Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.487
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Food Chem ; 446: 138797, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38442678

RESUMO

This study investigated the effects of different matrices on gel properties, lipid digestibility, ß-carotene bioaccessibility, released free amino acids and gel network degradation. Microstructure studies have proven that sugar beet pectin/soy protein isolate-based emulsion-filled gel (SBP/SPI-E) with interpenetrating networks was formed. SBP/SPI-E exhibited higher hardness (2.67 N, p < 0.05) and released lesser free amino acids (269.48-µmol/g SPI) than soy protein isolate-based emulsion-filled gel (SPI-E) in simulated intestinal fluid (SIF); however, both had similar free amino acids contents in simulated colonic fluid. SBP has the potential to delay gel network degradation in SIF, as evidenced by the sugar stain strips of SDS-PAGE and microstructure observation. Furthermore, SBP/SPI-E and SPI-E exhibited similar ß-carotene bioaccessibility in SIF, suggesting that SBP from composite gel could not affect the aforementioned bioaccessibility. The study provides useful information for the design of functional gels in the application of fat-soluble nutrient delivery.


Assuntos
Pectinas , Proteínas de Soja , Emulsões/química , Proteínas de Soja/química , Pectinas/química , beta Caroteno , Géis/química , Aminoácidos , Açúcares
2.
Colloids Surf B Biointerfaces ; 237: 113867, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522284

RESUMO

In this study, hydrogel beads [SPI/HP-Fe (II)] were prepared by cross-linking soybean isolate protein (SPI) and hawthorn pectin (HP) with ferrous ions as a backbone, and the effects of ultrasound and Fe2+ concentration on the mechanical properties and the degree of cross-linking of internal molecules were investigated. The results of textural properties and water-holding capacity showed that moderate ultrasonic power and Fe2+ concentration significantly improved the stability and water-holding capacity of the hydrogel beads and enhanced the intermolecular interactions in the system. Scanning electron microscopy (SEM) confirmed that the hydrogel beads with 60% ultrasonic power and 8% Fe2+ concentration had a denser network. X-ray photoelectron spectroscopy (XPS) and atomic absorption experiments demonstrated that ferrous ions were successfully loaded into the hydrogel beads with an encapsulation efficiency of 82.5%. In addition, in vitro, simulated digestion experiments were performed to understand how the encapsulated Fe2+ is released from the hydrogel beads, absorbed, and utilized in the gastrointestinal environment. The success of the experiments demonstrated that the hydrogel beads were able to withstand harsh environments, ensuring the bioactivity of Fe2+ and improving its bioavailability. In conclusion, a novel and efficient ferrous ion delivery system was developed using SPI and HP, demonstrating the potential application of SPI/HP-Fe (II) hydrogel beads as an iron supplement to overcome the inefficiency of intake of conventional iron supplements.


Assuntos
Crataegus , Hidrogéis , Hidrogéis/química , Pectinas/química , Proteínas de Soja/química , Glycine max , Ferro , Água , Íons
3.
Int J Biol Macromol ; 262(Pt 2): 130170, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360225

RESUMO

The soybean glycinin (11S)-chitosan (CS) complex gels with various textural properties were successfully constructed. The process involved the initial formation of 11S-CS coacervates through electrostatic interactions, followed by a heating treatment to obtain the final complex gels. The impacts of pH, heating temperature, and centrifugation on 11S-CS complex gel properties were investigated. The results indicated that the pore arrangement of the gel formed at pH 7.3 was more tightly and uniformly packed than those formed at pH 6.8 and 7.8. Centrifugation facilitated denser and more ordered gel structures at the three pH values, while increasing the heating temperature exhibited the opposite trend at pH 6.8 and 7.8. These structural differences were also reflected in the rheological and textural properties of the gel. The 11S-CS complex gels exhibited an elasticity-based gel property. The textural properties of gels formed at pH 6.8 were stronger compared to those formed at pH 7.3 and 7.8. However, when the 11S-CS coacervates were heated without centrifugation, the resulting gels were weak. This study emphasizes the potential of using protein/polysaccharide associative interactions during gel formation to alter the microstructure of the gel, meeting various production requirements.


Assuntos
Quitosana , Globulinas , Glycine max , Proteínas de Soja , Temperatura , Temperatura Alta , Géis/química , Reologia , Concentração de Íons de Hidrogênio , Centrifugação
4.
Ageing Res Rev ; 95: 102238, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382678

RESUMO

BACKGROUND: Cellular senescence has been regarded as a therapeutic target for ageing and age-related diseases. Several senotherapeutic agents have been proposed, including compounds derived from natural products which hold the translational potential to promote healthy ageing. This systematic review examined the association of dietary ingredients with cellular senescence in animals and humans, with an intent to identify dietary ingredients with senotherapeutic potential. METHODS: This systematic review was registered at PROSPERO International prospective register of systematic reviews (Reg #: CRD42022338885). The databases PubMed and Embase were systematically searched for key terms related to cellular senescence, senescence markers, diets, nutrients and bioactive compounds. Intervention and observational studies on human and animals investigating the effects of dietary ingredients via oral administration on cellular senescence load were included. The SYRCLE's risk of bias tool and Cochrane risk of bias tool v2.0 were used to assess the risk of bias for animal and human studies respectively. RESULTS: Out of 5707 identified articles, 83 articles consisting of 78 animal studies and 5 human studies aimed to reduce cellular senescence load using dietary ingredients. In animal studies, the most-frequently used senescence model was normative ageing (26 studies), followed by D-galactose-induced models (17 studies). Resveratrol (8 studies), vitamin E (4 studies) and soy protein isolate (3 studies) showed positive effects on reducing the level of senescence markers such as p53, p21, p16 and senescence-associated ß-galactosidase in various tissues of physiological systems. In three out of five human studies, ginsenoside Rg1 had no positive effect on reducing senescence in muscle tissues after exercise. The risk of bias for both animal and human studies was largely unclear. CONCLUSION: Resveratrol, vitamin E and soy protein isolate are promising senotherapeutics studied in animal models. Studies testing dietary ingredients with senotherapeutic potential in humans are limited and translation is highly warranted.


Assuntos
Senescência Celular , Proteínas de Soja , Animais , Humanos , Resveratrol , Proteínas de Soja/farmacologia , Revisões Sistemáticas como Assunto , Dieta , Vitamina E/farmacologia
5.
Am J Clin Nutr ; 119(3): 829-837, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278366

RESUMO

BACKGROUND: Micronutrient deficiencies and anemia are widespread among children with stunting. OBJECTIVES: We assessed the effects of lipid-based nutrient supplements (LNS) containing milk protein (MP) and/or whey permeate (WP) on micronutrient status and hemoglobin (Hb) among children with stunting. METHODS: This was a secondary analysis of a randomized controlled trial. Children aged 12-59 mo with stunting were randomly assigned to LNS (100 g/d) with milk or soy protein and WP or maltodextrin for 12 wk, or no supplement. Hb, serum ferritin (S-FE), serum soluble transferrin receptor (S-TfR), plasma cobalamin (P-Cob), plasma methylmalonic acid (P-MMA), plasma folate (P-Fol), and serum retinol-binding protein (S-RBP) were measured at inclusion and at 12 wk. Data were analyzed using linear and logistic mixed-effects models. RESULTS: Among 750 children, with mean age ± SD of 32 ± 11.7 mo, 45% (n = 338) were female and 98% (n = 736) completed follow-up. LNS, compared with no supplementation, resulted in 43% [95% confidence interval (CI): 28, 60] greater increase in S-FE corrected for inflammation (S-FEci), 2.4 (95% CI: 1.2, 3.5) mg/L greater decline in S-TfR, 138 (95% CI: 111, 164) pmol/L greater increase in P-Cob, 33% (95% CI: 27, 39) reduction in P-MMA, and 8.5 (95% CI: 6.6, 10.3) nmol/L greater increase in P-Fol. There was no effect of LNS on S-RBP. Lactation modified the effect of LNS on markers of cobalamin status, reflecting improved status among nonbreastfed and no effects among breastfed children. LNS increased Hb by 3.8 (95% CI: 1.7, 6.0) g/L and reduced the odds of anemia by 55% (odds ratio: 0.45, 95% CI: 0.29, 0.70). MP compared with soy protein increased S-FEci by 14% (95% CI: 3, 26). CONCLUSIONS: LNS supplementation increases Hb and improves iron, cobalamin, and folate status, but not vitamin A status among children with stunting. LNS should be considered for children with stunting. This trial was registered at ISRCTN as 13093195.


Assuntos
Anemia , Oligoelementos , Criança , Humanos , Feminino , Lactente , Masculino , Micronutrientes/farmacologia , Proteínas de Soja , Uganda , Suplementos Nutricionais , Ácido Fólico/farmacologia , Anemia/tratamento farmacológico , Hemoglobinas/metabolismo , Transtornos do Crescimento , Lipídeos , Vitamina B 12
6.
Int J Biol Macromol ; 259(Pt 2): 129217, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184043

RESUMO

In this investigation, soybean protein isolate-rutin (SPI-RT) complexes were treated using dynamic high-pressure microfluidization (DHPM). The effects of this process on the physicochemical and thermodynamic properties of SPI were investigated at different pressures. Fourier-transform infrared spectroscopy and fluorescence spectroscopy provided evidence that the SPI structure had been altered. The binding of SPI to RT resulted in a decrease in the percentage of α-helices and random curls as well as an increase in the percentage of ß-sheets. In particular, the α-helix content decreased from 29.84 % to 26.46 %, the random curl content decreased from 17.45 % to 15.57 %, and the ß-sheet content increased from 25.37 % to 26.53 %. Moreover, fluorescence intensity decreased, and the emission peak of the complex was red-shifted by 6 nm, exposing the internal groups. Based on fluorescence quenching analysis, optimal SPI-RT complexation was achieved after 120-MPa DHPM treatment, and molecular docking analysis verified the interaction between SPI and RT. The minimum particle size, maximum absolute potential, and total phenolic content of the complexes were 78.06 nm, 21.4 mV and 74.35 nmol/mg protein, respectively. Furthermore, laser confocal microscopy revealed that the complex particles had the best microstructure. Non-covalent interactions between the two were confirmed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Moreover, the hydrophobicity of the complex particle's surface increased to 16,045 after 120-MPa DHPM treatment. The results of this study suggest that DHPM strongly promotes the improvement of the physicochemical properties of SPI, and provide a theoretical groundwork for further research.


Assuntos
Proteínas de Soja , Proteínas de Soja/química , Simulação de Acoplamento Molecular , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Interações Hidrofóbicas e Hidrofílicas
7.
Food Chem ; 442: 138428, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241997

RESUMO

The bitterness of soy protein isolate hydrolysates prepared using five proteases at varying degree of hydrolysis (DH) and its relation to physicochemical properties, i.e., surface hydrophobicity (H0), relative hydrophobicity (RH), and molecular weight (MW), were studied and developed for predictive modelling using machine learning. Bitter scores were collected from sensory analysis and assigned as the target, while the physicochemical properties were assigned as the features. The modelling involved data pre-processing with local outlier factor; model development with support vector machine, linear regression, adaptive boosting, and K-nearest neighbors algorithms; and performance evaluation by 10-fold stratified cross-validation. The results indicated that alcalase hydrolysates were the most bitter, followed by protamex, flavorzyme, papain, and bromelain. Distinctive correlation results were found among the physicochemical properties, influenced by the disparity of each protease. Among the features, the combination of RH-MW fitted various classification models and resulted in the best prediction performance.


Assuntos
Proteínas de Soja , Paladar , Hidrólise , Proteínas de Soja/química , Peptídeo Hidrolases/metabolismo , Papaína/química , Hidrolisados de Proteína/química
8.
J Sci Food Agric ; 104(7): 4242-4250, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38288644

RESUMO

BACKGROUND: Phytosterols (PS) have various beneficial effects on human health, especially the property of reducing blood cholesterol. However, the low solubility and bioaccessibility of PS have greatly limited their application in functional food ingredients. RESULTS: To improve the bioaccessibility and stability of PS, chitosan-coated PS nanoparticles (CS-PNP) were successfully prepared by self-assembly. The properties of CS-PNP, including size, zeta potential, encapsulation efficiency (EE) and loading amount (LA) were characterised. The optimisation of CS concentration (0.4 mg mL-1) and pH (3.5) resulted in the formation of CS-PNP with an EE of over 90% and a particle size of 187.7 nm. Due to the special properties of CS chitosan, the interaction between CS and soybean protein isolate (SPI)/lecithin (SL) led to the formation of a soluble complex. CS-PNP exhibited good stability to temperature variations but was more sensitive to salt ions. During in vitro digestion, CS efficiently maintained the stability of nanoparticles against the hydrolysis of SPI by pepsin under acidic conditions. However, these nanoparticles tended to aggregate in a neutral intestinal environment. After 3 h of in vitro digestion, the bioaccessibility of PS increased from 18.2% of free PS to 63.5% of CS-PNP. CONCLUSION: Overall, these results highlight the potential of chitosan-coated nanoparticles as effective carriers for the oral administration of PS. This multilayer construction may serve as a promising for applications in food products as delivery vehicles for nutraceuticals. © 2024 Society of Chemical Industry.


Assuntos
Quitosana , Nanopartículas , Fitosteróis , Humanos , Lecitinas , Quitosana/química , Proteínas de Soja/química , Fitosteróis/química , Nanopartículas/química , Tamanho da Partícula , Portadores de Fármacos/química
9.
Nutrients ; 16(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38257126

RESUMO

Celiac disease (CD) is a chronic disease caused by the consumption of gluten foods and is closely related to type 1 diabetes (T1D). Adherence to a gluten-free (GF) diet is the cornerstone of treating CD, and certain plant proteins added to GF foods affect blood glucose to varying degrees. The aim of this study was to analyze and compare the changes in glycemic index (GI) and incremental area under the postprandial glucose tolerance curve (IAUC) of various foods through consumption of GF foods supplemented with certain plant proteins in non-human primates. The test foods were GF rice cakes with 5%, 10%, and 15% added single plant proteins (rice protein, soy protein, and pea protein) mixed with rice flour, as well as 5%, 10%, and 15% gluten rice cakes, and rice flour alone, for a total of 13 food items, and 12 healthy cynomolgus monkeys were examined for their glucose levels in the blood after fasting and after eating each test food (50 g) for 15, 30, 45, 60, 90, and 120 min after fasting and eating each test food. Fingertip blood glucose levels were measured, and the nutrient content of each food, including protein, fat, starch, ash, and amino acids, was examined. All foods tested had a low GI (<50) when analyzed using one-way ANOVA and nonparametric tests. Postprandial IAUC was significantly lower (p < 0.05) for GF rice cakes with 15% pea protein (499.81 ± 34.46) compared to GF rice cakes with 5% pea protein (542.19 ± 38.78), 15% soy protein (572.94 ± 72.74), and 15% rice protein (530.50 ± 14.65), and GF rice cakes with 15% wheat bran protein (533.19 ± 34.89). A multiple regression analysis showed that glycine was negatively associated with IAUC in GF rice cakes with 5%, 10%, and 15% pea protein added (p = 0.0031 < 0.01). Fat was negatively correlated with IAUC in GF rice cakes supplemented with 5%, 10%, and 15% soy protein (p = 0.0024 < 0.01). In this study, GF rice cakes made with added pea protein were superior to other gluten and GF rice cakes and had a small effect on postprandial glucose.


Assuntos
Doença Celíaca , Oryza , Proteínas de Ervilha , Animais , Pisum sativum , Glicemia , Proteínas de Soja/farmacologia , Nutrientes , Glutens , Proteínas de Plantas , Suplementos Nutricionais
10.
Int J Biol Macromol ; 256(Pt 2): 128064, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37967606

RESUMO

This study developed a combination method between protein-polysaccharide complex coacervation and freezing drying for the preparation of green coffee oil (GCO) encapsulated powders. Different combinations of soy protein isolate, sodium caseinate, sodium carboxymethylcellulose, and sodium alginate were utilised as wall materials. The occurrence of complexation between the biopolymers were compared to the final emulsion of the individual protein and confirmed by fourier transform infrared spectrometry and X-ray diffraction. The mean diameter and estimated PDI of GCO microcapsules were 72.57-295.00 µm and 1.47-2.02, respectively. Furthermore, the encapsulation efficiency of GCO microcapsules was between 61.47 and 90.01 %. Finally, oxidation kinetics models of GCO and its microcapsules demonstrated that the zero-order model of GCO microcapsules was found to have a higher fit, which could better reflect the quality changes of GCO microcapsules during storage. Different combinations of proteins and polysaccharides exhibited effective oxidative stability against single proteins because of polysaccharide addition. This research revealed that soy protein isolate, sodium caseinate combined with polysaccharides can be used as a promising microencapsulating agent for microencapsulation of GCO, especially with sodium carboxymethylcellulose and sodium alginate, and provided useful information for the potential use of GCO in the development of powder food.


Assuntos
Caseínas , Proteínas de Soja , Caseínas/química , Proteínas de Soja/química , Café , Cápsulas/química , Carboximetilcelulose Sódica , Composição de Medicamentos/métodos , Polissacarídeos/química , Alginatos/química
11.
Int J Biol Macromol ; 255: 128198, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992930

RESUMO

Multi-layered wound dressings can closely mimic the hierarchical structure of the skin. Herein, a double-layer dressing material is fabricated through electrospinning, comprised of a nanofibrous structure as a healing-support layer or the bottom layer (BL) containing pectin (Pec), soy protein isolate (SPI), pomegranate peel extract (P), and a cellulose (Cel) microfiber layer as a protective/monitoring layer or top layer (TL). The formation of a fine bilayer structure was confirmed using scanning electron microscopy. Cel/Pec-SPI-P dressing showed a 60.05 % weight loss during 7 days of immersion in phosphate buffered solution. The ultimate tensile strength, elastic modulus, and elongation at break for different dressings were within the range of 3.14-3.57 MPa, 32.26-36.58 MPa, and 59.04-63.19 %, respectively. The release of SPI and phenolic compounds from dressings were measured and their antibacterial activity was evaluated. The fabricated dressing was non-cytotoxic following exposure to human keratinocyte cells. The Cel/Pec-SPI-P dressing exhibited excellent cell adhesion and migration as well as angiogenesis. More importantly, in vivo experiments on Cel/Pec-SPI-P dressings showed faster epidermal layer formation, blood vessel generation, collagen deposition, and a faster wound healing rate. Overall, it is anticipated that the Cel/Pec-SPI-P bilayer dressing facilitates wound treatment and can be a promising approach for clinical use.


Assuntos
Nanofibras , Punica granatum , Humanos , Nanofibras/química , Proteínas de Soja/química , Celulose/química , Pectinas/farmacologia , Cicatrização , Antibacterianos/uso terapêutico , Bandagens , Aceleração
12.
Fish Physiol Biochem ; 50(1): 273-293, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38099983

RESUMO

Investigated mitigating effects of sodium butyrate (SB) on the inflammatory response, oxidative stress, and growth inhibition of common carp (Cyprinus carpio) (2.94 ± 0.2 g) are caused by glycinin. Six isonitrogenous and isoenergetic diets were prepared, in which the basal diet was the control diet and the Gly group diet contained 80 g/kg glycinin, while the remaining 4 diets were supplemented with 0.75, 1.50, 2.25, and 3.00 g/kg SB, respectively. The feeding trial lasted for 8 weeks, and the results indicated that supplementing the diet with 1.50-2.25 g/kg of SB significantly improved feed efficiency and alleviated the growth inhibition induced by glycinin. Hepatopancreas and intestinal protease activities and the content of muscle crude protein were significantly decreased by dietary glycinin, but supplement 1.50-2.25 g/kg SB partially reversed this result. SB (1.50-2.25 g/kg) increased the activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in the hepatopancreas and reduced the activities of AST and ALT in the serum. Glycinin significantly reduced immune and antioxidant enzyme activities, whereas 1.50-2.25 g/kg SB reversed these adverse effects. Furthermore, compared with the Gly group, supplement 1.50-2.25 g/kg SB eminently up-regulated the TGF-ß and IL-10 mRNA, and down-regulated the IL-1ß, TNF-α, and NF-κB mRNA in hepatopancreas, mid-intestine (MI), and distal intestine (DI). Meanwhile, supplement 1.50-2.25 g/kg SB activated the Keap1-Nrf2-ARE signaling pathway and upregulate CAT, SOD, and HO-1 mRNA expression in hepatopancreas, MI, and DI. Summarily, glycinin induced inflammatory response, and oxidative stress of common carp ultimately decreased the digestive function and growth performance. SB partially mitigated these adverse effects by activating the Keap1-Nrf2-ARE signaling pathway and inhibiting the NF-κB signaling pathway.


Assuntos
Carpas , Globulinas , Proteínas de Soja , Animais , Carpas/metabolismo , Ácido Butírico/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , NF-kappa B/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Suplementos Nutricionais , Dieta/veterinária , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo , RNA Mensageiro/metabolismo , Ração Animal/análise
13.
Food Chem ; 440: 138245, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38159320

RESUMO

This study aimed to prepare a novel emulsion film with high stability, using soy protein-derived amyloid fibrils (SAFs) as an emulsifier incorporating clove essential oil (CEO) as the active component, and the polyvinyl alcohol (PVA) matrix to stabilize the system. The results demonstrated that SAFs can successfully stabilize CEO. Emulsion prepared by SAFS and CEO (SAC) exhibited a small droplet size and better dispersibility compared with SPI and CEO (SC) emulsion. According to FT-IR results, PVA addition increased the hydrogen bond interactions among emulsion film components, thus further reinforcing the protein matrix, increasing the tensile strength (TS) (41.18 MPa) and elongation at break (E) (121.62 %) of the films. The uniform appearance of SAC-PVA (SACP) emulsion films was confirmed by SEM images. Furthermore, SACP emulsion films show distinctive barrier properties, optical properties, and outstanding antioxidant properties. Finally, emulsion films exhibited excellent preservation of strawberries, resulting in an effective decline of the decay rate.


Assuntos
Óleos Voláteis , Syzygium , Óleo de Cravo/química , Óleos Voláteis/química , Proteínas de Soja/química , Álcool de Polivinil/química , Syzygium/química , Emulsões/química , Amiloide , Espectroscopia de Infravermelho com Transformada de Fourier , Embalagem de Alimentos/métodos
14.
J Med Food ; 26(12): 911-918, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37971778

RESUMO

The health benefits of soy foods are attributed to the high-quality protein and the bioactive compounds such as isoflavones. We previously reported that feeding obese (fa/fa) Zucker rats soy protein concentrates (SPCs) with low isoflavone (LIF) and high isoflavone (HIF) for 9 weeks significantly reduced liver steatosis compared to a casein control (C) diet. The current study extended the dietary treatments to 18 weeks to investigate the long-term effect of LIF and HIF SPC diets. 6-week-old male lean (L, n = 21) and obese (O, n = 21) Zucker rats were fed a casein C diet, LIF and HIF SPC diets for 18 weeks and body weight (BW) was recorded twice weekly. Rats were killed after 18 weeks to measure liver steatosis and serum aspartate aminotransferase and alanine aminotransferase. Obese rats had significantly greater final BW, liver weight, liver weight as the percentage of BW, and steatosis score compared to lean rats in all three dietary groups. The obese high-isoflavones (OHIF) group had significantly higher BW compared to obese control (OC) group (P < .0001) and obese low-isoflavones (OLIF) group (P = .01). OC group had significantly greater liver weight, liver weight as the percentage of BW, and liver steatosis score compared to OLIF (P = .0077, P < .0001 and P < .0001, respectively) and OHIF (P = .0094, P < .0001, and P < .0001, respectively) groups. Taken together, long-term feeding of SPC diets protected against liver steatosis regardless of isoflavone levels.


Assuntos
Fígado Gorduroso , Isoflavonas , Masculino , Ratos , Animais , Proteínas de Soja , Caseínas/farmacologia , Isoflavonas/farmacologia , Ratos Zucker , Fígado Gorduroso/prevenção & controle , Fígado/metabolismo , Obesidade/metabolismo
15.
Ultrason Sonochem ; 101: 106675, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37925914

RESUMO

This research explored the influences of ultrasonic and thermal treatments on the structure, functional properties, and beany flavor of soy protein isolate (SPI). In comparison with traditional thermal treatment, ultrasonic treatment effectively induced protein structural unfolding and exposure of hydrophobic groups, which reduced relative content of α-helix, increased relative content of ß-turn, ß-sheet and random coil, and improved the solubility, emulsifying and foaming properties of SPI. Both treatments significantly decreased the species and contents of flavor compounds, such as hexanal, (E)-2-nonenal, (Z)-2-heptenal and (E)-2-hexenal in SPI. The relative content of hexanal in the major beany flavor compound decreased from 11.69% to 6.13% and 5.99% at 350 W ultrasonic power and 150 s thermal treatment procedure, respectively. After ultrasonic treatment, structural changes in SPI were significantly correlated with functional properties but showed a weak correlation with flavor. Conversely, the opposite trend was observed for thermal treatment. Thus, using ultrasonic treatment to induce and stabilise the denatured state of proteins is feasible to improve the functional properties and beany flavor of SPI.


Assuntos
Proteínas de Soja , Ultrassom , Proteínas de Soja/química , Interações Hidrofóbicas e Hidrofílicas
16.
Food Funct ; 14(21): 9734-9742, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37818605

RESUMO

Insufficient protein intake and cognitive decline are common in older adults; however, there have been few studies on low protein risk screening and complex nutrient interventions for elderly individuals in rural communities. This study aimed to evaluate the effect of dietary multinutrient soy flour (MNSF) on body composition and cognitive function in elderly individuals who are at risk of protein deficiency in a randomized, double-blind, placebo-controlled clinical trial. Nutritional interventions were given to those found to have low protein levels using bioelectrical impedance analysis (BIA). Among 733 older adults screened, 62 participants were included and randomly assigned into two groups, one taking soy flour and the other taking MNSF for 12 weeks. A previous cross-sectional survey found that 35.1% of the elderly people with an average age of 71.61 ± 5.94 years had an inadequate body protein mass proportion. After the intervention, the MNSF group demonstrated a significant improvement in protein mass, muscle mass, mineral levels, skeletal muscle mass, and fat-free mass compared with baseline (all P < 0.05), as well as a better upward trend compared with the soy flour group (P = 0.08; P = 0.07; P = 0.05; P = 0.08; P = 0.07). Regarding the mini-mental state examination (MMSE) scores, the MNSF group showed a significant decrease after 12 weeks (P < 0.05), which were significantly different compared with the soy flour group (P < 0.05). In the future, the application of MNSF as a food-based supplement to improve nutrition and delay cognitive decline in older adults at the risk of protein deficiency may be considered.


Assuntos
Farinha , Deficiência de Proteína , Humanos , Idoso , Estudos Transversais , Composição Corporal , Suplementos Nutricionais , Cognição , Proteínas de Soja/farmacologia , Dieta com Restrição de Proteínas , Método Duplo-Cego
17.
Food Res Int ; 173(Pt 2): 113473, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803796

RESUMO

This study aimed to hydrolyze soy isolate protein (SPI) using five enzymes (alcalase, pepsin, trypsin, papain, and bromelain) in order to obtain five enzymatic hydrolysates and to elucidate the effect of enzymes on structural and biological activities of the resulting hydrolysates. The antioxidant and hypoglycemic activities of the soy protein isolate hydrolysates (SPIEHs) were evaluated through in silico analysis, revealing that the alcalase hydrolysate exhibited the highest potential, followed by the papain and bromelain hydrolysates. Subsequently, the degree of hydrolysis (DH), molecular weight distribution (MWD), amino acid composition, structure, antioxidant activities, and hypoglycemic activity in vitro of SPIEHs were analyzed. After enzymatic treatment, the particle size, polymer dispersity index (PDI), ζ-potentials, ß-sheet content and α-helix content of SPIEHs was decreased, and the maximum emission wavelength of all SPIEHs exhibited red-shifted, which all suggesting the structure of SPIEHs was unfolded. More total amino acids (TAAs), aromatic amino acids (AAAs), and hydrophobic amino acids (HAAs) were found in alcalase hydrolysate. For 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, metal ion chelating activity, α-glucosidase inhibitory activity and α-amylase inhibitory activity, alcalase hydrolysate had the lowest IC50; alcalase hydrolysate and papain hydrolysate had the lowest IC50 for hydroxyl radical scavenging activity. Physiological activity of SPIEHs was evaluated thoroughly by 5-Axe cobweb charts, and the results revealed that alcalase hydrolysate exhibited the greatest biological activities.


Assuntos
Antioxidantes , Bromelaínas , Antioxidantes/farmacologia , Antioxidantes/química , Glycine max/metabolismo , Papaína/química , Hidrolisados de Proteína/química , Proteínas de Soja , Aminoácidos , Subtilisinas/química
18.
Int J Biol Macromol ; 253(Pt 7): 127411, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37838131

RESUMO

This study investigates the effects of heat treatment before high-pressure homogenization (HHPH) and heat treatment after high-pressure homogenization (HPHH) at different pressures (20, 60, and 100 MPa) on the structural and emulsification properties of soy protein isolate (SPI). The results indicate that HHPH treatment increases the surface hydrophobicity (H0) of the SPI, reduces ß-fold and irregular curls, leading to the formation of soluble aggregates, increased adsorbed protein content, and subsequent improvements in emulsification activity index (EAI) and emulsion stability index (ESI). In contrast, the HPHH treatment promoted the exchange of SH/SS bonds between protein molecules and facilitated the interaction of basic peptides and ß-subunits, leading to larger particle sizes of the soluble aggregates compared to the HHPH-treated samples. However, excessive aggregation in HPHH-treated aggregates leads to decreased H0 and adsorbed protein content, and increased interfacial tension, negatively affecting the emulsification properties. Compared to the HPHH treatment, HHPH treatment at homogenization pressures of 20 to 100 MPa increases EAI and ESI by 5.81-29.6 % and 5.31-25.9 %, respectively. These findings provide a fundamental basis for soybean protein manufacturers to employ appropriate processing procedures aimed at improving emulsification properties.


Assuntos
Temperatura Alta , Proteínas de Soja , Proteínas de Soja/química , Emulsões/química , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula
19.
Sports Med ; 53(12): 2417-2446, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37603200

RESUMO

BACKGROUND: Protein supplements are important to maintain optimum health and physical performance, particularly in athletes and active individuals to repair and rebuild their skeletal muscles and connective tissues. Soy protein (SP) has gained popularity in recent years as an alternative to animal proteins. OBJECTIVES: This systematic review evaluates the evidence from randomised controlled clinical trials of the effects of SP supplementation in active individuals and athletes in terms of muscle adaptations, metabolic and antioxidant status, hormonal response and exercise performance. It also explores the differences in SP supplementation effects in comparison to whey protein. METHODS: A systematic search was conducted in PubMed, Embase and Web of Science, as well as a manual search in Google Scholar and EBSCO, on 27 June 2023. Randomised controlled trials that evaluated the applications of SPs supplementation on sports and athletic-related outcomes that are linked with exercise performance, adaptations and biomarkers in athletes and physically active adolescents and young adults (14 to 39 years old) were included, otherwise, studies were excluded. The risk of bias was assessed according to Cochrane's revised risk of bias tool. RESULTS: A total of 19 eligible original research articles were included that investigated the effect of SP supplementation on muscle adaptations (n = 9), metabolic and antioxidant status (n = 6), hormonal response (n = 6) and exercise performance (n = 6). Some studies investigated more than one effect. SP was found to provide identical increases in lean mass compared to whey in some studies. SP consumption promoted the reduction of exercise-induced metabolic/blood circulating biomarkers such as triglycerides, uric acid and lactate. Better antioxidant capacity against oxidative stress has been seen with respect to whey protein in long-term studies. Some studies reported testosterone and cortisol fluctuations related to SP; however, more research is required. All studies on SP and endurance performance suggested the potential beneficial effects of SP supplementation (10-53.3 g) on exercise performance by improving high-intensity and high-speed running performance, enhancing maximal cardiac output, delaying fatigue and improving isometric muscle strength, improving endurance in recreational cyclists, increasing running velocity and decreasing accumulated lactate levels; however, studies determining the efficacy of soy protein on VO2max provided conflicted results. CONCLUSION: It is possible to recommend SP to athletes and active individuals in place of conventional protein supplements by assessing their dosage and effectiveness in relation to different types of training. SP may enhance lean mass compared with other protein sources, enhance the antioxidant status, and reduce oxidative stress. SP supplementation had an inconsistent effect on testosterone and cortisol levels. SP supplementation may be beneficial, especially after muscle damage, high-intensity/high-speed or repeated bouts of strenuous exercise.


Assuntos
Antioxidantes , Proteínas de Soja , Adolescente , Adulto , Humanos , Adulto Jovem , Antioxidantes/farmacologia , Atletas , Biomarcadores , Suplementos Nutricionais , Hidrocortisona , Lactatos , Músculo Esquelético/metabolismo , Proteínas de Soja/farmacologia , Proteínas de Soja/metabolismo , Testosterona/metabolismo , Proteínas do Soro do Leite/metabolismo , Proteínas do Soro do Leite/farmacologia , Ensaios Clínicos Controlados Aleatórios como Assunto
20.
Fish Shellfish Immunol ; 141: 109003, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37604266

RESUMO

Glutamine addition can improve immunity and intestinal development in fish. This study examined the protective roles of glutamine on growth suppression and enteritis induced by glycinin in juvenile hybrid groupers (female Epinephelus fuscoguttatus × male Epinephelus lanceolatus). The experiment set four isonitrogenous and isolipidic trial diets: a diet containing 10% glycinin (11S), 10% of 11S diet supplemented with 1% or 2% alanine-glutamine (1% or 2% Ala-Gln), and a diet containing neither 11S nor Ala-Gln (FM). A feeding trial was conducted in hybrid grouper for 8 weeks. Weight gain and specific growth rates in Groups 1% and 2% Ala-Gln were significantly higher than those of the 11S group but were similar to those of the FM group. The intestinal muscular layer thickness, plica height and width of the 2% Ala-Gln group were significantly higher than those of Group 11S. The enterocyte proliferation efficiency of the 11S group was significantly lower compared to other groups. Compared with the 11S group, Groups 1% and 2% Ala-Gln fish had increased intestinal lysozyme activities, complement 3 and immunoglobulin M as well as cathelicidin contents. The mRNA levels of tnf-α, il-1ß, ifn-α, and hsp70 genes were more downregulated in Groups 1% and 2% Ala-Gln than in Group 11S. Compared with FM group, fish from the 11S group had significantly lower mRNA levels of myd88, ikkß, and nf-κb p65 genes. These three values in the 2% Ala-Gln group were significantly lower than those in Group 11S but not significantly different from those of Group FM. The relative abundance of Vibrio in Group 11S was higher than that in Groups FM and 2% Ala-Gln. Intestinal glutamine, glutaminase, glutamic acid, α-ketoglutarate, malate dehydrogenase and ATP contents were higher in Groups 1% and 2% Ala-Gln than in Group 11S. These results suggest that glutamine is a useful feed additive to enhance growth and intestinal immunity, alleviate inflammation, and modulate gut microbiota in hybrid grouper fed high-dose glycinin.


Assuntos
Bass , Glutamina , Animais , Feminino , Masculino , Ração Animal/análise , Dieta/veterinária , RNA Mensageiro/genética , Proteínas de Soja
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA