Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 645: 210-218, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37149995

RESUMO

Neuronal damage caused by ß-amyloid (Aß) aggregates and excess reactive oxygen species (ROS) is a crucial pathogenic event in Alzheimer's disease (AD). However, current Aß-targeting RNA interference (RNAi) treatments have shown limited therapeutic efficacy due to ineffective intracerebral siRNA delivery and overlooked crosstalk between excess ROS and Aß aggregates in the brain. Herein, a ROS-responsive nanomodulator (NM/CM) was developed for the combinational treatment of RNAi and ROS elimination for AD. NM/CM was coated with 4T1 cell membranes, which endowed NM/CM with the capability to cross blood-brain barrier (BBB). After being internalized by neural cells, NM/CM releases curcumin (Cur) and siIFITM3 spontaneously into the cytoplasm. The released Cur can eliminate ROS, protecting neurons from oxidative damage and reducing the production of Aß induced by ROS-related neuroinflammation. The released siIFITM3 can downregulate the expression of interferon-induced transmembrane protein 3 (IFITM3), thereby reducing the abnormal Aß production mediated by IFITM3. As a result, NM/CM remarkably alleviated ROS- and Aß aggregate-induced neurotoxicity in vitro, showing significant neuroprotective effects. This work demonstrates the potential of NM/CM in the development of novel and effective AD combination therapies.


Assuntos
Doença de Alzheimer , Curcumina , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Espécies Reativas de Oxigênio/metabolismo , Peptídeos beta-Amiloides , Estresse Oxidativo , Barreira Hematoencefálica , Curcumina/farmacologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/farmacologia , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/farmacologia , Proteínas de Ligação a RNA/uso terapêutico
2.
J Tradit Chin Med ; 42(5): 693-700, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36083475

RESUMO

OBJECTIVE: The aim of this study was to examine the antitumor effects of Qilan preparation on oral squamous cell carcinoma (OSCC) and to investigate its underlying mechanisms of action. METHODS: Cell proliferation, cell cycle distribution and apoptosis were examined using cell counting kit-8 (CCK8) and flow cytometry (FCM). The expression of PTEN and PDCD4 were determined by western blot. Changes in miR-21 levels were quantified using TaqMan stem-loop real-time PCR. After miR-21 was transiently transfected into Tca8113 cells using Lipofectamine®3000, cell proliferation, apoptosis and miR-21 and PDCD4 expression levels were measured. RESULTS: Qilan preparation inhibited Tca8113 cell growth in a dose- and time-dependent manner by inducing apoptosis and cell cycle arrest in S-phase, decreasing miR-21 levels and increasing PTEN and PDCD4 expression. MiR-21 overexpression reversed the Qilan preparation-induced suppression of cell proliferation and induction of apoptosis while also blocking the increase in PDCD4. CONCLUSIONS: Our study revealed, for the first time, the ability of Qilan preparation to suppress TSCC cell growth and elucidated that Qilan preparation elicits its anti-cancer actions either the miR-21/PDCD4 or PTEN pathway.


Assuntos
Carcinoma de Células Escamosas , MicroRNAs , Neoplasias Bucais , Neoplasias da Língua , Apoptose , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/farmacologia , Língua/metabolismo , Língua/patologia , Neoplasias da Língua/tratamento farmacológico , Neoplasias da Língua/genética , Neoplasias da Língua/metabolismo
3.
Surgery ; 168(3): 478-485, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32439208

RESUMO

BACKGROUND: Intestinal ischemia-reperfusion injury results in morbidity and mortality from both local injury and systemic inflammation and acute lung injury. Extracellular cold-inducible RNA-binding protein is a damage associated molecular pattern that fuels systemic inflammation and potentiates acute lung injury. We recently discovered a triggering receptor expressed on myeloid cells-1 serves as a novel receptor for extracellular cold-inducible RNA-binding protein. We developed a 7-aa peptide, named M3, derived from the cold-inducible RNA-binding protein, which interferes with cold-inducible RNA-binding protein's binding to a triggering receptor expressed on myeloid cells-1. Here, we hypothesized that M3 protects mice against intestinal ischemia-reperfusion injury. METHODS: Intestinal ischemia was induced in C57BL/6 mice via clamping of the superior mesenteric artery for 60 minutes. At reperfusion, mice were treated intraperitoneally with M3 (10 mg/kg body weight) or normal saline vehicle. Mice were killed 4 hours after reperfusion and blood and lungs were collected for various analysis. A 24-hours survival after intestinal ischemia-reperfusion was assessed. RESULTS: Serum levels of organ injury markers aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, and lactate were increased with intestinal ischemia-reperfusion, while treatment with M3 significantly decreased their levels. Serum, intestinal, and lung levels of proinflammatory cytokines and chemokines were also increased by intestinal ischemia-reperfusion, and treatment with M3 significantly reduced these values. Intestinal ischemia-reperfusion caused significant histological intestinal and lung injuries, which were mitigated by M3. Treatment with M3 improved the survival from 40% to 80% after intestinal ischemia-reperfusion. CONCLUSION: Inhibition of triggering receptor expressed on myeloid cells-1 by an extracellular cold-inducible RNA-binding protein-derived small peptide (M3) decreased inflammation, reduced lung injury, and improved survival in intestinal ischemia-reperfusion injury. Thus, blocking the extracellular cold-inducible RNA-binding protein-triggering receptor expressed on myeloid cells-1 interaction is a promising therapeutic avenue for mitigating intestinal ischemia-reperfusion injury.


Assuntos
Intestinos/irrigação sanguínea , Fragmentos de Peptídeos/uso terapêutico , Proteínas de Ligação a RNA/uso terapêutico , Traumatismo por Reperfusão/prevenção & controle , Receptor Gatilho 1 Expresso em Células Mieloides/antagonistas & inibidores , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/imunologia , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Masculino , Camundongos , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/farmacologia , Proteínas de Ligação a RNA/imunologia , Proteínas de Ligação a RNA/farmacologia , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo
4.
Surgery ; 164(6): 1191-1197, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30154017

RESUMO

BACKGROUND: Cold-inducible RNA-binding protein is a novel damage-associated molecular pattern that causes inflammation. C23, a short peptide derived from cold-inducible RNA-binding protein, has been found to have efficacy in blocking cold-inducible RNA-binding protein's activity. We hypothesized that C23 reduces inflammation and tissue injury induced by intestinal ischemia-reperfusion. METHODS: Male C57BL/6 mice were subjected to 60 minutes of intestinal ischemia by clamping the superior mesenteric artery. Immediately after reperfusion, either normal saline (vehicle) or C23 peptide (8 mg/kg body weight) was injected intraperitoneally. Four hours after reperfusion, blood, intestinal, and lung tissues were collected for analysis of inflammatory and tissue injury parameters. RESULTS: Cold-inducible RNA-binding protein levels in the intestinal tissues were significantly increased following intestinal ischemia-reperfusion. Histologic examination of the intestine revealed a significant reduction in injury score in the C23 group by 48% as compared with the vehicles after intestinal ischemia-reperfusion. The serum levels of lactate dehydrogenase and aspartate aminotransferase were increased in animals that underwent vehicle-treated intestinal ischemia-reperfusion, whereas C23-treated animals exhibited significant reductions by 48% and 53%, respectively. The serum and intestinal tissue levels of tumor necrosis factor α were elevated in vehicle-treated intestinal ischemia-reperfusion mice but decreased by 72% and 69%, respectively, in C23-treated mice. Interleukin-6 mRNA levels in the lungs were reduced by 86% in the C23-treated group in comparison to the vehicle-treated group after intestinal ischemia-reperfusion. Expression of macrophage inflammatory protein 2 and level of myeloperoxidase activity in the lungs were dramatically increased after intestinal ischemia-reperfusion and significantly reduced by 91% and 25%, respectively, in the C23-treated group. CONCLUSION: C23 has potential to be developed into a possible therapy for reperfusion injury after mesenteric ischemia and reperfusion.


Assuntos
Pneumopatias/prevenção & controle , Glicoproteínas de Membrana/agonistas , Isquemia Mesentérica/prevenção & controle , Fosfoproteínas/uso terapêutico , Proteínas de Ligação a RNA/uso terapêutico , Receptores de Superfície Celular/agonistas , Traumatismo por Reperfusão/prevenção & controle , Alarminas , Animais , Quimiocina CXCL2/metabolismo , Avaliação Pré-Clínica de Medicamentos , Interleucina-6/metabolismo , Pulmão/metabolismo , Pneumopatias/etiologia , Pneumopatias/metabolismo , Masculino , Isquemia Mesentérica/sangue , Isquemia Mesentérica/imunologia , Camundongos Endogâmicos C57BL , Peroxidase/metabolismo , Fosfoproteínas/farmacologia , Proteínas de Ligação a RNA/sangue , Proteínas de Ligação a RNA/farmacologia , Traumatismo por Reperfusão/sangue , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/imunologia , Fator de Necrose Tumoral alfa/sangue , Nucleolina
5.
Am J Respir Cell Mol Biol ; 47(6): 807-14, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22936405

RESUMO

Endothelial monocyte-activating polypeptide II (EMAP II) and interferon-inducible protein (IP)-10 are proinflammatory mediators, which in addition to their chemokine activities, selectively induce apoptosis in endothelial cells and are up-regulated in the lungs of cigarette smoke-exposed humans. Previously, we showed that EMAP II is an essential mediator of cigarette smoke-induced lung emphysema in mice linking endothelial cell apoptosis with inflammation. Here we addressed the role of the CXCR3 receptor in EMAP II-induced and IP-10-induced apoptosis in endothelial cells and its regulation by cigarette smoke. We found that both neutralizing antibodies and small inhibitory RNA to CXCR3 abrogated EMAP II-induced and IP-10-induced endothelial caspase-3 activation and DNA fragmentation. CXCR3 receptor surface expression in human lung microvascular endothelial cells and in lung tissue endothelium was up-regulated by exposure to cigarette smoke. In tissue culture conditions, EMAP II-induced and IP-10-induced apoptosis was enhanced by preincubation with cigarette smoke extract. Interestingly, serum starvation also induced CXCR3 up-regulation and enhanced EMAP II-induced endothelial apoptosis. Signal transduction via p38 mitogen-activated protein kinase activation was essential for CXCR3-induced cell death, but not for CXCR3 receptor up-regulation by cigarette smoke. In turn, protein nitration was required for CXCR3 receptor up-regulation by cigarette smoke and consequently for subsequent CXCR3-induced cell death. In conclusion, the concerted up-regulation of proinflammatory EMAP II, IP-10, and CXCR3 by cigarette smoke could sustain a cascade of cell death that may promote the alveolar tissue loss noted in human emphysema.


Assuntos
Apoptose , Células Endoteliais/metabolismo , Nicotiana/química , Extratos Vegetais/farmacologia , Receptores CXCR3/metabolismo , Fumaça , Regulação para Cima/efeitos dos fármacos , Animais , Células Cultivadas , Quimiocina CXCL10/farmacologia , Meios de Cultura Livres de Soro , Citocinas/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Endotélio Vascular/citologia , Feminino , Humanos , Pulmão/citologia , Pulmão/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Microvasos/citologia , Proteínas de Neoplasias/farmacologia , Proteínas de Ligação a RNA/farmacologia , Receptores CXCR3/genética , Tirosina/análogos & derivados , Tirosina/metabolismo
6.
Invest Ophthalmol Vis Sci ; 40(13): 3152-9, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-10586937

RESUMO

PURPOSE: The purpose of this study was to isolate and characterize cDNA clones encoding target proteins for autoantibodies in patients at high risk for transplant rejection. METHODS: A pool of 10 sera from patients at high risk for rejection who had undergone corneal transplantation was used for immunoscreening of an endothelial cDNA library, and the cDNA fragments were subcloned into prokaryotic expression vectors to generate recombinant fusion proteins. Cytotoxicity of recombinant protein was determined by a modified 51Cr-release assay. Apoptosis induced by recombinant protein was determined by fluorescent dye-chromatin fragmentation assay and by TdT-dUTP terminal nick-end labeling (TUNEL) assay. An enzyme-linked immunosorbent assay was used to detect the presence of antibodies to recombinant protein in the sera of high-risk patients undergoing corneal transplantation and of control subjects. RESULTS: Screening of 500,000 plaques identified six positive clones, one of which demonstrated extensive homology with a novel tumor-derived cytokine termed endothelial monocyte-activating polypeptide (EMAP). EMAP was synthesized as a 39-kDa precursor that was proteolytically cleaved to generate an active 22-kDa cytokine. The mature peptide of EMAP alone was capable of inducing the death of cultured endothelial cells, whereas the propeptide was inactive. The protein synthesis inhibitor cycloheximide potentiated EMAP-induced apoptosis in endothelial cells. Cell death by apoptosis was evidenced by DNA fragmentation, extensive surface bleb formation, and chromatin condensation. A statistically significant difference was found in the level of antibodies specific to EMAP between patients at high risk for corneal transplant rejection and control subjects (P<0.001). The antibody levels were elevated in patients with severe graft reaction when compared with patients with no graft reaction (P<0.001). CONCLUSIONS: These studies demonstrated that EMAP is a novel protein in corneal endothelial cells that is capable of inducing programmed cell death. Overexpression of this cytokine could initiate endothelial cell damage leading to stromal edema and corneal decompensation.


Assuntos
Apoptose/efeitos dos fármacos , Citocinas , Endotélio Corneano/efeitos dos fármacos , Proteínas do Olho/farmacologia , Proteínas de Neoplasias/farmacologia , Proteínas de Ligação a RNA/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Sequência de Aminoácidos , Animais , Autoanticorpos/análise , Sequência de Bases , Bovinos , Células Cultivadas , Transplante de Córnea , DNA Complementar/análise , Endotélio Corneano/química , Endotélio Corneano/patologia , Ensaio de Imunoadsorção Enzimática , Proteínas do Olho/genética , Proteínas do Olho/imunologia , Rejeição de Enxerto/imunologia , Humanos , Marcação In Situ das Extremidades Cortadas , Dados de Sequência Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
7.
Protein Sci ; 2(2): 231-43, 1993 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-8443601

RESUMO

The nucleocapsid protein (NC) is the major genomic RNA binding protein that plays integral roles in the structure and replication of all animal retroviruses. In this report, select biochemical properties of recombinant Mason-Pfizer monkey virus (MPMV) and HIV-1 NCs are compared. Evidence is presented that two types of saturated Zn2 NC-polynucleotide complexes can be formed under conditions of low [NaCl] that differ in apparent site-size (n = 8 vs. n = 14). The formation of one or the other complex appears dependent on the molar ratio of NC to RNA nucleotide with the putative low site-size mode apparently predominating under conditions of protein excess. Both MPMV and HIV-1 NCs kinetically facilitate the renaturation of two complementary DNA strands, suggesting that this is a general property of retroviral NCs. NC proteins increase the second-order rate constant for renaturation of a 149-bp DNA fragment by more than four orders of magnitude over that obtained in the absence of protein at 37 degrees C. The protein-assisted rate is 100-200-fold faster than that obtained at 68 degrees C, 1 M NaCl, solution conditions considered to be optimal for strand renaturation. Provided that sufficient NC is present to coat all strands, the presence of 400-1,000-fold excess nonhomologous DNA does not greatly affect the reaction rate. The HIV-1 NC-mediated renaturation reaction functions stoichiometrically, requiring a saturated strand of DNA nucleotide:NC ratio of about 7-8, rather than 14. Under conditions of less protein, the rate acceleration is not realized. The finding of significant nucleic acid strand renaturation activity may have important implications for various events of reverse transcription particularly in initiation and cDNA strand transfer.


Assuntos
Proteínas do Capsídeo , Capsídeo/metabolismo , DNA/metabolismo , Produtos do Gene gag , Renaturação de Ácido Nucleico/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Retroviridae/química , Proteínas Estruturais Virais/metabolismo , Sequência de Bases , Ligação Competitiva , Capsídeo/genética , Capsídeo/farmacologia , HIV-1/química , HIV-1/genética , Cinética , Vírus dos Macacos de Mason-Pfizer/química , Vírus dos Macacos de Mason-Pfizer/genética , Dados de Sequência Molecular , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Retroviridae/genética , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/farmacologia , Dedos de Zinco , Produtos do Gene gag do Vírus da Imunodeficiência Humana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA