Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Nutr ; 154(2): 626-637, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38110182

RESUMO

BACKGROUND: Artificially fermented dark loose tea is a type of novel dark tea prepared via fermentation by Eurotium cristatum. The effects of artificially fermented dark loose tea on lipid metabolism are still unclear. OBJECTIVES: This study aimed to explore if artificially fermented dark loose tea has the same effects as naturally fermented dark loose tea in regulating hepatic lipid metabolism. METHODS: Thirty-six 8-wk-old male C57BL/6 mice were randomly divided into 6 treatment groups, including normal control (NC), high-fat diet (HFD), positive control (PC), Wuniuzao dark raw tea (WDT), Wuniuzao naturally fermented dark loose tea (NFLT), and Wuniuzao artificially fermented dark loose tea (AFLT) groups. The HFD, PC, WDT, NFLT, and AFLT groups were fed a HFD. The PC group was supplemented with atorvastatin (10 mg/kg). The WDT group was supplemented with WDT (300 mg/kg), the NFLT group with NFLT (300 mg/kg), and the AFLT group with AFLT (300 mg/kg). RESULTS: The study compared the effect of WDT, NFLT, and AFLT on liver steatosis and gut microbiota disorder in obese mice. All 3 tea extracts reduced body weight, glucose tolerance, and serum lipid concentrations. Via sterol-regulatory element binding protein (SREBP)-mediated lipid metabolism, all 3 tea extracts alleviated hepatic steatosis in mice with obesity. Furthermore, NFLT and AFLT intervened in the abundance of Firmicutes, Bacteroidetes, Clostridia, Muribaculaceae, and Lachnospiraceae. CONCLUSION: In mice with obesity induced by a HFD, WDT, NFLT, and AFLT may improve hepatic steatosis through an SREBP-mediated lipid metabolism. Moreover, NFLT and AFLT improved the composition of gut microbiota.


Assuntos
Microbioma Gastrointestinal , Chá , Masculino , Camundongos , Animais , Chá/química , Camundongos Obesos , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/farmacologia , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/farmacologia , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Metabolismo dos Lipídeos , Esteróis/farmacologia , Dieta Hiperlipídica
2.
Sci Rep ; 13(1): 19438, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945738

RESUMO

To provide a theoretical basis for the prevention and treatment of atherosclerosis (As), the current study aimed to investigate the mechanism underlying the effect of homocysteine (Hcy) on inducing the lipid deposition and foam cell formation of the vascular smooth muscle cell (VSMC) via C1q/Tumor necrosis factor-related protein9 (CTRP9) promoter region Hypermethylation negative regulating endoplasmic reticulum stress (ERs). Therefore, apolipoprotein E deficient (ApoE-/-) mice were randomly divided into the control [ApoE-/- + normal diet (NC)] and high methionine [ApoE-/- + (normal diet supplemented with 1.7% methionine (HMD)] groups (n = 6 mice/group). Following feeding for 15 weeks, the serum levels of Homocysteine (Hcy), total cholesterol (TC), and triglyceride (TG) were measured using an automatic biochemical analyzer. HE and oil red O staining were performed on the aorta roots to observe the pathological changes. Additionally, immunofluorescence staining was performed to detect the protein expression levels of CTRP9, glucose-regulated protein 78 kD (GRP78), phosphorylated protein kinase RNA-like ER kinase (p-PERK), activating transcription factor 6a (ATF6a), phosphorylated inositol-requiring enzyme-1α (p-IRE1α), sterol regulatory element binding proteins-1c (SREBP1c) and sterol regulatory element binding proteins-2 (SREBP2) in VSMC derived from murine aortic roots. In vitro, VSMC was stimulated with 100 µmol/l Hcy. After transfection of plasmids with overexpression and interference of CTRP9, ERs agonist (TM) and inhibitor (4-PBA) were given to stimulate VSMC cells. HE staining and oil red O staining were used to observe the effect of Hcy stimulation on lipid deposition in VSMC. Additionally, The mRNA and protein expression levels of CTRP9, GRP78, PERK, ATF6a, IRE1α, SREBP1c, and SREBP2 in VSMC were detected by RT-qPCR and western blot analysis, respectively. Finally, The methylation modification of the CTRP9 promoter region has been studied. The NCBI database was used to search the promoter region of the CTRP9 gene, and CpG Island was used to predict the methylation site. After Hcy stimulation of VSMC, overexpression of DNMT1, and intervention with 5-Azc, assess the methylation level of the CTRP9 promoter through bisulfite sequencing PCR (BSP). The results showed that the serum levels of Hcy, TC, and TG in the ApoE-/- + HMD group were significantly increased compared with the ApoE-/- + NC group. In addition, HE staining and oil red O staining showed obvious AS plaque formation in the vessel wall, and a large amount of fat deposition in VSMC, thus indicating that the hyperhomocysteinemia As an animal model was successfully established. Furthermore, CTRP9 were downregulated, while GRP78, p-PERK, ATF6a, p-IRE1α, SREBP1c, SREBP2 was upregulated in aortic VSMC in the ApoE-/- + HMD group. Consistent with the in vivo results, Hcy can inhibit the expression of CTRP9 in VSMC and induce ERs and lipid deposition in VSMC. Meanwhile, the increased expression of CTRP9 can reduce ERs and protect the lipid deposition in Hcy induced VSMC. Furthermore, ERs can promote Hcy induced VSMC lipid deposition, inhibition of ERs can reduce Hcy induced VSMC lipid deposition, and CTRP9 may play a protective role in Hcy induced VSMC lipid deposition and foam cell transformation through negative regulation of ERs. In addition, The CTRP9 promoter in the Hcy group showed hypermethylation. At the same time as Hcy intervention, overexpression of DNMT1 increases the methylation level of the CTRP9 promoter, while 5-Azc can reduce the methylation level of the CTRP9 promoter. Finally, Hcy can up-regulate the expression of DNMT1 and down-regulate the expression of CTRP9. After overexpression of DNMT1, the expression of CTRP9 is further decreased. After 5-Azc inhibition of DNMT1, the expression of DNMT1 decreases, while the expression of CTRP9 increases. It is suggested that the molecular mechanism of Hcy inhibiting the expression of CTRP9 is related to the hypermethylation of the CTRP9 promoter induced by Hcy and regulated by DNMT1. 5-Azc can inhibit the expression of DNMT1 and reverse the regulatory effect of DNMT1 on CTRP9. Overall, the results of the present study suggested that Hcy induces DNA hypermethylation in the CTRP9 promoter region by up-regulating DNMT1 expression, and negatively regulates ERs mediated VSMC lipid deposition and foam cell formation. CTRP9 may potentially be a therapeutic target in the treatment of hyperhomocysteinemia and As.


Assuntos
Aterosclerose , Hiper-Homocisteinemia , Camundongos , Animais , Endorribonucleases/metabolismo , Chaperona BiP do Retículo Endoplasmático , Músculo Liso Vascular/metabolismo , Células Espumosas/metabolismo , Hiper-Homocisteinemia/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Aterosclerose/metabolismo , Regiões Promotoras Genéticas , Metionina/metabolismo , Apolipoproteínas E/metabolismo , Lipídeos/farmacologia , Homocisteína/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Estresse do Retículo Endoplasmático
3.
Nutrients ; 13(7)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34371822

RESUMO

Tetranectin (TN), a plasminogen-binding protein originally involved in fibrinolysis and bone formation, was later identified as a secreted adipokine from human and rat adipocytes and positively correlated with adipogenesis and lipid metabolism in adipocytes. To elucidate the nutritional regulation of adipogenic TN from diets containing different sources of fatty acids (saturated, n-6, n-3) in adipocytes, we cloned the coding region of porcine TN from a cDNA library and analyzed tissue expressions in weaned piglets fed with 2% soybean oil (SB, enriched in n-6 fatty acids), docosahexaenoic acid oil (DHA, an n-3 fatty acid) or beef tallow (BT, enriched in saturated and n-9 fatty acids) for 30 d. Compared with tissues in the BT- or SB-fed group, expression of TN was reduced in the adipose, liver and lung tissues from the DHA-fed group, accompanied with lowered plasma levels of triglycerides and cholesterols. This in vivo reduction was also confirmed in porcine primary differentiated adipocytes supplemented with DHA in vitro. Then, promoter analysis was performed. A 1956-bp putative porcine TN promoter was cloned and transcription binding sites for sterol regulatory-element binding protein (SREBP)-1c or forkhead box O proteins (FoxO) were predicted on the TN promoter. Mutating binding sites on porcine TN promoters showed that transcriptional suppression of TN by DHA on promoter activity was dependent on specific response elements for SREBP-1c or FoxO. The inhibited luciferase promoter activity by DHA on the TN promoter coincides with reduced gene expression of TN, SREBP-1c, and FoxO1 in human embryonic kidney HEK293T cells supplemented with DHA. To conclude, our current study demonstrated that the adipogenic TN was negatively regulated by nutritional modulation of DHA both in pigs in vivo and in humans/pigs in vitro. The transcriptional suppression by DHA on TN expression was partly through SREBP-1c or FoxO. Therefore, down-regulation of adipogenic tetranectin associated with fibrinolysis and adipogenesis may contribute to the beneficial effects of DHA on ameliorating obesity-induced metabolic syndromes such as atherosclerosis and adipose dysfunctions.


Assuntos
Adipogenia/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacologia , Fatores de Transcrição Forkhead/metabolismo , Lectinas Tipo C/efeitos dos fármacos , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Adipócitos/efeitos dos fármacos , Animais , Fibrinólise/efeitos dos fármacos , Células HEK293 , Humanos , Fenômenos Fisiológicos da Nutrição/genética , Suínos
4.
J Med Chem ; 64(9): 5689-5709, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33899473

RESUMO

Vitamin D3 metabolites inhibit the expression of lipogenic genes by impairing sterol regulatory element-binding protein (SREBP), a master transcription factor of lipogenesis, independent of their canonical activity through a vitamin D receptor (VDR). Herein, we designed and synthesized a series of vitamin D derivatives to search for a drug-like small molecule that suppresses the SREBP-induced lipogenesis without affecting the VDR-controlled calcium homeostasis in vivo. Evaluation of the derivatives in cultured cells and mice led to the discovery of VDR-silent SREBP inhibitors and to the development of KK-052 (50), the first vitamin D-based SREBP inhibitor that has been demonstrated to mitigate hepatic lipid accumulation without calcemic action in mice. KK-052 maintained the ability of 25-hydroxyvitamin D3 to induce the degradation of SREBP but lacked in the VDR-mediated activity. KK-052 serves as a valuable compound for interrogating SREBP/SCAP in vivo and may represent an unprecedented translational opportunity of synthetic vitamin D analogues.


Assuntos
Desenho de Fármacos , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Vitamina D/análogos & derivados , Animais , Peso Corporal/efeitos dos fármacos , Células CHO , Cricetinae , Cricetulus , Reação de Cicloadição , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Fígado Gorduroso/tratamento farmacológico , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipogênese/efeitos dos fármacos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Receptores de Calcitriol/antagonistas & inibidores , Receptores de Calcitriol/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/antagonistas & inibidores , Proteínas de Ligação a Elemento Regulador de Esterol/genética , Vitamina D/metabolismo , Vitamina D/farmacologia , Vitamina D/uso terapêutico
5.
Eur J Immunol ; 51(1): 91-102, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32946110

RESUMO

Cellular metabolism is dynamically regulated in NK cells and strongly influences their responses. Metabolic dysfunction is linked to defective NK cell responses in diseases such as obesity and cancer. The transcription factors, sterol regulatory element binding protein (SREBP) and cMyc, are crucial for controlling NK cell metabolic and functional responses, though the mechanisms involved are not fully understood. This study reveals a new role for SREBP in NK cells in supporting de novo polyamine synthesis through facilitating elevated cMyc expression. Polyamines have diverse roles and their de novo synthesis is required for NK cell glycolytic and oxidative metabolism and to support optimal NK cell effector functions. When NK cells with impaired SREBP activity were supplemented with exogenous polyamines, NK cell metabolic defects were not rescued but these NK cells displayed significant improvement in some effector functions. One role for polyamines is in the control of protein translation where spermidine supports the posttranslational hypusination of translation factor eIF5a. Pharmacological inhibition of hypusination also impacts upon NK cell metabolism and effector function. Considering recent evidence that cholesterol-rich tumor microenvironments inhibit SREBP activation and drive lymphocyte dysfunction, this study provides key mechanistic insight into this tumor-evasion strategy.


Assuntos
Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Poliaminas/metabolismo , Animais , Células Cultivadas , Feminino , Glicólise , Células Matadoras Naturais/efeitos dos fármacos , Lisina/análogos & derivados , Lisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação Oxidativa , Fatores de Iniciação de Peptídeos/metabolismo , Poliaminas/farmacologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/deficiência , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Fator de Iniciação de Tradução Eucariótico 5A
6.
Chin J Nat Med ; 18(3): 161-168, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32245585

RESUMO

The liver is an important metabolic organ and controls lipid, glucose and energy metabolism. Dysruption of hepatic lipid metabolism is often associated with fatty liver diseases, including nonalcoholic fatty liver disease (NAFLD), alcoholic fatty liver diseases (AFLD) and hyperlipidemia. Recent studies have uncovered the contribution of hormones, transcription factors, and inflammatory cytokines to the pathogenesis of dyslipidemia and fatty liver diseases. Moreover, a significant amount of effort has been put to examine the mechanisms underlying the potential therapeutic effects of many natural plant products on fatty liver diseases and metabolic diseases. We review the current understanding of insulin, thyroid hormone and inflammatory cytokines in regulating hepatic lipid metabolism, focusing on several essential transcription regulators, such as Sirtuins (SIRTs), Forkhead box O (FoxO), Sterol-regulatory element-binding proteins (SREBPs). We also discuss a few representative natural products with promising thereapeutic effects on fatty liver disease and dyslipidemia.


Assuntos
Fígado Gorduroso Alcoólico/tratamento farmacológico , Hiperlipidemias/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Fitoterapia , Alcaloides/farmacologia , Animais , Citocinas/metabolismo , Dislipidemias , Flavonoides/farmacologia , Fatores de Transcrição Forkhead/metabolismo , Humanos , Insulina/metabolismo , Metabolismo dos Lipídeos , Fígado/efeitos dos fármacos , Saponinas/farmacologia , Sirtuínas/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Hormônios Tireóideos/metabolismo
7.
Cells ; 9(3)2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32110930

RESUMO

While high levels of saturated fatty acids are associated with impairment of cardiovascular functions, n-3 polyunsaturated fatty acids (PUFAs) have been shown to exert protective effects. However the molecular mechanisms underlying this evidence are not completely understood. In the present study we have used rat H9c2 ventricular cardiomyoblasts as a cellular model of lipotoxicity to highlight the effects of palmitate, a saturated fatty acid, on genetic and epigenetic modulation of fatty acid metabolism and fate, and the ability of PUFAs, eicosapentaenoic acid, and docosahexaenoic acid, to contrast the actions that may contribute to cardiac dysfunction and remodeling. Treatment with a high dose of palmitate provoked mitochondrial depolarization, apoptosis, and hypertrophy of cardiomyoblasts. Palmitate also enhanced the mRNA levels of sterol regulatory element-binding proteins (SREBPs), a family of master transcription factors for lipogenesis, and it favored the expression of genes encoding key enzymes that metabolically activate palmitate and commit it to biosynthetic pathways. Moreover, miR-33a, a highly conserved microRNA embedded in an intronic sequence of the SREBP2 gene, was co-expressed with the SREBP2 messenger, while its target carnitine palmitoyltransferase-1b was down-regulated. Manipulation of the levels of miR-33a and SREBPs allowed us to understand their involvement in cell death and hypertrophy. The simultaneous addition of PUFAs prevented the effects of palmitate and protected H9c2 cells. These results may have implications for the control of cardiac metabolism and dysfunction, particularly in relation to dietary habits and the quality of fatty acid intake.


Assuntos
Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Palmitatos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Tamanho Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Inativação Gênica/efeitos dos fármacos , Hipertrofia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Proteínas de Ligação a Elemento Regulador de Esterol/genética , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo
8.
Acta Pharmacol Sin ; 41(8): 1085-1092, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32203084

RESUMO

Hyperlipidemia (HPL) characterized by metabolic disorder of lipids and cholesterol is one of the important risk factors for cardiovascular diseases. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a potent circulating regulator of LDL through its ability to induce degradation of the low-density lipoprotein cholesterol receptor (LDLR) in the lysosome of hepatocytes. Aloe-emodin (AE) is one of potentially bioactive components of Chinese traditional medicine Daming capsule. In this study we evaluated the HPL-lowering efficacy of AE in both in vivo and in vitro HPL models. High-fat diet-induced rats were treated with AE (100 mg/kg per day, ig) for 6 weeks. We found that AE administration significantly decreased the levels of total cholesterol (TC) and LDL in the serum and liver tissues. Moreover, AE administration ameliorated HPL-induced hepatic lipid aggregation. But AE administration did not significantly inhibit HMG-CoA reductase activity in the liver of HPL rats. A cellular model of HPL was established in human hepatoma (HepG2) cells treated with cholesterol (20 µg/mL) and 25-hydroxycholesterol (2 µg/mL), which exhibited markedly elevated cholesterol levels. The increased cholesterol levels could be reversed by subsequent treatment with AE (30 µM). In both the in vivo and in vitro HPL models, we revealed that AE selectively suppressed the sterol-regulatory element-binding protein-2 (SREBP-2) and hepatocyte nuclear factor (HNF)1α-mediated PCSK9 signaling, which in turn upregulated LDL receptor (LDLR) and promoted LDL uptake. This study demonstrates that AE reduces cholesterol content in HPL rats by inhibiting the hepatic PCSK9/LDLR pathway.


Assuntos
Antraquinonas/uso terapêutico , Anticolesterolemiantes/uso terapêutico , Hiperlipidemias/tratamento farmacológico , Inibidores de PCSK9 , Animais , Dieta Hiperlipídica , Células Hep G2 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Ratos Wistar , Receptores de LDL/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo
9.
Mol Carcinog ; 57(11): 1599-1607, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30074275

RESUMO

Triple negative breast cancer (TNBC) is aggressive with a worse prognosis. We have recently shown that bitter melon extract (BME) treatment was more effective in inhibition of TNBC tumor growth in mouse models as compared to ER positive breast tumor growth. Aberrant dysregulation of lipid metabolism is associated with breast cancer progression, however, anti-cancer mechanism of BME linking lipid metabolism in breast cancer growth remains unexplored. Here, we observed that accumulation of esterified cholesterol was reduced in BME treated TNBC cell lines as compared to control cells. We next evaluated expression levels of acyl-CoA: cholesterol acyltransferase 1 (ACAT-1) in TNBC cells treated with BME. Our results demonstrated that BME treatment inhibited ACAT-1 expression in TNBC cells. Subsequently, we found that sterol regulatory element-binding proteins-1 and -2, and FASN was significantly reduced in BME treated TNBC cell lines. Low-density lipoprotein receptor was also downregulated in BME treated TNBC cells as compared to control cells. We further demonstrated that BME feeding reduced tumor growth in TNBC mammospheres implanted into NSG mice, and inhibits ACAT-1 expression. To our knowledge, this is the first report demonstrating BME suppresses TNBC cell growth through ACAT-1 inhibition, and have potential for additional therapeutic regimen against human breast cancer.


Assuntos
Colesterol/metabolismo , Momordica charantia/química , Extratos Vegetais/farmacologia , Neoplasias de Mama Triplo Negativas/metabolismo , Acetil-CoA C-Acetiltransferase/genética , Acetil-CoA C-Acetiltransferase/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Esterificação/efeitos dos fármacos , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Extratos Vegetais/química , Receptores de LDL/genética , Receptores de LDL/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Proteínas de Ligação a Elemento Regulador de Esterol/genética , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Sci Rep ; 8(1): 10021, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29968750

RESUMO

This study for the first time examined the prophylactic role of Tungrymbai, a well-known fermented soybean food of North-East India, against hepatic steatosis. Treatment with hexane-isopropanolic (2:1, HIET) but not hydro-alcoholic (70% ethanol, HAET) extract dose-dependently (0.1, 0.2, or 0.3 µg/mL) reduced the intracellular lipid accumulation as shown by lower triglyceride levels and both Oil Red O and Nile Red staining in palmitate (PA, 0.75 mM)-treated hepatocytes. Immunobloting, mRNA expression, and knock-down studies demonstrated the role of AMPK-mediated SREBP/FAS/ACC/HMGCR and PPARα/CPT1A/UCP2 signaling pathways in facilitating the beneficial role of HIET against lipid accumulation in PA-treated hepatocytes. Animal studies further showed a positive effect of HIET (20 µg/kg BW, 8 weeks, daily) in regulating AMPK/SREBP/PPARα signaling pathways and reducing body weight gain, plasma lipid levels, and hepatic steatosis in high fat diet (HFD)-fed mice. Histological analyses also revealed the beneficial effect of HIET in reducing hepatic fat accumulation in HFD mice. Chemical profiling (HRMS, IR, and HPLC) demonstrated the presence of menaquinone-7 (vitamin K2) as one of the bio-active principle(s) in HIET. Combining all, this study demonstrates the positive effect of HIET on reducing hepatic steatosis via regulating AMPK/SREBP/PPARα signaling pathway.


Assuntos
Fígado Gorduroso/dietoterapia , Fígado Gorduroso/prevenção & controle , Alimentos Fermentados , Glycine max/química , Hepatócitos/patologia , Extratos Vegetais/farmacologia , Triglicerídeos/sangue , Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA Carboxilase/metabolismo , Animais , Carnitina O-Palmitoiltransferase/metabolismo , Linhagem Celular , Hidroximetilglutaril-CoA Redutases/metabolismo , Índia , Masculino , Camundongos , PPAR gama/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Proteína Desacopladora 2/metabolismo , Receptor fas/metabolismo
11.
J Nat Med ; 72(3): 655-666, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29542003

RESUMO

Scutellaria baicalensis has been reported to improve the lipid metabolism of high-fat diet-induced liver dysfunction, but direct evidence is rare. This study aimed to explore the effects and mechanisms of S. baicalensis and its major constituent baicalin on hepatic lipotoxicity. KK-Ay mice and orotic acid (OA)-induced nonalcoholic fatty liver disease (NAFLD) rats were used to evaluate lipid metabolism regulatory effects. Sodium oleate-induced triglyceride-accumulated HepG2 cells were used for the mechanism study, pretreated with or without compound C or STO-609 or transfected with liver kinase B1 (LKB1) siRNA. In KK-Ay mice, S. baicalensis extract showed a decreased effect on serum and hepatic triglycerides, total cholesterols, and free fatty acid (FFA) levels after 8 weeks of treatment. In OA-induced NAFLD rats, 18 days of treatment with baicalin significantly inhibited hepatic lipid accumulation, attenuating hepatocyte hypertrophy, vacuolization and necrosis. S. baicalensis and baicalin treatment significantly suppressed the sterol regulatory element binding protein-1c (SREBP-1c) transcriptional program with downregulation of gene and protein expression of SREBP-1c (both precursor and mature fraction) and acetyl-CoA carboxylase, fatty acid synthase and stearoyl-CoA desaturase, and upregulation of AMP-activated protein kinase (AMPK), carnitine palmitoyl transferase 1 and nuclear respiratory factor 2 in the liver. Furthermore, activation of AMPK by baicalin was observed to be relative to the increase in phosphorylation of calmodulin-dependent protein kinase kinase. Taken together, S. baicalensis conferred preventive effects against FFA-induced lipotoxicity through the AMPK-mediated SREBP signaling pathway.


Assuntos
Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Extratos Vegetais/química , Scutellaria baicalensis/química , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Animais , Dieta Hiperlipídica , Humanos , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/patologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
12.
Nutrition ; 48: 122-126, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29469013

RESUMO

OBJECTIVE: We investigated the effect of intermittent food restriction (IFR) cycles on hypothalamic expression of lipogenic proteins and induction of overeating. METHODS: Female Wistar rats were distributed in three groups: free access to feed (control, C), 2 d feed restriction at 50% of C intake followed by 3 d (restricted 3, R3) or 5 d (restricted 5, R5) ad libitum feeding. After 6 wk, the rats were submitted to euthanasia and collected the hypothalamus and blood. The deposits of retroperitoneal, mesenteric, and gonadal fat were weighed. The expression of the mRNA for sterol regulatory element binding protein (SREBP) 1c and 2 and acetyl-CoA carboxylase in the hypothalamus were determined by real-time polymerase chain reaction, and glucose and triacylglycerol were evaluated by a commercial kit. Body mass and food intake were measured daily. RESULTS: IFR promoted increased expression of SREBP-2 in both treated groups and, in R5, increased expression of SREBP-1c. The serum triacylglycerol, mesenteric deposit, and total fat content were higher in R3. Neither of the treatment intervals altered the expression of the mRNA of acetyl-CoA carboxylase enzyme but induced hyperglycemia and higher food intake immediately after food restriction. CONCLUSION: IFR affected the expression of SREBP-1c in R5 and SREBP-2 in the hypothalamus and caused overeating immediately after fasting in both groups. We suggest that hypothalamic and peripheral alterations, coupled with compulsive eating behavior in the ad libitum period, indicate risks for diabetes mellitus and recovery of body mass after interruption of IFR.


Assuntos
Restrição Calórica/efeitos adversos , Ingestão de Alimentos/genética , Jejum/efeitos adversos , Hiperfagia/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Acetil-CoA Carboxilase/metabolismo , Animais , Feminino , Hiperfagia/etiologia , Hipotálamo/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar
13.
Sci Rep ; 7(1): 10901, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28883496

RESUMO

Atypical antipsychotics (AAPs) are considered to possess superior efficacy for treating both the positive and negative symptoms of schizophrenia; however, AAP use often causes excessive weight gain and metabolic abnormalities. Recently, several reports have demonstrated that AAPs activate sterol regulatory element-binding protein (SREBP). SREBP, SREBP cleavage-activating protein (SCAP) and insulin-induced gene (Insig) regulate downstream cholesterol and fatty acid biosynthesis. In this study, we explored the effects of clozapine, olanzapine and risperidone on SREBP signaling and downstream lipid biosynthesis genes in the early events of adipogenic differentiation in adipose-derived stem cells (ASCs). After the induction of adipogenic differentiation for 2 days, all AAPs, notably clozapine treatment for 3 and 7 days, enhanced the expression of SREBP-1 and its downstream lipid biosynthesis genes without dexamethasone and insulin supplementation. Simultaneously, protein level of SREBP-1 was significantly enhanced via inhibition of Insig-2 expression. By contrast, SREBP-1 activation was suppressed when Insig-2 expression was upregulated by transfection with Insig-2 plasmid DNA. In summary, our results indicate that AAP treatment, notably clozapine treatment, induces early-stage lipid biosynthesis in ASCs. Such abnormal lipogenesis can be reversed when Insig-2 expression was increased, suggesting that Insig/SCAP/SREBP signaling may be a therapeutic target for AAP-induced weight gain and metabolic abnormalities.


Assuntos
Adipogenia/efeitos dos fármacos , Antipsicóticos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metabolismo dos Lipídeos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Animais , Células Cultivadas , Clozapina/metabolismo , Citosol/química , Ácidos Graxos/análise , Olanzapina/metabolismo , Ratos Endogâmicos Lew , Risperidona/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo
14.
Lipids Health Dis ; 16(1): 145, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28764799

RESUMO

BACKGROUND: Schisandra, a globally distributed plant, has been widely applied for the treatment of diseases such as hyperlipidemia, fatty liver and obesity in China. In the present work, a rapid resolution liquid chromatography coupled with quadruple-time-of-flight mass spectrometry (RRLC-Q-TOF-MS)-based metabolomics was conducted to investigate the intervention effect of Schisandra chinensis lignans (SCL) on hyperlipidemia mice induced by high-fat diet (HFD). METHODS: Hyperlipidemia mice were orally administered with SCL (100 mg/kg) once a day for 4 weeks. Serum biochemistry assay of triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c) and high-density lipoprotein cholesterol (HDL-c) was conducted to confirm the treatment of SCL on lipid regulation. Metabolomics analysis on serum samples was carried out, and principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were carried out for the pattern recognition and characteristic metabolites identification. The relative levels of critical regulatory factors of liver lipid metabolism, sterol regulatory element-binding proteins (SREBPs) and its related gene expressions were measured by quantitative real-time polymerase chain reaction (RT-PCR) for investigating the underlying mechanism. RESULTS: Oral administration of SCL significantly decreased the serum levels of TC, TG and LDL-c and increased the serum level of HDL-c in the hyperlipidemia mice, and no effect of SCL on blood lipid levels was observed in control mice. Serum samples were scattered in the PCA scores plots in response to the control, HFD and SCL group. Totally, thirteen biomarkers were identified and nine of them were recovered to the normal levels after SCL treatment. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis, the anti-hyperlipidemia mechanisms of SCL may be involved in the following metabolic pathways: tricarboxylic acid (TCA) cycle, synthesis of ketone body and cholesterol, choline metabolism and fatty acid metabolism. Meanwhile, SCL significantly inhibited the mRNA expression level of hepatic lipogenesis genes such as SREBP-1c, fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC), and decreased the mRNA expression of liver X receptor α (LXRα). Moreover, SCL also significantly decreased the expression level of SREBP-2 and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) in the liver of hyperlipidemia mice. CONCLUSION: Anti-hyperlipidemia effect of SCL was confirmed by both serum biochemistry and metabolomics analysis. The mechanism may be related to the down-regulation of LXRα/SREBP-1c/FAS/ACC and SREBP2/HMGCR signaling pathways.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Hiperlipidemias/tratamento farmacológico , Lignanas/uso terapêutico , Metabolômica , Schisandra/química , Animais , Biomarcadores/sangue , Colesterol/sangue , Hiperlipidemias/sangue , Hiperlipidemias/genética , Masculino , Espectrometria de Massas , Redes e Vias Metabólicas/genética , Metaboloma , Camundongos Endogâmicos C57BL , Análise de Componente Principal , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/genética , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Triglicerídeos/sangue
15.
Acta Histochem ; 119(6): 610-619, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28705489

RESUMO

To investigate the lipid metabolism dysregulation in the liver of ovariectomized (OVX) rats and effects of estradiol valerate (E) and remifemin (ICR) thereon, forty female Sprague-Dawley rats were randomly divided into sham-operated (SHAM), OVX, OVX+E, and OVX+ICR group. After 4 weeks' E or ICR treatment, serum estrogen, cholesterol, and triglyceride levels; lipid droplets in hepatocytes; hepatocyte morphology; and the expression of estrogen receptor α (ERα), liver X receptor (LXR), and sterol regulatory element binding proteins (SREBPs) in the liver of the rats were assessed. OVX rats had significantly decreased serum estrogen levels, which significantly increased after treatment with E but not with ICR. Serum triglyceride levels and the amount of lipid droplets in hepatocytes increased after ovariectomy, and significantly decreased after E treatment. In addition, ICR treatment markedly increased serum triglyceride levels and lipid droplet size. No significant differences in the serum cholesterol levels were observed among the four groups. After ovariectomy, hepatocyte mitochondria became hypertrophic and misformed, which were reversed with E or ICR treatment. ICR-treated rats also showed endoplasmic reticulum disorganization. After ovariectomy, ERα and LXR levels significantly decreased while SREBP expression increased. E treatment increased ERα and LXR levels while ICR treatment only increased LXR expression. E treatment decreased SREBP-1c levels, whereas SREBP-1c levels increased with ICR treatment. Treatment with E significantly reversed the ovariectomy-induced dysregulation of hepatocyte lipid metabolism, which was, however, exacerbated with ICR treatment. The effects of E and ICR on hepatocyte lipid metabolism may involve the regulation of LXR and SREBP-1c.


Assuntos
Estradiol/análogos & derivados , Metabolismo dos Lipídeos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Colesterol/sangue , Cimicifuga , Estradiol/farmacologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios/sangue , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/química , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Ovariectomia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Proteínas de Ligação a Elemento Regulador de Esterol/genética , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo
16.
Chin J Nat Med ; 15(3): 210-219, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28411689

RESUMO

The present study was designed to investigate the therapeutic effcts of Moutan Cortex (CM, root bark of Paeonia suffruticosa Andr) and Paeoniae Radix Rubra (PR, root of Paeonia veitchii Lynch) on metabolic disorders, focusing on the infuence of CM and PR on the obesity-related gut microbiota homeostasis. The diet-induced obese (DIO) mouse model was used to test the therapeutic effects of CM and PR. The mice were orally administered with CM and PR for 6 weeks, and oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) were performed to evaluate the insulin sensitivity of the mice. Sterol-regulatory element binding proteins (SREBPs) and their target genes were measured by quantitative RT-PCR. High-throughput 16S ribosomal RNA (16S rRNA) gene sequencing technology was used to determine the composition of gut microbiota, and the metabolites in serum were analyzed by GC-MS. Our results indicated that CM and PR combination alleviated obese and insulin resistance in the DIO mice, leading to increased glucose uptake and gene expression in muscle and liver, and down-regulated SREBPs and their target genes in liver. Interesting, neither the CM-PR extracts, nor the major components of CM and PR did not affect SREBPs activity in cultured cells. Meanwhile, CM and PR significantly modulated the gut microbiota of the high-fat diet (HFD) treated mice, similar to metformin, and CM-PR reversed the overall microbiota composition similar to the normal chow diet (NCD) treated mice. In conclusion, our results provide novel mechanisms of action for the effects of CM and PR in treating DIO-induced dysregulation of sugar and lipid metabolism.


Assuntos
Medicamentos de Ervas Chinesas/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/microbiologia , Paeonia/química , Animais , Glicemia/metabolismo , Dieta Hiperlipídica/efeitos adversos , Homeostase/efeitos dos fármacos , Humanos , Insulina/metabolismo , Masculino , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Ligação a Elemento Regulador de Esterol/genética , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo
17.
Am J Chin Med ; 45(1): 67-83, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28161992

RESUMO

Antrodia cinnamomea (AC), a protogenic fungus that only grows on the heartwood of endemic Cinnamomum kanehirae Hayata in Taiwan, is used to treat a variety of illness including liver disease. However, little is known about the benefit of AC against obesity and the related hepatic disorder. Using high-fat-diet (HFD) feed mice, we aimed to investigate whether the extract of AC (ACE) could reduce excessive weight, body fat, and serum lipids and prevent the development of non-alcoholic fatty liver (NAFLD). C57BL/6 mice were divided into five groups fed with different diets: control, HFD, and HFD with 0.5%, 1%, or 2% of ACE, respectively. After 10 weeks the animals were sacrificed, with serum and liver collected. HFD-induced elevation of body weight gain, body fat deposition, and serum free fatty acid (FFA), triacylglycerol (TGs), total cholesterol, and ratio of LDL cholesterol (LDL-C)/HDL cholesterol (HDL-C), were significantly restored by ACE. ACE reduced aspartate aminotransferase (AST), alanine aminotransferase (ALT), and hepatic lipid deposits increased by HFD. ACE increased p-AMP activated protein kinase (pAMPK) but decreased Sterol regulatory element binding protein (SREBP), fatty acid synthase (FAS), 1-acylglycerol-3-phosphate acyltransferase (AGPAT), and 3-hydroxy-3-methylglutaryl-coenzyme A (HMGCoA) reductase. The chemical analysis reveals ACE is full of triterpenes, the most abundant of which is Antcin K, followed by sulphurenic acid, eburicoic acid, antcin C, dehydrosulphurenic acid, antcin B, and propanoic acid. In conclusion, ACE should be used to prevent obesity and derived fatty liver. The applicability of ACE on NAFLD deserves further investigation.


Assuntos
Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Antrodia , Peso Corporal/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fitoterapia , Proteínas de Ligação a Elemento Regulador de Esterol/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Colesterol/sangue , HDL-Colesterol/sangue , HDL-Colesterol/efeitos dos fármacos , LDL-Colesterol/sangue , LDL-Colesterol/efeitos dos fármacos , Dieta Hiperlipídica , Dislipidemias/metabolismo , Dislipidemias/prevenção & controle , Ácidos Graxos não Esterificados/sangue , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Obesidade/metabolismo , Obesidade/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Triglicerídeos/sangue
18.
Cell Chem Biol ; 24(2): 207-217, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28132894

RESUMO

Sterol regulatory element-binding proteins (SREBPs) are transcription factors that control lipid homeostasis. SREBP activation is regulated by a negative feedback loop in which sterols bind to SREBP cleavage-activating protein (SCAP), an escort protein essential for SREBP activation, or to insulin-induced genes (Insigs) (endoplasmic reticulum [ER] anchor proteins), sequestering the SREBP-SCAP-Insig complex in the ER. We screened a chemical library of endogenous molecules and identified 25-hydroxyvitamin D (25OHD) as an inhibitor of SREBP activation. Unlike sterols and other SREBP inhibitors, 25OHD impairs SREBP activation by inducing proteolytic processing and ubiquitin-mediated degradation of SCAP, thereby decreasing SREBP levels independently of the vitamin D receptor. Vitamin D supplementation has been proposed to reduce the risk of metabolic diseases, but the mechanisms are unknown. The present results suggest a previously unrecognized molecular mechanism of vitamin D-mediated lipid control that might be useful in the treatment of metabolic diseases.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Metabolismo dos Lipídeos/efeitos dos fármacos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Ligação a Elemento Regulador de Esterol/antagonistas & inibidores , Vitamina D/análogos & derivados , Animais , Células CHO , Células Cultivadas , Cricetulus , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Conformação Molecular , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/genética , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Relação Estrutura-Atividade , Vitamina D/química , Vitamina D/metabolismo , Vitamina D/farmacologia
19.
BMC Complement Altern Med ; 16: 182, 2016 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-27349523

RESUMO

BACKGROUND: High plasma concentration of low-density lipoprotein cholesterol (LDL-c) plays a significant role in the incidence of atherosclerosis and coronary heart diseases. The aim of this study was to investigate the mechanism by which the citrus flavonoid, hesperetin, regulates the LDL receptor (LDLr) gene in the human liver using the human hepatoma cell line, HepG2. METHODS: Luciferase reporter gene assays were performed (in the absence of lipoprotein) to measure the activity of the LDLr promoter and the promoters of the sterol regulatory element binding protein (SREBP) transcription factors that control the LDLr promoter. RESULTS: Only SREBP-1 promoter activity was significantly increased 4 h after exposure to 200 µM hesperetin. However, after 24 h incubation with 200 µM hesperetin, the activities of all the promoter-constructs, SREBP-1a, -1c, -2 and LDLr, were significantly increased. The effects of 200 µM hesperetin on elevating LDLr mRNA levels were possibly due to regulation of LDLr gene transcription by SREBP-la and SREBP-2. CONCLUSIONS: We conclude that 200 µM hesperetin was likely to have stimulated LDLr gene expression in human hepatoma HepG2 cells via increased phosphorylation of PI3K andERK1/2, which increased SREBP-1a and SREBP-2 mRNA levels and enhanced the maturation of the encoded proteins. This may lead to lower plasma LDL cholesterol; therefore, diets supplemented with hesperidin might provide cardio-protective effects and reduce mortality and morbidity from coronary heart diseases.


Assuntos
Hesperidina/farmacologia , Neoplasias Hepáticas/metabolismo , Receptores de LDL/metabolismo , Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo
20.
J Cell Sci ; 129(9): 1855-65, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26985063

RESUMO

Sustained endoplasmic reticulum (ER) stress disrupts normal cellular homeostasis and leads to the development of many types of human diseases, including metabolic disorders. TAK1 (also known as MAP3K7) is a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family and is activated by a diverse set of inflammatory stimuli. Here, we demonstrate that TAK1 regulates ER stress and metabolic signaling through modulation of lipid biogenesis. We found that deletion of Tak1 increased ER volume and facilitated ER-stress tolerance in cultured cells, which was mediated by upregulation of sterol-regulatory-element-binding protein (SREBP)-dependent lipogenesis. In the in vivo setting, central nervous system (CNS)-specific Tak1 deletion upregulated SREBP-target lipogenic genes and blocked ER stress in the hypothalamus. Furthermore, CNS-specific Tak1 deletion prevented ER-stress-induced hypothalamic leptin resistance and hyperphagic obesity under a high-fat diet (HFD). Thus, TAK1 is a crucial regulator of ER stress in vivo, which could be a target for alleviation of ER stress and its associated disease conditions.


Assuntos
Estresse do Retículo Endoplasmático , Hipotálamo/metabolismo , Leptina/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Animais , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/farmacologia , Hiperfagia/induzido quimicamente , Hiperfagia/genética , Hiperfagia/metabolismo , Hiperfagia/patologia , Hipotálamo/patologia , Leptina/genética , MAP Quinase Quinase Quinases/genética , Camundongos , Camundongos Knockout , Obesidade/induzido quimicamente , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Proteínas de Ligação a Elemento Regulador de Esterol/genética , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA