Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 525
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
J Insect Physiol ; 153: 104601, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38142957

RESUMO

Numerous studies have demonstrated the vital roles of gut microbes in the health, immunity, nutrient metabolism, and behavior of adult worker honeybees. However, a few studies have been conducted on gut microbiota associated with the larval stage of honeybees. In the present study, we explored the role of a gut bacterium in larval development and larval-pupal transition in the Asian honeybee, Apis cerana. First, our examination of gut microbial profiling showed that Bombella apis, a larvae-associated bacterium, was the most dominant bacterium colonized in the fifth instar larvae. Second, we demonstrated that tetracycline, an antibiotic used to treat a honeybee bacterial brood disease, could cause the complete depletion of gut bacteria. This antibiotic-induced gut microbiome depletion in turn, significantly impacted the survivorship, pupation rate and emergence rate of the treated larvae. Furthermore, our analysis of gene expression pattens revealed noteworthy changes in key genes. The expression of genes responsible for encoding storage proteins vitellogenin (vg) and major royal jelly protein 1 (mrjp1) was significantly down-regulated in the tetracycline-treated larvae. Concurrently, the expression of krüppel homolog 1(kr-h1), a pivotal gene in endocrine signaling, increased, whilethe expression of broad-complex (br-c) gene that plays a key role in the ecdysone regulation decreased. These alterations indicated a disruption in the coordination of juvenile hormone and ecdysteroid synthesis. Finally, we cultivated B. apis isolated from the fifth instar worker larval of A. cerana and fed tetracycline-treated larvae with a diet replenished by B. apis. This intervention resulted in a significant improvement in the pupation rate, emergence rate, and overall survival rate of the treated larvae. Our findings demonstrate the positive impact of B. apis on honeybee larvae development, providing new evidence of the functional capacities of gut microbes in honeybee growth and development.


Assuntos
Acetobacteraceae , Antibacterianos , Proteínas de Insetos , Abelhas , Animais , Larva/metabolismo , Pupa/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Tetraciclinas/metabolismo
2.
Int J Biol Macromol ; 242(Pt 2): 124939, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37207749

RESUMO

Odorant binding proteins (OBPs) are essential proteins in the peripheral olfactory system, responsible for odorant recognition and transport to olfactory receptors. Phthorimaea operculella (potato tuber moth) is an important oligophagous pest on Solanaceae crops in many countries and regions. PopeOBP16 is one of the OBPs in potato tuber moth. This study examined the expression profiles of PopeOBP16. The results of qPCR indicated that PopeOBP16 was highly expressed in the antennae of adults, especially in males, suggesting that it may be involved in odor recognition in adults. The electroantennogram (EAG) was used to screen candidate compounds with the antennae of P. operculella. The relative affinities of PopeOBP16 to 27 host volatiles and two sex pheromone components with the highest relative EAG responses were examined with competitive fluorescence-based binding assays. PopeOBP16 had the strongest binding affinity with the plant volatiles: nerol, 2-phenylethanol, linalool, 1,8-cineole, benzaldehyde, ß-pinene, d-limonene, terpinolene, α-terpinene, and the sex pheromone component trans-4, cis-7, cis-10-tridecatrien-1-ol acetate. The results provide a foundation for further research into the functioning of the olfactory system and the potential development of green chemistry for control of the potato tuber moth.


Assuntos
Mariposas , Receptores Odorantes , Atrativos Sexuais , Solanum tuberosum , Animais , Masculino , Odorantes , Atrativos Sexuais/metabolismo , Receptores Odorantes/química , Mariposas/metabolismo , Solanum tuberosum/química , Proteínas de Insetos/metabolismo
3.
BMC Genomics ; 24(1): 222, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37118660

RESUMO

BACKGROUND: The Rhus gall aphid Schlechtendalia chinensis specially uses the only species Rhus chinensis and certain moss species (Mniaceae) as its primary host plant and secondary host plants, respectively. Rhus galls are formed on the primary host by the sucking of aphids, and used in traditional medicine as well as other various areas due to their high tannin contents. Chemoreception is critical for insect behaviors such as host searching, location and identification of mates and reproductive behavior. The process of chemoreception is mediated by a series of protein gene families, including odorant-binding proteins (OBPs), chemosensory proteins (CSPs), olfactory receptors (ORs), gustatory receptors (GRs), ionotropic receptors (IRs), and sensory neuron membrane proteins (SNMPs). However, there have been no reports on the analysis of molecular components related to the chemoreception system of S. chinensis at the genome level. RESULTS: We examined the genes of eight OBPs, nine CSPs, 24 ORs, 16 GRs, 22 IRs, and five SNMPs in the S. chinensis genome using homological searches, and these chemosensory genes appeared mostly on chromosome 1. Phylogenetic and gene number analysis revealed that the gene families, e.g., ORs, GRs, CSPs and SNMPs in S. chinensis, have experienced major contractions by comparing to Myzus persicae, while the two gene families OBPs and IRs had slight expansion. The current results might be related to the broader host range of M. persicae versus the specialization of S. chinensis on only a host plant. There were 28 gene pairs between genomes of S. chinensis and Acyrthosiphon pisum in the chemoreceptor gene families by collinear comparison. Ka/Ks ratios (< 1) indicated that the genes of S. chinensis were mainly affected by purification selection during evolution. We also found the lower number and expression level of chemoreception genes in S. chinensis than in other 11 aphid species, such as ORs, GRs and IRs, which play an important role in host search. CONCLUSION: Our study firstly identified the genes of the different chemosensory protein gene families in the S. chinensis genome, and analyzed their general features and expression profile, demonstrating the importance of chemoreception in the aphid and providing new information for further functional research.


Assuntos
Afídeos , Receptores Odorantes , Rhus , Animais , Afídeos/genética , Afídeos/metabolismo , Filogenia , Rhus/genética , Rhus/metabolismo , Células Receptoras Sensoriais/metabolismo , Células Quimiorreceptoras/metabolismo , Proteínas de Membrana/genética , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Proteínas de Insetos/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Antenas de Artrópodes/metabolismo
4.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834492

RESUMO

Chitin deacetylase (CDA) can accelerate the conversion of chitin to chitosan, influencing the mechanical properties and permeability of the cuticle structures and the peritrophic membrane (PM) in insects. Putative Group V CDAs SeCDA6/7/8/9 (SeCDAs) were identified and characterized from beet armyworm Spodoptera exigua larvae. The cDNAs of SeCDAs contained open reading frames of 1164 bp, 1137 bp, 1158 bp and 1152 bp, respectively. The deduced protein sequences showed that SeCDAs are synthesized as preproteins of 387, 378, 385 and 383 amino acid residues, respectively. It was revealed via spatiotemporal expression analysis that SeCDAs were more abundant in the anterior region of the midgut. The SeCDAs were down-regulated after treatment with 20-hydroxyecdysone (20E). After treatment with a juvenile hormone analog (JHA), the expression of SeCDA6 and SeCDA8 was down-regulated; in contrast, the expression of SeCDA7 and SeCDA9 was up-regulated. After silencing SeCDAV (the conserved sequences of Group V CDAs) via RNA interference (RNAi), the layer of intestinal wall cells in the midgut became more compact and more evenly distributed. The vesicles in the midgut were small and more fragmented or disappeared after SeCDAs were silenced. Additionally, the PM structure was scarce, and the chitin microfilament structure was loose and chaotic. It was indicated in all of the above results that Group V CDAs are essential for the growth and structuring of the intestinal wall cell layer in the midgut of S. exigua. Additionally, the midgut tissue and the PM structure and composition were affected by Group V CDAs.


Assuntos
Beta vulgaris , Animais , Spodoptera/genética , Beta vulgaris/metabolismo , Larva/metabolismo , Quitina/metabolismo , Proteínas de Insetos/genética
5.
Int J Biol Macromol ; 225: 1267-1279, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36423808

RESUMO

Grapholita funebrana, also known as the plum fruit moth, is an oligophagous pest species that causes enormous economic losses of the fruits of Rosaceae. An eco-friendly method for the control of G. funebrana besides chemical control has not yet been developed. The sex pheromone communication system plays an important role in moth courtship and mating, in which pheromone-binding proteins (PBPs) are critical. In this research, we identified four PBPs, namely, GfunPBP1.1, GfunPBP1.2, GfunPBP2, and GfunPBP3, from the antennae of G. funebrana. The results of real-time quantitative PCR (RT-qPCR) showed that all four GfunPBPs were overwhelmingly expressed in the antennae and that GfunPBP1.2 and GfunPBP2 showed male-biased expression patterns, whereas GfunPBP1.1 and GfunPBP3 were equally expressed between sexes. The results of ligand-binding assays illustrated that although all four recombinant GfunPBPs (rGfunPBPs) had binding activity with the tested sex pheromone compounds, their preferred ligands were significantly different. rGfunPBP2 had the strongest binding affinity to Z8-12:Ac and Z8-12:OH; rGfunPBP1.1 preferred to bind Z8-14:Ac, Z10-14:Ac, and 12:OH more than to the other three GfunPBPs; and rGfunPBP1.2 exhibited stronger binding affinity to E8-12:Ac than to the other rGfunPBPs. Molecular docking results demonstrated that hydrophobic forces, especially van der Waals forces and hydrogen bonds, were the most important forces that maintained GfunPBP-pheromone ligand complexes. This study will improve our understanding of the sex pheromone recognition mechanisms of G. funebrana and promote the development of novel strategies for controlling G. funebrana.


Assuntos
Mariposas , Prunus domestica , Atrativos Sexuais , Masculino , Animais , Atrativos Sexuais/metabolismo , Feromônios/metabolismo , Mariposas/metabolismo , Proteínas de Transporte/química , Frutas/metabolismo , Simulação de Acoplamento Molecular , Ligantes , Proteínas de Insetos/metabolismo
6.
Insect Mol Biol ; 32(2): 132-142, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36371609

RESUMO

Juvenile hormone (JH) controls almost every aspect of an insect, especially metamorphosis. Since RNA interference works on transcripts and is often insufficient in Lepidoptera, how JH affects larval development in these insects is not well studied. Using the CRISPR/Cas9 technique, we knocked out Spodoptera exigua methoprene-tolerant 1 (SeMet1) gene of beet armyworm by modifying two sites in the coding region. However, SeMet1 knockout did not affect egg hatch rate or larval development at L1-L3 stages. In contrast to the consistent five larval instars of the control group, L4 SeMet1 mutants began to show signs of precocious metamorphosis, that is, small patches of pupal cuticle. Most L4 and all L5 SeMet1 mutants died for failing to shed their mosaic cuticles. RNA-seq indicated that most genes encoding pupal cuticle proteins and chitinase genes were altered in SeMet1 mutant L4 larvae. SeKr-h1, a key transcription factor in JH action was significantly down-regulated in L3-L5 larvae, while SeBR-C, a pupal indicator was only upregulated in L4-L5 larvae. These results suggested that S. exigua larvae may initially develop independently of JH, and involve SeMet1 in transducing JH signalling, leading to controlled larval metamorphosis at the late larval stage. We believe our findings will enhance better understanding of JH regulation of larval development.


Assuntos
Beta vulgaris , Metoprene , Animais , Larva , Spodoptera/genética , Beta vulgaris/genética , Beta vulgaris/metabolismo , Sistemas CRISPR-Cas , Metamorfose Biológica , Hormônios Juvenis/metabolismo , Insetos/genética , Pupa , Proteínas de Insetos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
7.
Pest Manag Sci ; 78(9): 3859-3870, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35524967

RESUMO

BACKGROUND: Tyrosine hydroxylase (TH), a melanin synthesis pathway enzyme hydroxylating tyrosine into 3,4-dihydroxyphenylalanine, is involved in the pigmentation and sclerotization of insect cuticles. However, the role of TH in 28-spotted potato ladybeetle (Henosepilachna vigintioctopunctata), an emerging pest of the solanaceous crops has been explored to a limited extent. In this study, we integrated dietary RNA interference (RNAi) and hematoxylin and eosin (H&E) staining with various bioassays to analyze the role of tyrosine hydroxylase (HvTH) throughout the developmental processes of Henosepilachna vigintioctopunctata. RESULTS: The results revealed that ingestion of dsHvTH led to cuticle tanning impairment, arrested larval feeding in the first and second instars of Henosepilachna vigintioctopunctata, and subsequently resulted in 100% mortality. The H&E staining assays revealed that dsHvTH prevented new abdominal cuticle formation. A pharmacological study using 3-iodo-tyrosine (3-IT), a HvTH inhibitor, disrupted larval-larval-pupal cuticle tanning during the third-fourth instar larval development and eventually failed to pupate. Similarly, dsHvTH fed to fourth instars hindered larval-pupal-adult cuticle tanning, and the eclose adults were 100% malformed. Ingestion of dsHvTH or 3-IT significantly down-regulated HvTH, HvDDC, Hvebony, and Hvlaccase2 expression and reduced dopamine levels. Finally, HvTH silencing in adult females substantially reduced the offspring hatching rates. CONCLUSIONS: The collective results of the study suggested that HvTH plays conserved roles in larval-pupal-adult cuticle melanization and sclerotization while exhibiting a novel function in Henosepilachna vigintioctopunctata reproduction. © 2022 Society of Chemical Industry.


Assuntos
Besouros , Solanum tuberosum , Animais , Besouros/metabolismo , Feminino , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva , Pupa , Interferência de RNA , Reprodução , Solanum tuberosum/metabolismo , Tirosina/genética , Tirosina/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
8.
Pestic Biochem Physiol ; 182: 105029, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35249644

RESUMO

Fushi-tarazu factor 1 (FTZF1) is an ecdysone-inducible transcription factor that plays a vital role during the metamorphosis in insects. In this study, we functionally characterized HvFTZ-F1 in H. vigintioctopunctata, a dreadful solanaceous crop pest, by using a dietary RNA interference technique. The HvFTZ-F1 expression levels were elevated in the 1st and 2nd-instars before molting and declined immediately after ecdysis. The HvFTZ-F1 silencing led to high mortality in the 1st instars, while the expression of the osmosis-regulative gene, HvAQPAn.G, was significantly increased in the 1st instars. HvFTZ-F1 silencing downregulated the Halloween and 20E-related genes, decreased the ecdysteroids titer, suppressed the expression of pigmentation-related genes, and reduced the catecholamines titer. In the 4th instars, HvFTZ-F1 silencing caused 100% mortality by arresting the development at the prepupal stage and preventing new abdominal cuticle formation. In the female adults, HvFTZ-F1 silencing caused an evident decrease in fecundity, prolonged the pre-oviposition period, reduced the number of eggs and hatching rate, severely atrophied the ovaries. Moreover, the 20E-related genes and the dopamine synthesis genes were suppressed in the dsHvFTZ-F1-treated females. Overall, our results revealed that HvFTZ-F1 regulates ecdysis, pupation, and reproduction in H. vigintioctopunctata, thereby could be a promising molecular target for the development of RNAi-based biopesticides to control H. vigintioctopunctata.


Assuntos
Muda , Solanum tuberosum , Animais , Medicamentos de Ervas Chinesas , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/genética , Muda/genética , Interferência de RNA , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Reprodução , Solanum tuberosum/metabolismo
9.
Pest Manag Sci ; 78(9): 3849-3858, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35104039

RESUMO

BACKGROUND: RNA interference (RNAi) is a breakthrough technology in pest control. It is highly efficient to Coleopteran pests such as the Colorado potato beetle Leptinotarsa decemlineata, a serious pest defoliator mainly attacking potatoes worldwide. The first step for effective pest control by RNAi is the development of effective and reliable target genes. RESULTS: Our results revealed that continuous ingestion of dsLdRan for 3 days successfully silenced the target gene, inhibited larval growth and killed 100% L. decemlineata larvae. When the bioassay began at the second-, third/fourth-instar larval stages, the larval lethality mainly occurred at the fourth larval instar and prepupal stages, respectively. Importantly, consumption of dsLdRan for 3 days by the newly-emerged males and females effectively knocked down the target transcript, reduced fresh weights and caused 100% of lethality within a week. The LdRan females possessed underdeveloped ovaries. CONCLUSION: Considering that the larvae, adults and eggs are simultaneously sited on the potato plants, bacterially-expressed dsLdRan is a potential RNAi-based strategy for managing L. decemlineata in the potato field. © 2022 Society of Chemical Industry.


Assuntos
Besouros , Solanum tuberosum , Animais , Feminino , Proteínas de Insetos/genética , Larva , Masculino , Interferência de RNA , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Proteínas ras/genética
10.
Insect Sci ; 29(1): 245-258, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34080301

RESUMO

The eicosanoid signaling pathway mediates insect immune reactions to a wide range of stimuli. This pathway begins with the biosynthesis of arachidonic acid (AA) from the hydrolysis of phospholipids catalyzed by phospholipase A2 (PLA2 ). We report here that the PLA2 inhibitor, dexamethasone (DEX), impaired the innate immune response including nodulation, encapsulation, and melanization in Ostrinia furnacalis larvae, while AA partially reversed these effects of DEX. We cloned a full-length complementary DNA encoding a PLA2 , designated as OfsPLA2 , from O. furnacalis. The open reading frame of OfsPLA2 encodes a 195-amino acid residue protein with a 22-residue signal peptide. Sequence alignment analyses indicated that O. furnacalis PLA2 might be a Group III secretory PLA2 . The highest transcript levels of OfsPLA2 were detected in the fat body, and its transcript levels increased dramatically after infection with Escherichia coli, Micrococcus luteus, or Beauveria bassiana. Recombinant OfsPLA2 significantly induced prophenoloxidase (PPO) activation in larval hemolymph in the presence of Ca2+ and encapsulation of agarose beads. Injection of recombinant OfsPLA2 into larvae resulted in increased transcript levels of attacin, defencin, and moricin-3 genes. Our results demonstrate the involvement of the eicosanoid signaling pathway in the innate immune response of O. furnacalis larvae and provide new information about the roles of O. furnacalis secretory PLA2 in activating PPO and antimicrobial peptide production.


Assuntos
Beauveria , Mariposas , Fosfolipases A2/metabolismo , Animais , Imunidade Inata , Proteínas de Insetos/metabolismo , Mariposas/enzimologia , Mariposas/imunologia , Zea mays
11.
Int J Biol Macromol ; 195: 466-474, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34914909

RESUMO

Periplaneta americana L. (PA), a type of animal medicine, has been widely used for wound healing in clinical settings. In order to further investigate the bioactive wound healing substances in PA, crude PA protein-polysaccharide complexes were further purified by cellulose DE-52 and Sephadex G100 chromatography in succession. Among these isolated fractions, two fractions eluted by 0.3 M and 0.5 M NaCl with the higher yield, respectively named PaPPc2 and PaPPc3 respectively, were chosen for the wound healing experiments. Mediated by HPGPC, amino acid and monosaccharide composition analysis, circular dichroism spectrum, glycosylation type, FT-IR, and 1H NMR analysis, the characterization of PaPPc2 and PaPPc3 was implemented. And then, the benefits of PaPPcs to promote cell proliferation, migration, and tube formation of HUVECs were determined in vitro, indicated these fractions would facilitate angiogenesis. Finally, as proof of concept, PaPPc2 and PaPPc3 were employed to accelerate the acute wounds of diabetic mice, involving in increase blood vessels and the amounts of angiogenesis-related cytokines (α-SMA, VEGF, and CD31). In short, this study provides an experimental basis to demonstrate the protein-polysaccharide complexes of Periplaneta americana L. as its wound healing bioactive substances.


Assuntos
Materiais Biocompatíveis , Proteínas de Insetos/química , Substâncias Macromoleculares/química , Substâncias Macromoleculares/farmacologia , Periplaneta/química , Polissacarídeos/química , Cicatrização , Aminoácidos/química , Animais , Linhagem Celular , Fenômenos Químicos , Diabetes Mellitus Experimental , Humanos , Substâncias Macromoleculares/isolamento & purificação , Medicina Tradicional , Camundongos , Monossacarídeos/química , Análise Espectral
12.
Arch Insect Biochem Physiol ; 108(2): e21836, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34288123

RESUMO

In Asian rice systems, Cyrtorhinus lividipennis Reuter is an important predator that preys on rice planthopper eggs and young nymphs, as a primary food source. Alanine aminotransferase (ALT) acts in many physiological and biochemical processes in insects. We cloned the full-length complementary DNA of C. lividipennis ClALT. Expression analysis showed higher expression in the fat body and midgut compared to other tissues. It is expressed in all C. lividipennis developmental stages and at least four organs. Silencing of ClALT by RNA interference significantly decreased the ClALT enzyme activity and ClALT expression compared to dsGFP-treated controls at 2 days after emergence (DAE). Silencing of ClALT influenced free hemolymph amino acid compositions, resulting in a reduction of Aspartic acid (Asp) and Alanine (Ala) proportions, and increased Cysteine (Cys) and Valine (Val) proportions in females at 2 DAE. dsClALT treatments led to decreased soluble total protein concentrations in ovary and fat body, and to lower reduced vitellogenin (Vg) expression, body weight, and the numbers of laid eggs. The double-stranded RNA viruse treatments also led to prolonged preoviposition periods and hindered ovarian development. Western blot analysis indicated that silencing ClALT also led to reduced fat body Vg protein abundance at 2 DAE. These data support our hypothesis that ClALT influences amino acid metabolism and fecundity in C. lividipennis.


Assuntos
Alanina Transaminase , Aminoácidos/metabolismo , Fertilidade , Heterópteros , Alanina Transaminase/genética , Alanina Transaminase/metabolismo , Aminoácidos/genética , Animais , Hemolinfa/metabolismo , Heterópteros/genética , Heterópteros/metabolismo , Heterópteros/fisiologia , Proteínas de Insetos/metabolismo , Interferência de RNA , Vitelogeninas/metabolismo
13.
Int J Biol Macromol ; 186: 714-723, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34274399

RESUMO

The black soldier fly larvae (BSFL), Hermetia illucens (Linnaeus), has been largely utilized for animal feed. Due to its interesting composition, BSFL has great potential to be further implemented in the human diet. Herein we compared the flour and protein extract composition based on their moisture, ash, amino acids, mineral, and protein content. To have wide knowledge on protein profile and behavior, SDS-page electrophoresis, Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) were used to give information about protein structure and thermal stability, respectively. The flour and protein extract contained respectively 37.3% and 61.1% of protein. DSC graph reported a glass transition temperature around 30 °C, recognizable by a shift in the curve, and an endothermic peak for solid melting at around 200 °C. FTIR analysis showed the main amide bands (A, B, I, II, III) for the flour and protein extract. The foam properties of BSFL protein extract were explored under different temperatures treatment, and the best foam stability was reached at 85 °C with 15 min of treatment. The data highlight the promising techno-functional properties of BSFL protein extract, and that the nutritional composition might be suitable for further use of BSFL as food fortification system.


Assuntos
Dípteros/metabolismo , Insetos Comestíveis/metabolismo , Proteínas de Insetos/química , Sequência de Aminoácidos , Animais , Coloides , Dípteros/embriologia , Insetos Comestíveis/embriologia , Manipulação de Alimentos , Alimentos Fortificados , Temperatura Alta , Proteínas de Insetos/isolamento & purificação , Larva/metabolismo , Valor Nutritivo , Estabilidade Proteica
14.
PLoS Negl Trop Dis ; 15(7): e0009587, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34270558

RESUMO

BACKGROUND: Aedes aegypti (L.) is an urban mosquito, vector of several arboviruses that cause severe diseases in hundreds of million people each year. The resistance to synthetic insecticides developed by Ae. aegypti populations worldwide has contributed to failures in vector control campaigns, increasing the impact of arbovirus diseases. In this context, plant-derived essential oils with larvicidal activity could be an attractive alternative for vector control. However, the mode of action and the detoxificant response of mosquitoes to plant derived compounds have not been established, impairing the optimization of their use. METHODS AND FINDINGS: Here we compare gene expression in Ae. aegypti larvae after 14 hrs of exposure to Eucalyptus camaldulensis essential oil with a control group exposed to vehicle (acetone) for the same lapse, by using RNA-Seq. We found differentially expressed genes encoding for cuticle proteins, fatty-acid synthesis, membrane transporters and detoxificant related gene families (i.e. heat shock proteins, cytochromes P450, glutathione transferases, UDP-glycosyltransferases and ABC transporters). Finally, our RNA-Seq and molecular docking results provide evidence pointing to a central involvement of chemosensory proteins in the detoxificant response in mosquitoes. CONCLUSIONS AND SIGNIFICANCE: Our work contributes to the understanding of the physiological response of Ae. aegypti larvae to an intoxication with a natural toxic distilled from Eucalyptus leafs. The results suggest an involvement of most of the gene families associated to detoxification of xenobiotics in insects. Noteworthy, this work provides important information regarding the implication of chemosensory proteins in the detoxification of a natural larvicide. Understanding the mode of detoxification of Eucalyptus distilled compounds could contribute to their implementation as a tool in mosquito control.


Assuntos
Aedes/efeitos dos fármacos , Eucalyptus/química , Simulação de Acoplamento Molecular , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Transcriptoma , Aedes/metabolismo , Animais , Sequência de Bases , Biologia Computacional , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/efeitos dos fármacos , Modelos Moleculares , Óleos Voláteis/química , Óleos de Plantas/química , Conformação Proteica , RNA/genética
15.
Molecules ; 26(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067143

RESUMO

Royal jelly (RJ) is a complex, creamy secretion produced by the glands of worker bees. Due to its health-promoting properties, it is used by humans as a dietary supplement. However, RJ compounds are not fully characterized yet. Hence, in this research, we aimed to broaden the knowledge of the proteomic composition of fresh RJ. Water extracts of the samples were pre-treated using combinatorial hexapeptide ligand libraries (ProteoMinerTM kit), trypsin-digested, and analyzed by a nanoLC-MALDI-TOF/TOF MS system. To check the ProteoMinerTM performance in the MS-based protein identification, we also examined RJ extracts that were not prepared with the ProteoMinerTM kit. We identified a total of 86 proteins taxonomically classified to Apis spp. (bees). Among them, 74 proteins were detected in RJ extracts pre-treated with ProteoMinerTM kit, and only 50 proteins were found in extracts non-enriched with this technique. Ten of the identified features were hypothetical proteins whose existence has been predicted, but any experimental evidence proves their in vivo expression. Additionally, we detected four uncharacterized proteins of unknown functions. The results of this research indicate that the ProteoMinerTM strategy improves proteomic identification in complex biological samples. Broadening the knowledge of RJ composition may contribute to the development of standards and regulations, enhancing the quality of RJ, and consequently, the safety of its supplementation.


Assuntos
Ácidos Graxos/química , Proteínas de Insetos/análise , Espectrometria de Massas , Oligopeptídeos/análise , Proteômica , Ligantes
16.
BMC Vet Res ; 17(1): 204, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078372

RESUMO

BACKGROUND: The aim of this study was to determine the effect of dietary inclusion of silkworm pupae meal (SPM) on nutrient digestibility, nitrogen utilization, gastrointestinal physiology and blood biochemical parameters in rabbits. Thirty Termond White rabbits were divided into three groups: SBM - fed a diet containing 10% soybean meal (SBM), SPM5 - fed a diet containing 5% SBM and 5% SPM, and SPM10 - fed a diet containing 10% SPM. RESULTS: Nutrient digestibility and nitrogen retention decreased with increasing SPM inclusion levels in rabbit diets. The dietary inclusion of SPM caused a significant increase in the stomach pH. Group SPM10 rabbits were characterized by the highest cecal tissue and digesta weights. The lowest cecal pH was noted in group SPM5. The relative weights of colonic tissue and digesta tended to increase with increasing levels of SPM. The total and intracellular activity of bacterial α-galactosidase decreased significantly in both SPM groups. The replacement of SBM with SPM led to a decrease in the activity of bacterial ß-glucuronidase in the cecal digesta. The intracellular activity of bacterial α-arabinofuranosidase increased, and its release rate decreased in the cecum of rabbits in SPM groups. The extracellular activity of bacterial ß-xylosidase in the cecal digesta tended to decrease in group SPM10. The highest extracellular and intracellular activity of bacterial ß-cellobiosidase in the cecal digesta was noted in the SPM5 treatment. The lowest and the highest activity of bacterial N-acetyl-ß-D-glucosaminidase (NAGase) was observed in groups SBM and SPM10. The SPM10 treatment contributed to a decrease in the cecal concentrations of butyric, iso-valeric and valeric acids. The lowest total concentration of putrefactive short-chain fatty acids (PSCFAs) was observed in group SPM10. The cecal concentration of propionic acid tended to increase in group SPM5, whereas the cecal concentration of iso-butyric acid tended to decrease in group SPM10. The colonic concentration of iso-valeric acid was lowest in group SPM5. SPM treatments resulted in a significant increase in plasma albumin concentration. Plasma urea concentration was significantly higher in group SPM10 than in SBM and SPM5. CONCLUSIONS: The results of this study suggest that rabbit diets can be supplemented with SPM at up to 5%.


Assuntos
Ração Animal , Bombyx , Suplementos Nutricionais , Trato Gastrointestinal/fisiologia , Nitrogênio/metabolismo , Coelhos/fisiologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Análise Química do Sangue/veterinária , Proteínas Alimentares , Proteínas de Insetos , Masculino , Pupa , Coelhos/sangue
17.
Mol Biol Rep ; 48(4): 3127-3143, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33871783

RESUMO

Chemosensory receptors in the dendritic membrane of olfactory cells are critical for the molecular recognition and discrimination of odorants. Tropidothorax elegans is a major pest of agricultural, ornamental, and medicinal plants. However, very little is known about olfactory genes in T. elegans. The purpose of this study was to obtain chemosensory receptor genes by sequencing the antennal transcriptome of T. elegans using Illumina sequencing technology. We identified 153 candidate chemosensory receptors, including 121 olfactory receptors (including one olfactory receptor co-receptor), 10 ionotropic receptors (including one IR8a and one IR25a), and 22 gustatory receptors (GRs). TeleOR76, 104 and 112 displayed more highly expression level than TeleOrco. Other TeleGR genes were expressed at very low levels except TeleGR1 and 20. TeleIR76b was the most highly expressed among TeleIR genes. Our results provide valuable biological information for studies of the olfactory communication system of T. elegans.


Assuntos
Antenas de Artrópodes/metabolismo , Heterópteros , Receptores Odorantes , Animais , Perfilação da Expressão Gênica , Heterópteros/genética , Heterópteros/fisiologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Receptores de Superfície Celular , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Transcriptoma
18.
Elife ; 102021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33760729

RESUMO

Behavioral specialization is key to the success of social insects and leads to division of labor among colony members. Response thresholds to task-specific stimuli are thought to proximally regulate behavioral specialization, but their neurobiological regulation is complex and not well understood. Here, we show that response thresholds to task-relevant stimuli correspond to the specialization of three behavioral phenotypes of honeybee workers in the well-studied and important Apis mellifera and Apis cerana. Quantitative neuropeptidome comparisons suggest two tachykinin-related peptides (TRP2 and TRP3) as candidates for the modification of these response thresholds. Based on our characterization of their receptor binding and downstream signaling, we confirm a functional role of tachykinin signaling in regulating specific responsiveness of honeybee workers: TRP2 injection and RNAi-mediated downregulation cause consistent, opposite effects on responsiveness to task-specific stimuli of each behaviorally specialized phenotype but not to stimuli that are unrelated to their tasks. Thus, our study demonstrates that TRP signaling regulates the degree of task-specific responsiveness of specialized honeybee workers and may control the context specificity of behavior in animals more generally.


Assuntos
Abelhas/metabolismo , Comportamento Animal , Proteínas de Insetos/metabolismo , Taquicininas/metabolismo , Animais , Regulação para Baixo , Células HEK293 , Mel , Humanos , Pólen , Transdução de Sinais , Comportamento Social
19.
Sci Rep ; 11(1): 6523, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753776

RESUMO

Insecticidal double-stranded RNAs (dsRNAs) silence expression of vital genes by activating the RNA interference (RNAi) mechanism in insect cells. Despite high commercial interest in insecticidal dsRNA, information on resistance to dsRNA is scarce, particularly for dsRNA products with non-transgenic delivery (ex. foliar/topical application) nearing regulatory review. We report the development of the CEAS 300 population of Colorado potato beetle (Leptinotarsa decemlineata Say) (Coleoptera: Chrysomelidae) with > 11,100-fold resistance to a dsRNA targeting the V-ATPase subunit A gene after nine episodes of selection using non-transgenic delivery by foliar coating. Resistance was associated with lack of target gene down-regulation in CEAS 300 larvae and cross-resistance to another dsRNA target (COPI ß; Coatomer subunit beta). In contrast, CEAS 300 larvae showed very low (~ 4-fold) reduced susceptibility to the Cry3Aa insecticidal protein from Bacillus thuringiensis. Resistance to dsRNA in CEAS 300 is transmitted as an autosomal recessive trait and is polygenic. These data represent the first documented case of resistance in an insect pest with high pesticide resistance potential using dsRNA delivered through non-transgenic techniques. Information on the genetics of resistance and availability of dsRNA-resistant L. decemlineata guide the design of resistance management tools and allow research to identify resistance alleles and estimate resistance risks.


Assuntos
Besouros/efeitos dos fármacos , Resistência a Medicamentos/genética , Inseticidas/farmacologia , RNA de Cadeia Dupla/farmacologia , Animais , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis/farmacologia , Besouros/genética , Besouros/patogenicidade , Colorado , Endotoxinas/genética , Endotoxinas/farmacologia , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Proteínas de Insetos/genética , Larva/genética , Larva/crescimento & desenvolvimento , Interferência de RNA , RNA de Cadeia Dupla/genética , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/parasitologia
20.
Molecules ; 26(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540716

RESUMO

BACKGROUND: The growing demand for agricultural products has led to the misuse/overuse of insecticides; resulting in the use of higher concentrations and the need for ever more toxic products. Ecologically, bioinsecticides are considered better and safer than synthetic insecticides; they must be toxic to the target organism, yet with low or no toxicity to non-target organisms. Many plant extracts have seen their high insecticide potential confirmed under laboratory conditions, and in the search for plant compounds with bioinsecticidal activity, the Lamiaceae family has yielded satisfactory results. OBJECTIVE: The aim of our study was to develop computer-assisted predictions for compounds with known insecticidal activity against Aphis gossypii and Drosophila melanogaster. RESULTS AND CONCLUSION: Structure analysis revealed ent-kaurane, kaurene, and clerodane diterpenes as the most active, showing excellent results. We also found that the interactions formed by these compounds were more stable, or presented similar stability to the commercialized insecticides tested. Overall, we concluded that the compounds bistenuifolin L (1836) and bistenuifolin K (1931), were potentially active against A. gossypii enzymes; and salvisplendin C (1086) and salvixalapadiene (1195), are potentially active against D. melanogaster. We observed and highlight that the diterpenes bistenuifolin L (1836), bistenuifolin K (1931), salvisplendin C (1086), and salvixalapadiene (1195), present a high probability of activity and low toxicity against the species studied.


Assuntos
Afídeos , Simulação por Computador , Diterpenos/química , Drosophila melanogaster , Inseticidas/química , Lamiaceae/química , Sequência de Aminoácidos , Animais , Afídeos/metabolismo , Drosophila melanogaster/metabolismo , Humanos , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Aprendizado de Máquina , Modelos Moleculares , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA