Animais , Gorgulhos/genética , Plantas Geneticamente Modificadas/genética , Endotoxinas/genética , Endotoxinas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacologia , Larva/efeitos dos fármacos , Bacillus thuringiensis/genética , Controle Biológico de Vetores
2.
Methods Mol Biol ; 2788: 209-226, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656516

RESUMO

Coffea arabica L. is a crucial crop globally, but its genetic homogeneity leads to its susceptibility to diseases and pests like the coffee berry borer (CBB). Chemical and cultural control methods are difficult due to the majority of the CBB life cycle taking place inside coffee beans. One potential solution is the use of the gene cyt1Aa from Bacillus thuringiensis as a biological insecticide. To validate candidate genes against CBB, a simple, rapid, and efficient transient expression system is necessary. This study uses cell suspensions as a platform for expressing the cyt1Aa gene in the coffee genome (C. arabica L. var. Catuaí) to control CBB. The Agrobacterium tumefaciens strain GV3101::pMP90 containing the bar and cyt1Aa genes are used to genetically transform embryogenic cell suspensions. PCR amplification of the cyt1Aa gene is observed 2, 5, and 7 weeks after infection. This chapter describes a protocol that can be used for the development of resistant varieties against biotic and abiotic stresses and CRISPR/Cas9-mediated genome editing.


Assuntos
Agrobacterium tumefaciens , Coffea , Coffea/genética , Agrobacterium tumefaciens/genética , Sistemas CRISPR-Cas , Plantas Geneticamente Modificadas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacillus thuringiensis/genética , Endotoxinas/genética , Toxinas de Bacillus thuringiensis , Edição de Genes/métodos , Proteínas Hemolisinas/genética , Regulação da Expressão Gênica de Plantas , Transformação Genética , Café/genética
3.
Virulence ; 15(1): 2306719, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38251714

RESUMO

The arginine deiminase system (ADS) has been identified in various bacteria and functions to supplement energy production and enhance biological adaptability. The current understanding of the regulatory mechanism of ADS and its effect on bacterial pathogenesis is still limited. Here, we found that the XRE family transcriptional regulator XtrSs negatively affected Streptococcus suis virulence and significantly repressed ADS transcription when the bacteria were incubated in blood. Electrophoretic mobility shift (EMSA) and lacZ fusion assays further showed that XtrSs directly bind to the promoter of ArgR, an acknowledged positive regulator of bacterial ADS, to repress ArgR transcription. Moreover, we provided compelling evidence that S. suis could utilize arginine via ADS to adapt to acid stress, while ΔxtrSs enhanced this acid resistance by upregulating the ADS operon. Moreover, whole ADS-knockout S. suis increased arginine and antimicrobial NO in the infected macrophage cells, decreased intracellular survival, and even caused significant attenuation of bacterial virulence in a mouse infection model, while ΔxtrSs consistently presented the opposite results. Our experiments identified a novel ADS regulatory mechanism in S. suis, whereby XtrSs regulated ADS to modulate NO content in macrophages, promoting S. suis intracellular survival. Meanwhile, our findings provide a new perspective on how Streptococci evade the host's innate immune system.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Animais , Camundongos , Hidrolases/genética , Hidrolases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Macrófagos , Arginina , Infecções Estreptocócicas/microbiologia , Regulação Bacteriana da Expressão Gênica
4.
World J Gastroenterol ; 30(1): 91-107, 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38293320

RESUMO

BACKGROUND: The pathogenicity of Helicobacter pylori is dependent on factors including the environment and the host. Although selenium is closely related to pathogenicity as an environmental factor, the specific correlation between them remains unclear. AIM: To investigate how selenium acts on virulence factors and reduces their toxicity. METHODS: H. pylori strains were induced by sodium selenite. The expression of cytotoxin-associated protein A (CagA) and vacuolating cytotoxin gene A (VacA) was determined by quantitative PCR and Western blotting. Transcriptomics was used to analyze CagA, CagM, CagE, Cag1, Cag3, and CagT. C57BL/6A mice were infected with the attenuated strains subjected to sodium selenite induction, and H. pylori colonization, inflammatory reactions, and the cell adhesion ability of H. pylori were assessed. RESULTS: CagA and VacA expression was upregulated at first and then downregulated in the H. pylori strains after sodium selenite treatment. Their expression was significantly and steadily downregulated after the 5th cycle (10 d). Transcriptome analysis revealed that sodium selenite altered the levels affect H. pylori virulence factors such as CagA, CagM, CagE, Cag1, Cag3, and CagT. Of these factors, CagM and CagE expression was continuously downregulated and further downregulated after 2 h of induction with sodium selenite. Moreover, CagT expression was upregulated before the 3rd cycle (6 d) and significantly downregulated after the 5th cycle. Cag1 and Cag3 expression was upregulated and downregulated, respectively, but no significant change was observed by the 5th cycle. C57BL/6A mice were infected with the attenuated strains subjected to sodium selenite induction. The extent of H. pylori colonization in the stomach increased; however, sodium selenite also induced a mild inflammatory reaction in the gastric mucosa of H. pylori-infected mice, and the cell adhesion ability of H. pylori was significantly weakened. CONCLUSION: These results demonstrate that H. pylori displayed virulence attenuation after the 10th d of sodium selenite treatment. Sodium selenite is a low toxicity compound with strong stability that can reduce the cell adhesion ability of H. pylori, thus mitigating the inflammatory damage to the gastric mucosa.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Selênio , Animais , Camundongos , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Selenito de Sódio/farmacologia , Camundongos Endogâmicos C57BL , Citotoxinas , Infecções por Helicobacter/metabolismo
5.
PLoS One ; 19(1): e0297030, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38285708

RESUMO

Sound has been shown to impact microbial behaviors. However, our understanding of the chemical and molecular mechanisms underlying these microbial responses to acoustic vibration is limited. In this study, we used untargeted metabolomics analysis to investigate the effects of 100-Hz acoustic vibration on the intra- and extracellular hydrophobic metabolites of P. aeruginosa PAO1. Our findings revealed increased levels of fatty acids and their derivatives, quinolones, and N-acylethanolamines upon sound exposure, while rhamnolipids (RLs) showed decreased levels. Further quantitative real-time polymerase chain reaction experiments showed slight downregulation of the rhlA gene (1.3-fold) and upregulation of fabY (1.5-fold), fadE (1.7-fold), and pqsA (1.4-fold) genes, which are associated with RL, fatty acid, and quinolone biosynthesis. However, no alterations in the genes related to the rpoS regulators or quorum-sensing networks were observed. Supplementing sodium oleate to P. aeruginosa cultures to simulate the effects of sound resulted in increased tolerance of P. aeruginosa in the presence of sound at 48 h, suggesting a potential novel response-tolerance correlation. In contrast, adding RL, which went against the response direction, did not affect its growth. Overall, these findings provide potential implications for the control and manipulation of virulence and bacterial characteristics for medical and industrial applications.


Assuntos
Pseudomonas aeruginosa , Vibração , Percepção de Quorum/genética , Virulência , Fatores de Virulência , Ácidos Graxos/farmacologia , Acústica , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Biofilmes
6.
Mol Plant Pathol ; 25(1): e13409, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38069667

RESUMO

Auxin plays a pivotal role in the co-evolution of plants and microorganisms. Xanthomonas oryzae pv. oryzicola (Xoc) stands as a significant factor that affects rice yield and quality. However, the current understanding of Xoc's capability for indole 3-acetic acid (IAA) synthesis and its mechanistic implications remains elusive. In this study, we performed a comprehensive genomic analysis of Xoc strain RS105, leading to the identification of two nitrilase enzyme family (NIT) genes, designated as AKO15524.1 and AKO15829.1, subsequently named NIT24 and NIT29, respectively. Our investigation unveiled that the deletion of NIT24 and NIT29 resulted in a notable reduction in IAA synthesis capacity within RS105, thereby impacting extracellular polysaccharide production. This deficiency was partially ameliorated through exogenous IAA supplementation. The study further substantiated that NIT24 and NIT29 have nitrilase activity and the ability to catalyse IAA production in vitro. The lesion length and bacterial population statistics experiments confirmed that NIT24 and NIT29 positively regulated the pathogenicity of RS105, suggesting that NIT24 and NIT29 may regulate Xoc invasion by affecting IAA synthesis. Furthermore, our analysis corroborated mutant strains, RS105_ΔNIT24 and RS105_ΔNIT29, which elicited the outbreak of reactive oxygen species, the deposition of callose and the upregulation of defence-related gene expression in rice. IAA exerted a significant dampening effect on the immune responses incited by these mutant strains in rice. In addition, the absence of NIT24 and NIT29 affected the growth-promoting effect of Xoc on rice. This implies that Xoc may promote rice growth by secreting IAA, thus providing a more suitable microenvironment for its own colonization. In summary, our study provides compelling evidence for the existence of a nitrilase-dependent IAA biosynthesis pathway in Xoc. IAA synthesis-related genes promote Xoc colonization by inhibiting rice immune defence response and affecting rice growth by increasing IAA content in Xoc.


Assuntos
Oryza , Xanthomonas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Oryza/microbiologia , Virulência , Suplementos Nutricionais , Doenças das Plantas/microbiologia
7.
Antimicrob Agents Chemother ; 68(1): e0119223, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38063398

RESUMO

We report the emergence of cefiderocol resistance during the treatment of a ST312 Pseudomonas aeruginosa respiratory infection with ceftazidime/avibactam. whole genome sequencing (WGS) revealed that resistance was caused by a large genomic deletion, including PiuDC (iron transport system) and AmpD (ampC negative regulator), driven by the integration of phage DNA. Thus, our findings alert that this type of deletion could be an efficient (two mechanisms in one step) specific cefiderocol resistance mechanism that might occur nonspecifically upon treatment with ß-lactams that select for AmpC overexpression.


Assuntos
Ceftazidima , Infecções por Pseudomonas , Humanos , Ceftazidima/farmacologia , Ceftazidima/uso terapêutico , Cefiderocol , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Pseudomonas aeruginosa/genética , Proteínas de Bactérias/genética , Infecções por Pseudomonas/tratamento farmacológico , Compostos Azabicíclicos/farmacologia , Compostos Azabicíclicos/uso terapêutico , Combinação de Medicamentos , Genômica , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
8.
Eur J Clin Microbiol Infect Dis ; 43(1): 73-85, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37943394

RESUMO

PURPOSE: To describe katG and inhA mutations, clinical characteristics, treatment outcomes and clustering of drug-resistant tuberculosis (TB) in the State of São Paulo, southeast Brazil. METHODS: Mycobacterium tuberculosis isolates from patients diagnosed with drug-resistant TB were screened for mutations in katG and inhA genes by line probe assay and Sanger sequencing, and typed by IS6110-restriction fragment-length polymorphism for clustering assessment. Clinical, epidemiological and demographic data were obtained from surveillance information systems for TB. RESULTS: Among the 298 isolates studied, 127 (42.6%) were isoniazid-monoresistant, 36 (12.1%) polydrug-resistant, 93 (31.2%) MDR, 16 (5.4%) pre-extensively drug-resistant (pre-XDR), 9 (3%) extensively drug-resistant (XDR) and 17 (5.7%) susceptible after isoniazid retesting. The frequency of katG 315 mutations alone was higher in MDR isolates, while inhA promoter mutations alone were more common in isoniazid-monoresistant isolates. Twenty-six isolates phenotypically resistant to isoniazid had no mutations either in katG or inhA genes. The isolates with inhA mutations were found more frequently in clusters (75%) when compared to the isolates with katG 315 mutations (59.8%, p = 0.04). In our population, being 35-64 years old, presenting MDR-, pre-XDR- or XDR-TB and being a retreatment case were associated with unfavourable TB treatment outcomes. CONCLUSION: We found that katG and inhA mutations were not equally distributed between isoniazid-monoresistant and MDR isolates. In our population, clustering was higher for isolates with inhA mutations. Finally, unfavourable TB outcomes were associated with specific factors.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Adulto , Pessoa de Meia-Idade , Isoniazida/farmacologia , Isoniazida/uso terapêutico , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Brasil/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Mutação , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética
9.
Int J Antimicrob Agents ; 63(1): 107017, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37884228

RESUMO

OBJECTIVES: This study investigated the effect of tigecycline exposure on susceptibility of colistin-resistant Klebsiella pneumoniae isolates to colistin and explored the possibility of antibiotic combination at low concentrations to treat colistin-resistant K. pneumoniae isolates. METHODS: Twelve tigecycline-resistant (TIR) mutants were induced in vitro from wild-type, colistin-resistant, and tigecycline-susceptible K. pneumoniae isolates. Antibiotic susceptibility was determined using the broth microdilution method. The deduced amino acid alterations were identified for genes associated with colistin resistance, lipid A biosynthesis, and tigecycline resistance. Expression levels of genes were compared between wild-type stains and TIR mutants using quantitative real-time polymerase chain reaction (PCR). Lipid A modification was explored using MALDI-TOF mass spectrometry. Time-killing assay was performed to assess the efficiency of combination therapy using low concentrations of colistin and tigecycline. RESULTS: All TIR mutants except one were converted to be susceptible to colistin. These TIR mutants had mutations in the ramR gene and increased expression levels of ramA. Three genes associated with lipid A biosynthesis, lpxC, lpxL, and lpxO, were also overexpressed in TIR mutants, although no mutation was observed. Additional polysaccharides found in colistin-resistant, wild-type strains were modified in TIR mutants. Colistin-resistant K. pneumoniae strains were eliminated in vitro by combining tigecycline and colistin at 2 mg/L. In this study, we found that tigecycline exposure resulted in reduced resistance of colistin-resistant K. pneumoniae to colistin. Such an effect was mediated by regulation of lipid A modification involving ramA and lpx genes. CONCLUSION: Because of such reduced resistance, a combination of colistin and tigecycline in low concentrations could effectively eradicate colistin-resistant K. pneumoniae strains.


Assuntos
Colistina , Infecções por Klebsiella , Humanos , Tigeciclina/farmacologia , Colistina/farmacologia , Klebsiella pneumoniae , Minociclina/farmacologia , Lipídeo A , Infecções por Klebsiella/tratamento farmacológico , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética
10.
Chem Biol Drug Des ; 103(1): e14381, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37875387

RESUMO

Carbapenem-resistant Klebsiella pneumoniae (CRKP) infections continue to impose high morbidity threats to hospitalized patients worldwide, limiting therapeutic options to last-resort antibiotics like colistin. However, the dynamic genomic landscape of colistin-resistant K. pneumoniae (COLR-Kp) invoked ardent exploration of underlying molecular signatures for therapeutic propositions/designs. We unveiled the structural impact of the widespread and emerging PmrB mutations involved in colistin resistance (COLR) in K. pneumoniae. In the present study, clinical isolates of K. pneumoniae expressed variable susceptibilities to colistin (>0.5 µg/mL for resistant and ≤0.25 µg/mL for susceptible) despite mutations such as T157P, G207D and T246A. The protein sequences extracted from in-house sequenced genomes were used to model mutant PmrB proteins and analyze the underlying structural alterations. The mutations were contrasted based on molecular dynamics simulation trajectories, free-energy landscapes and structural flexibility profiles. The altered backbone flexibilities can be an essential factor for mutant selection by COLR K. pneumoniae and can provide clues to deal with emerging mutants. Furthermore, PmrB having high druggability confidence (>0.99), was explored as a potential target for 1396 virtually screened FDA-approved drug candidates. Among the top-10 compounds (scores >70), amphotericin B was found to be potential candidate with high affinity (Binding energy <-8 kcal/mol) and stable interactions (RMSF <0.7 Å) against PmrB druggable pockets, despite the mutations, which encourages future adjunct therapeutic research against COLR-Kp.


Assuntos
Colistina , Infecções por Klebsiella , Humanos , Colistina/farmacologia , Klebsiella pneumoniae/genética , Infecções por Klebsiella/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Mutação , Proteínas Mutantes/genética , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/genética
11.
Biochimie ; 216: 46-55, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37879428

RESUMO

Mycobacteria are microorganisms distributed in the environment worldwide, and some of them, such as Mycobacterium tuberculosis or M. leprae, are pathogenic. The hydrophobic mycobacterial cell envelope has low permeation and bacteria need to export products across their structure. Mycobacteria possess specialized protein secretion systems, such as the Early Secretory Antigenic Target 6 secretion (ESX) system. Five ESX loci have been described in M. tuberculosis, called ESX-1 to ESX-5. The ESX-3 secretion system has been associated with mycobacterial metabolism and growth. The locus of this system is highly conserved across mycobacterial species. Metallo-proteins regulate negative ESX-3 transcription in high conditions of iron and zinc. Moreover, this secretion system is part of an antioxidant regulatory pathway linked to Zinc. EccA3, EccB3, EccC3, EccD3, and EccE3 are components of the ESX-3 secretion machinery, whereas EsxG-EsxH, PE5-PPE4, and PE15-PPE20 are proteins secreted by this system. In addition, EspG3 and MycP3 are complementary proteins involved in transport and proteolysis respectively. This system is associated to mycobacterial virulence by releasing the bacteria from the phagosome and inhibiting endomembrane damage response. Furthermore, components of this system inhibit the host immune response by reducing the recognition of M. tuberculosis-infected cells. The components of the ESX-3 secretion system play a role in drug resistance and cell wall integrity. Moreover, the expression data of this system indicated that external and internal factors affect ESX-3 locus expression. This review provides an overview of new findings on the ESX-3 secretion system, its regulation, expression, and functions.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Sistemas de Secreção Tipo VII , Humanos , Sistemas de Secreção Tipo VII/genética , Sistemas de Secreção Tipo VII/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/metabolismo , Zinco/metabolismo
12.
Int J Antimicrob Agents ; 63(1): 107011, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37863340

RESUMO

OBJECTIVES: Alternation of the colistin resistance-regulating two-component regulatory system (crrAB) is a colistin-resistance mechanism in Klebsiella pneumoniae (K. pneumoniae), but its role in bacteria is not fully understood. METHODS: Twelve colistin-susceptible K. pneumoniae clinical isolates were included in this study: six crrAB-positive and six crrAB-negative. We deleted the crrAB genes from two crrAB-positive isolates and complemented them. We measured the growth yields by determining growth curves in lysogeny broth and minimal media with or without Fe2+. In vitro selection rates for colistin resistance were determined by exposure to colistin, and survival rates against high concentrations of colistin (20 mg/L) at the early stage of growth (20 min) were investigated. Virulence was determined using a serum bactericidal assay and Galleria mellonella larval infection. RESULTS: The presence of crrAB was not associated with colistin resistance and did not increase the in vitro selection rate of colistin resistance after exposure. The growth yield of crrAB-positive isolates was higher in lysogeny broth media and increased when Fe2+ was added to minimal media. The crrAB-positive isolates showed higher survival rates in the early stages of exposure to high colistin concentrations. Decreased serum resistance was identified in the crrAB-deleted mutants. More G. mellonella larvae survived when infected by crrAB-deleted mutants, and higher survival rates of bacteria were identified within the larvae infected with wild-type than crrAB-deletant isolates. CONCLUSION: Through rapid response to external signals, crrAB would provide advantages for K. pneumoniae survival by increasing the final growth yield and initial survival against colistin treatment. This may partly contribute to the bacterial virulence.


Assuntos
Colistina , Infecções por Klebsiella , Animais , Colistina/farmacologia , Colistina/uso terapêutico , Klebsiella pneumoniae , Virulência , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Larva , Testes de Sensibilidade Microbiana , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia
13.
Microbes Environ ; 38(4)2023.
Artigo em Inglês | MEDLINE | ID: mdl-38092408

RESUMO

The effects of soluble and insoluble lanthanides on gene expression in Methylococcus capsulatus Bath were investigated. Genes for lanthanide-containing methanol dehydrogenases (XoxF-MDHs) and their calcium-containing counterparts (MxaFI-MDHs) were up- and down-regulated, respectively, by supplementation with soluble lanthanide chlorides, indicating that M. capsulatus has the "lanthanide switch" observed in other methanotrophs. Insoluble lanthanide oxides also induced the lanthanide switch and were dissolved by the spent medium of M. capsulatus, suggesting the presence of lanthanide-chelating compounds. A transcriptome ana-lysis indicated that a gene cluster for the synthesis of an enterobactin-like metal chelator contributed to the dissolution of insoluble lanthanides.


Assuntos
Elementos da Série dos Lantanídeos , Methylococcus capsulatus , Elementos da Série dos Lantanídeos/metabolismo , Metanol/metabolismo , Metano/metabolismo , Methylococcus capsulatus/genética , Methylococcus capsulatus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
14.
Emerg Infect Dis ; 29(11): 2266-2274, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37877547

RESUMO

In February 2022, a critically ill patient colonized with a carbapenem-resistant K. pneumoniae producing KPC-3 and VIM-1 carbapenemases was hospitalized for SARS-CoV-2 in the intensive care unit of Policlinico Umberto I hospital in Rome, Italy. During 95 days of hospitalization, ceftazidime/avibactam, meropenem/vaborbactam, and cefiderocol were administered consecutively to treat 3 respiratory tract infections sustained by different bacterial agents. Those therapies altered the resistome of K. pneumoniae sequence type 512 colonizing or infecting the patient during the hospitalization period. In vivo evolution of the K. pneumoniae sequence type 512 resistome occurred through plasmid loss, outer membrane porin alteration, and a nonsense mutation in the cirA siderophore gene, resulting in high levels of cefiderocol resistance. Cross-selection can occur between K. pneumoniae and treatments prescribed for other infective agents. K. pneumoniae can stably colonize a patient, and antimicrobial-selective pressure can promote progressive K. pneumoniae resistome evolution, indicating a substantial public health threat.


Assuntos
Ceftazidima , Infecções por Klebsiella , Humanos , Ceftazidima/farmacologia , Ceftazidima/uso terapêutico , Meropeném/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Klebsiella pneumoniae/genética , Proteínas de Bactérias/genética , beta-Lactamases/genética , Itália/epidemiologia , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Testes de Sensibilidade Microbiana , Cefiderocol
15.
Antimicrob Agents Chemother ; 67(10): e0048023, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37695298

RESUMO

A double ampC (AmpCG183D) and ampD (AmpDH157Y) genes mutations have been identified by whole genome sequencing in a Pseudomonas aeruginosa (PaS) that became resistant (PaR) in a patient treated by ceftolozane/tazobactam (C/T). To precisely characterize the respective contributions of these mutations on the decreased susceptibility to C/T and on the parallel increased susceptibility to imipenem (IMI), mutants were generated by homologous recombination in PAO1 reference strain (PAO1- AmpCG183D, PAO1-AmpDH157Y, PAO1-AmpCG183D/AmpDH157Y) and in PaR (PaR-AmpCPaS/AmpDPaS). Sequential time-kill curve experiments were conducted on all strains and analyzed by semi-mechanistic PKPD modeling. A PKPD model with adaptation successfully described the data, allowing discrimination between initial and time-related (adaptive resistance) effects of mutations. With PAO1 and mutant-derived strains, initial EC50 values increased by 1.4, 4.1, and 29-fold after AmpCG183D , AmpDH157Y and AmpCG183D/AmpDH157Y mutations, respectively. EC50 values were increased by 320, 12.4, and 55-fold at the end of the 2 nd experiment. EC50 of PAO1-AmpCG183D/AmpDH157Y was higher than that of single mutants at any time of the experiments. Within the PaR clinical background, reversal of AmpCG183D, and AmpDH157Y mutations led to an important decrease of EC50 value, from 80.5 mg/L to 6.77 mg/L for PaR and PaR-AmpCPaS/AmpDPaS, respectively. The effect of mutations on IMI susceptibility mainly showed that the AmpCG183D mutation prevented the emergence of adaptive resistance. The model successfully described the separate and combined effect of AmpCG183D and AmpDH157Y mutations against C/T and IMI, allowing discrimination and quantification of the initial and time-related effects of mutations. This method could be reproduced in clinical strains to decipher complex resistance mechanisms.


Assuntos
Farmacorresistência Bacteriana , Pseudomonas aeruginosa , Humanos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , beta-Lactamases/farmacologia , Cefalosporinas/farmacologia , Imipenem/farmacologia , Testes de Sensibilidade Microbiana , Mutação , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Infecções por Pseudomonas/tratamento farmacológico , Tazobactam/farmacologia , Farmacorresistência Bacteriana/genética
16.
Environ Microbiol ; 25(11): 2564-2579, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37622480

RESUMO

The type VI secretion system (T6SS) is a contractile nanomachine widespread in Gram-negative bacteria. The T6SS injects effectors into target cells including eukaryotic hosts and competitor microbial cells and thus participates in pathogenesis and intermicrobial competition. Pseudomonas fluorescens MFE01 possesses a single T6SS gene cluster that confers biocontrol properties by protecting potato tubers against the phytopathogen Pectobacterium atrosepticum (Pca). Here, we demonstrate that a functional T6SS is essential to protect potato tuber by reducing the pectobacteria population. Fluorescence microscopy experiments showed that MFE01 displays an aggressive behaviour with an offensive T6SS characterized by continuous and intense T6SS firing activity. Interestingly, we observed that T6SS firing is correlated with rounding of Pectobacterium cells, suggesting delivery of a potent cell wall targeting effector. Mutagenesis coupled with functional assays then revealed that a putative T6SS secreted amidase, Tae3Pf , is mainly responsible for MFE01 toxicity towards Pca. Further studies finally demonstrated that Tae3Pf is toxic when produced in the periplasm, and that its toxicity is counteracted by the Tai3Pf inner membrane immunity protein.


Assuntos
Pectobacterium , Pseudomonas fluorescens , Solanum tuberosum , Sistemas de Secreção Tipo VI , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Mutagênese , Pectobacterium/genética , Pectobacterium/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
17.
J Infect Public Health ; 16(9): 1443-1459, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37523915

RESUMO

Tuberculosis is a disease of poverty, discrimination, and socioeconomic burden. Epidemiological studies suggest that the mortality and incidence of tuberculosis are unacceptably higher worldwide. Genomic mutations in embCAB, embR, katG, inhA, ahpC, rpoB, pncA, rrs, rpsL, gyrA, gyrB, and ethR contribute to drug resistance reducing the susceptibility of Mycobacterium tuberculosis to many antibiotics. Additionally, treating tuberculosis with antibiotics also poses a serious risk of hepatotoxicity in the patient's body. Emerging data on drug-induced liver injury showed that anti-tuberculosis drugs remarkably altered levels of hepatotoxicity biomarkers. The review is an attempt to explore the anti-mycobacterial potential of selected, commonly available, and well-known phytocompounds and extracts of medicinal plants against strains of Mycobacterium tuberculosis. Many studies have demonstrated that phytocompounds such as flavonoids, alkaloids, terpenoids, and phenolic compounds have antibacterial action against Mycobacterium species, inhibiting the bacteria's growth and replication, and sometimes, causing cell death. Phytocompounds act by disrupting bacterial cell walls and membranes, reducing enzyme activity, and interfering with essential metabolic processes. The combination of these processes reduces the overall survivability of the bacteria. Moreover, several phytochemicals have synergistic effects with antibiotics routinely used to treat TB, improving their efficacy and decreasing the risk of resistance development. Interestingly, phytocompounds have been presented to reduce isoniazid- and ethambutol-induced hepatotoxicity by reversing serum levels of AST, ALP, ALT, bilirubin, MDA, urea, creatinine, and albumin to their normal range, leading to attenuation of inflammation and hepatic necrosis. As a result, phytochemicals represent a promising field of research for the development of new TB medicines.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Hepatopatias , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Proteínas de Bactérias/genética , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Antituberculosos/efeitos adversos , Mycobacterium tuberculosis/genética , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Isoniazida/farmacologia , Mutação , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla/genética
18.
mSphere ; 8(4): e0012023, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37289195

RESUMO

The Enterococcus faecalis acyl-acyl carrier protein (ACP) phosphate acyltransferase PlsX plays an important role in phospholipid synthesis and exogenous fatty acid incorporation. Loss of plsX almost completely blocks growth by decreasing de novo phospholipid synthesis, which leads to abnormally long-chain acyl chains in the cell membrane phospholipids. The ∆plsX strain failed to grow without supplementation with an appropriate exogenous fatty acid. Introduction of a ∆fabT mutation into the ∆plsX strain to increase fatty acid synthesis allowed very weak growth. The ∆plsX strain accumulated suppressor mutants. One of these encoded a truncated ß-ketoacyl-ACP synthase II (FabO) which restored normal growth and restored de novo phospholipid acyl chain synthesis by increasing saturated acyl-ACP synthesis. Saturated acyl-ACPs are cleaved by a thioesterase to provide free fatty acids for conversion to acyl-phosphates by the FakAB system. The acyl-phosphates are incorporated into position sn1 of the phospholipids by PlsY. We report the tesE gene encodes a thioesterase that can provide free fatty acids. However, we were unable to delete the chromosomal tesE gene to confirm that it is the responsible enzyme. TesE readily cleaves unsaturated acyl-ACPs, whereas saturated acyl-ACPs are cleaved much more slowly. Overexpression of an E. faecalis enoyl-ACP reductase either FabK or FabI which results in high levels of saturated fatty acid synthesis also restored the growth of the ∆plsX strain. The ∆plsX strain grew faster in the presence of palmitic acid than in the presence of oleic acid with improvement in phospholipid acyl chain synthesis. Positional analysis of the acyl chain distribution in the phospholipids showed that saturated acyl chains dominate the sn1-position indicating a preference for saturated fatty acids at this position. High-level production of saturated acyl-ACPs is required to offset the marked preference of the TesE thioesterase for unsaturated acyl-ACPs and allow the initiation of phospholipid synthesis.


Assuntos
Enterococcus faecalis , Ácidos Graxos , Enterococcus faecalis/genética , Ácidos Graxos não Esterificados/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fosfolipídeos , Proteína de Transporte de Acila/genética , Proteína de Transporte de Acila/metabolismo , Fosfatos/metabolismo
19.
Tuberculosis (Edinb) ; 141: 102360, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37295353

RESUMO

Iron-sulphur (FeS) cluster biogenesis is a tightly regulated process in vivo. In Mycobacterium tuberculosis (Mtb), SufR functions as a transcriptional repressor of the operon encoding the primary FeS cluster biogenesis system. Previously, three independently isolated mutants (ΔRv1460stop_1.19, ΔRv1460stop _5.19 and ΔRv1460stop _5.20) harbouring the same deletion in sufR, displayed different growth kinetics in OADC supplemented 7H9 media. To investigate this discrepancy, we performed whole genome sequencing of the 3 mutants and the wild-type progenitor. Single nucleotide polymorphisms (SNPs) were identified in 3 genes in the ΔRv1460stop_1.19 mutant and one gene in the ΔRv1460stop_5.20 mutant. Phenotyping of the ΔRv1460stop_5.19 mutant, which had no additional SNPs, revealed increased susceptibility to clofazimine, DMNQ and menadione, while uptake and survival in THP-1 cells were not significantly different from the wild-type strain. Given that these results differ from those reported for other sufR deletion mutants (ΔSufRMTB and MtbΔSufR), they suggest that the position of the sufR deletion and the genotype of the progenitor strain impact the resulting phenotype.


Assuntos
Proteínas Ferro-Enxofre , Mycobacterium tuberculosis , Proteínas Ferro-Enxofre/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Genótipo , Fenótipo
20.
Clin Microbiol Infect ; 29(9): 1198.e1-1198.e6, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37271195

RESUMO

OBJECTIVES: To analyse carbapenemases in Proteus mirabilis and assess the performance of carbapenemase detection assays. METHODS: Eighty-one clinical P. mirabilis isolates with high-level resistance at least to ampicillin (>32 mg/L) or previous detection of carbapenemases were selected and investigated by three susceptibility testing methods (microdilution, automated susceptibility testing, and disk diffusion), six phenotypic carbapenemase assays (CARBA NP, modified carbapenemase inactivation method [CIM], modified zinc-supplemented CIM, simplified CIM, faropenem, and carbapenem-containing agar), two immunochromatographic assays, and whole-genome sequencing. RESULTS: Carbapenemases were detected in 43 of 81 isolates (OXA-48-like [n = 13]; OXA-23 [n = 12]; OXA-58 [n = 12]; New Delhi metallo-ß-lactamase (NDM) [n = 2]; Verona integron-encoded metallo-ß-lactamase (VIM) [n = 2]; Imipenemase (IMP) [n = 1]; Klebsiella pneumoniae carbapenemase (KPC) [n = 1]). Carbapenemase-producing Proteus were frequently susceptible to ertapenem (26/43; 60%), meropenem (28/43; 65%), ceftazidime (33/43; 77%), and some even to piperacillin-tazobactam (9/43; 21%). Sensitivity/specificity of phenotypic tests were 30% (CI: 17-46%)/89% (CI: 75-97%) for CARBA NP, 74% (CI: 60-85%)/82% (CI: 67-91%) for faropenem, 91% (CI: 78-97%)/82% (CI: 66-92%) for simplified CIM, and 93% (CI: 81-99%)/100% (CI: 91-100%) for modified zinc-supplemented CIM. An algorithm for improved detection was developed, which demonstrated sensitivity/specificity of 100% (CI: 92-100%)/100% (CI: 91-100%) on the 81 isolates, and 100% (CI: 29-100%)/100% (CI: 96-100%) in a prospective analysis of additional 91 isolates. Interestingly, several OXA-23-producing isolates belonged to the same clonal lineage reported previously from France. DISCUSSION: Current susceptibility testing methods and phenotypic tests frequently fail to detect carbapenemases in P. mirabilis, which could result in inadequate antibiotic treatment. In addition, the non-inclusion of blaOXA-23/OXA-58 in many molecular carbapenemase assays further impedes their detection. Therefore, the prevalence of carbapenemases in P. mirabilis is likely underestimated. With the herein proposed algorithm, carbapenemase-producing Proteus can be easily identified.


Assuntos
Proteínas de Bactérias , Proteus mirabilis , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/análise , beta-Lactamases/genética , beta-Lactamases/análise , Antibacterianos/farmacologia , Algoritmos , Zinco , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA