Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36361954

RESUMO

Metabolic reprogramming is a key attribute of cancer progression. An altered expression of pyruvate kinase M2 (PKM2), a phosphotyrosine-binding protein is observed in many human cancers. PKM2 plays a vital role in metabolic reprogramming, transcription and cell cycle progression and thus is deliberated as an attractive target in anticancer drug development. The expression of PKM2 is essential for aerobic glycolysis and cell proliferation, especially in cancer cells, facilitating selective targeting of PKM2 in cell metabolism for cancer therapeutics. We have screened a virtual library of phytochemicals from the IMPPAT (Indian Medicinal Plants, Phytochemistry and Therapeutics) database of Indian medicinal plants to identify potential activators of PKM2. The initial screening was carried out for the physicochemical properties of the compounds, and then structure-based molecular docking was performed to select compounds based on their binding affinity towards PKM2. Subsequently, the ADMET (absorption, distribution, metabolism, excretion and toxicity) properties, PAINS (Pan-assay interference compounds) patterns, and PASS evaluation were carried out to find more potent hits against PKM2. Here, Tuberosin was identified from the screening process bearing appreciable binding affinity toward the PKM2-binding pocket and showed a worthy set of drug-like properties. Finally, molecular dynamics simulation for 100 ns was performed, which showed decent stability of the protein-ligand complex and relatival conformational dynamics throughout the trajectory. The study suggests that modulating PKM2 with natural compounds is an attractive approach in treating human malignancy after required validation.


Assuntos
Ativadores de Enzimas , Isoflavonas , Neoplasias , Piruvato Quinase , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Ativadores de Enzimas/farmacologia , Ativadores de Enzimas/uso terapêutico , Glicosídeos/farmacologia , Glicosídeos/uso terapêutico , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Proteínas de Ligação a Fosfato/química , Proteínas de Ligação a Fosfato/metabolismo , Piruvato Quinase/metabolismo
2.
Molecules ; 25(12)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599898

RESUMO

Urease is a nickel-containing enzyme that is essential for the survival of several and often deadly pathogenic bacterial strains, including Helicobacter pylori. Notwithstanding several attempts, the development of direct urease inhibitors without side effects for the human host remains, to date, elusive. The recently solved X-ray structure of the HpUreDFG accessory complex involved in the activation of urease opens new perspectives for structure-based drug discovery. In particular, the quaternary assembly and the presence of internal tunnels for nickel translocation offer an intriguing possibility to target the HpUreDFG complex in the search of indirect urease inhibitors. In this work, we adopted a theoretical framework to investigate such a hypothesis. Specifically, we searched for putative binding sites located at the protein-protein interfaces on the HpUreDFG complex, and we challenged their druggability through structure-based virtual screening. We show that, by virtue of the presence of tunnels, some protein-protein interfaces on the HpUreDFG complex are intrinsically well suited for hosting small molecules, and, as such, they possess good potential for future drug design endeavors.


Assuntos
Inibidores Enzimáticos/farmacologia , Helicobacter pylori/metabolismo , Complexos Multiproteicos/metabolismo , Urease/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Simulação de Dinâmica Molecular , Complexos Multiproteicos/química , Proteínas de Ligação a Fosfato/química , Proteínas de Ligação a Fosfato/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Urease/química , Urease/metabolismo
3.
J Bone Miner Res ; 24(1): 97-101, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18715138

RESUMO

Reduction of blood phosphorus is a critical component in the management of secondary hyperparathyroidism in chronic kidney disease patients. In addition to dialysis treatment and dietary phosphorus restriction, oral phosphate binders are often consumed with meals to reduce the availability of food phosphorus. Several oral phosphate binders are approved for use in chronic kidney disease patients, but all have practical limitations because of toxicity, poor efficacy, or high cost. Using an in vivo method to measure intestinal phosphate absorption in rats using radiolabeled phosphate, we found that first-, second-, third-, and fifth-generation diaminobutane dendrimer compounds, DAB-4-Cl, DAB-8-Cl, DAB-16-Cl, and DAB-64-Cl, respectively, drastically reduce the absorption of inorganic phosphate in a dose-dependent manner. To avoid complications of metabolic acidosis caused by hydrochloride salts, an acetate salt, DAB-9-AcOH, was prepared and shown to be equally effective at binding radiolabeled phosphate as DAB-8-Cl. DAB-8-AcOH was further shown to increase fecal phosphorus and decrease serum phosphorus in a dose-dependent manner when fed to rats. These data suggest that dendrimer compounds are of great potential use in the binding of food phosphate for the management of hyperparathyroidism secondary to chronic kidney disease.


Assuntos
Butanos/farmacologia , Dendrímeros/química , Fosfatos/química , Fósforo/sangue , Administração Oral , Animais , Butanos/química , Quelantes/farmacologia , Relação Dose-Resposta a Droga , Hiperparatireoidismo/metabolismo , Nefropatias/metabolismo , Masculino , Proteínas de Ligação a Fosfato/química , Fosfatos/metabolismo , Fósforo/química , Poliaminas/farmacologia , Ratos , Ratos Sprague-Dawley , Sevelamer
4.
J Bone Miner Res ; 20(5): 764-72, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15824849

RESUMO

UNLABELLED: We performed a post hoc analysis of a 52-week randomized trial conducted in adult hemodialysis patients that compared the effects of calcium-based phosphate binders and sevelamer, a nonabsorbable polymer, on parameters of mineral metabolism and vascular calcification by electron beam tomography. In this analysis, we evaluated the relative effects of calcium and sevelamer on thoracic vertebral attenuation by CT and markers of bone turnover. Subjects randomized to calcium salts experienced a significant reduction in trabecular bone attenuation and a trend toward reduction in cortical bone attenuation, in association with higher concentrations of serum calcium, lower concentrations of PTH, and reduced total and bone-specific alkaline phosphatase. INTRODUCTION: In patients with chronic kidney disease, hyperphosphatemia is associated with osteodystrophy, vascular and soft tissue calcification, and mortality. Calcium-based phosphate binders are commonly prescribed to reduce intestinal phosphate absorption and to attenuate secondary hyperparathyroidism. Clinicians and investigators have presumed that, in hemodialysis patients, calcium exerts beneficial effects on bone. MATERIALS AND METHODS: We performed a post hoc analysis of a 52-week randomized trial conducted in adult hemodialysis patients that compared the effects of calcium-based phosphate binders and sevelamer, a nonabsorbable polymer, on parameters of mineral metabolism and vascular calcification by electron beam tomography. In this analysis, we evaluated the relative effects of calcium and sevelamer on thoracic vertebral attenuation by CT and markers of bone turnover. RESULTS AND CONCLUSIONS: The average serum phosphorus and calcium x phosphorus products were similar for both groups, although the average serum calcium concentration was significantly higher in the calcium-treated group. Compared with sevelamer-treated subjects, calcium-treated subjects showed a decrease in thoracic vertebral trabecular bone attenuation (p = 0.01) and a trend toward decreased cortical bone attenuation. More than 30% of calcium-treated subjects experienced a 10% or more decrease in trabecular and cortical bone attenuation. On study, sevelamer-treated subjects had higher concentrations of total and bone-specific alkaline phosphatase, osteocalcin, and PTH (p < 0.001). When used to correct hyperphosphatemia, calcium salts lead to a reduction in thoracic trabecular and cortical bone attenuation. Calcium salts may paradoxically decrease BMD in hemodialysis patients.


Assuntos
Cálcio/química , Compostos de Epóxi/farmacologia , Falência Renal Crônica/sangue , Vértebras Lombares/patologia , Proteínas de Ligação a Fosfato/uso terapêutico , Fosfatos/química , Polietilenos/farmacologia , Idoso , Fosfatase Alcalina/metabolismo , Aorta/patologia , Biomarcadores/sangue , Osso e Ossos/metabolismo , Cálcio/metabolismo , Elétrons , Feminino , Humanos , Falência Renal Crônica/tratamento farmacológico , Vértebras Lombares/metabolismo , Masculino , Pessoa de Meia-Idade , Hormônio Paratireóideo/metabolismo , Proteínas de Ligação a Fosfato/química , Fósforo , Poliaminas , Polímeros/química , Diálise Renal/efeitos adversos , Soro/metabolismo , Sevelamer , Coluna Vertebral/patologia , Fatores de Tempo , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA