Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytother Res ; 38(1): 82-97, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37807970

RESUMO

Ursolic acid (UA) is a naturally occurring pentacyclic triterpenoid widely found in fruits and vegetables. It has been reported that UA has anti-inflammatory effects. However, its efficacy and mechanism of action in the treatment of chronic prostatitis (CP) remain unclear. This study aimed to investigate the efficacy of UA treatment in CP and further explore the underlying mechanism. CP rat and pyroptosis cell models were established in vivo and in vitro, respectively. The efficacy of UA in inhibiting CP was evaluated via haematoxylin-eosin (HE) staining and measurement of inflammatory cytokines. RNA sequencing and molecular docking were used to predict the therapeutic targets of UA in CP. The expression of pyroptosis-related proteins was examined using various techniques, including immunohistochemistry, immunofluorescence, and flow cytometry. UA significantly ameliorated pathological damage and reduced the levels of proinflammatory cytokines in the CP model rats. RNA sequencing analysis and molecular docking suggested that NLRP3, Caspase-1, and GSDMD may be key targets. We also found that UA decreased ROS levels, alleviated oxidative stress, and inhibited p-NF-κB protein expression both in vivo and in vitro. UA improved pyroptosis morphology as indicated by electron microscope and inhibited the expression of the pyroptosis-related proteins NLRP3, Caspase-1, ASC, and GSDMD, reversed the levels of IL-1ß, IL-18, and lactate dehydrogenase in vivo and in vitro. UA can mitigate CP by regulating the NLRP3 inflammasome-mediated Caspase-1/GSDMD pathway. Therefore, UA may be a potential for the treatment of CP.


Assuntos
Inflamassomos , Prostatite , Humanos , Masculino , Ratos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ácido Ursólico , Piroptose/fisiologia , Caspase 1/metabolismo , Prostatite/tratamento farmacológico , Simulação de Acoplamento Molecular , Gasderminas , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/farmacologia
2.
Chin J Nat Med ; 21(6): 423-435, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37407173

RESUMO

Acute lung injury (ALI) is a prevalent and severe clinical condition characterized by inflammatory damage to the lung endothelial and epithelial barriers, resulting in high incidence and mortality rates. Currently, there is a lack of safe and effective drugs for the treatment of ALI. In a previous clinical study, we observed that Jinyinqingre oral liquid (JYQR), a Traditional Chinese Medicine formulation prepared by the Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, exhibited notable efficacy in treating inflammation-related hepatitis and cholecystitis in clinical settings. However, the potential role of JYQR in ALI/acute respiratory distress syndrome (ARDS) and its anti-inflammatory mechanism remains unexplored. Thus, the present study aimed to investigate the therapeutic effects and underlying molecular mechanisms of JYQR in ALI using a mouse model of lipopolysaccharide (LPS)-induced ALI and an in vitro RAW264.7 cell model. JYQR yielded substantial improvements in LPS-induced histological alterations in lung tissues. Additionally, JYQR administration led to a noteworthy reduction in total protein levels within the BALF, a decrease in MPAP, and attenuation of pleural thickness. These findings collectively highlight the remarkable efficacy of JYQR in mitigating the deleterious effects of LPS-induced ALI. Mechanistic investigations revealed that JYQR pretreatment significantly inhibited NF-κB activation and downregulated the expressions of the downstream proteins, namely NLRP3 and GSDMD, as well as proinflammatory cytokine levels in mice and RAW2647 cells. Consequently, JYQR alleviated LPS-induced ALI by inhibiting the NF-κB/NLRP3/GSDMD pathway. JYQR exerts a protective effect against LPS-induced ALI in mice, and its mechanism of action involves the downregulation of the NF-κB/NLRP3/GSDMD inflammatory pathway.


Assuntos
Lesão Pulmonar Aguda , NF-kappa B , Humanos , NF-kappa B/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Pulmão , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/farmacologia , Proteínas de Ligação a Fosfato/uso terapêutico , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Proteínas Citotóxicas Formadoras de Poros/uso terapêutico
3.
J Cell Physiol ; 229(2): 153-61, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23955241

RESUMO

Although neurons are not productively infected with HIV-1, neuronal injury and death are frequently seen in the brains of AIDS patients with neurological and neurocognitive disorders. Evidently, viral proteins including Tat and cellular inflammatory factors released by activated and/or infected microglia, macrophages, and astrocytes contribute to neuronal cell death. Several studies have demonstrated that HIV-1 associated neuronal cell injury is mediated by dysregulation of signaling pathways that are controlled, in part, by a class of serine/threonine kinases. In this study, we demonstrate that pDING, a novel plant-derived phosphate binding protein has the capacity to reduce the severity of injury and death caused by HIV-1 and its neurotoxic Tat protein. We demonstrate that pDING, also called p27SJ/p38SJ, protects cells from the loss of neuronal processes induced by Tat and promotes neuronal outgrowth after Tat-mediated injury. Further, expression of pDING prevents Tat-induced oxidative stress and mitochondrial permeability. With its profound phosphatase activity, pDING controls the activity of several kinases including MAPK, Cdk5, and their downstream target protein, MEF2, which is implicated in neuronal cell protection. Our results show that expression of pDING in neuronal cells diminishes the level of hyperphosphorylated forms of Cdk5 and MEF2 caused by Tat and the other neurotoxic agents that are secreted by the HIV-1 infected cells. These observations suggest that pDING, through its phosphatase activity, has the ability to manipulate the state of phosphorylation and activity of several factors involved in neuronal cell health in response to HIV-1.


Assuntos
Neurônios/efeitos dos fármacos , Proteínas de Ligação a Fosfato/farmacologia , Proteínas de Plantas/farmacologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/toxicidade , Morte Celular , Células Cultivadas , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Humanos , Hypericum/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Ligação a Fosfato/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA