Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Biomed Pharmacother ; 144: 112329, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34653759

RESUMO

Lipid metabolic disorder occurs when ApoE gene is deficient. However, the role of Docosahexaenoic acid (DHA) in relieving hepatic lipid metabolic disorder in apolipoprotein E-deficient (ApoE -/-) mice remains unknown. We fed 3-month-old C57BL/6J wild-type (C57 wt) and ApoE -/- mice respectively with normal or DHA fortified diet for 5 months. We found ApoE gene deficiency caused hepatic lipid deposition and increased lipid levels in plasma and liver. Hepatic gene expression of SRB1, CD36 and FABP5 in ApoE -/- mice, protein expression of HMGCR, LRP1 in C57 wt mice and protein expression of LRP1 in ApoE -/- mice increased after DHA intervention. In DHA-fed ApoE -/- mice, LXRα/ß and PPARα protein expression down-regulated in cytoplasm, but LXRα/ß protein expression up-regulated in nucleus. DHA treatment decreased RXRα and RXRß expression in C57 wt and ApoE -/- female mice. Deletion of ApoE gene caused lipid metabolism disorder in liver of mice. DHA treatment efficiently meliorated lipid metabolism caused by ApoE deficient through the regulation of gene and protein expressions of molecules involved in liver fatty acids transport and lipid metabolism.


Assuntos
Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/administração & dosagem , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Fígado/efeitos dos fármacos , Administração Oral , Animais , Proteínas de Transporte de Ácido Graxo/genética , Proteínas de Transporte de Ácido Graxo/metabolismo , Regulação da Expressão Gênica , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE
2.
Am J Physiol Regul Integr Comp Physiol ; 320(3): R362-R376, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33356878

RESUMO

Migratory birds may benefit from diets rich in polyunsaturated fatty acids (PUFAs) that could improve exercise performance. Previous investigations suggest that different types of birds may respond differently to PUFA. We established muscle myocyte cell culture models from muscle satellite cells of a migratory passerine songbird (yellow-rumped warbler, Setophaga coronata coronata) and a nonpasserine shorebird (sanderling, Calidris alba). We differentiated and treated avian myotubes and immortalized murine C2C12 myotubes with n-3 PUFA docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), and with monounsaturated oleic acid (OA) to compare effects on aerobic performance, metabolic enzyme activities, key fatty acid (FA) transporters, and expression of peroxisome proliferator-activated receptors (PPARs). Sanderling and C2C12 myotubes increased expression of PPARs with n-3 PUFA treatments, whereas expression was unchanged in yellow-rumped warblers. Both sanderlings and yellow-rumped warblers increased expression of fatty acid transporters, whereas C2C12 cells decreased expression following n-3 PUFA treatments. Only yellow-rumped warbler myotubes increased expression of some metabolic enzymes, whereas the sanderling and C2C12 cells were unchanged. PUFA supplementation in C2C12 myotubes increased mitochondrial respiratory chain efficiency, whereas sanderlings increased proton leak-associated respiration and maximal respiration (measurements were not made in warblers). This research indicates that songbirds and shorebirds respond differently to n-3 PUFA and provides support for the hypothesis that n-3 PUFA increase the aerobic capacity of migrant shorebird muscle, which may improve overall endurance flight performance.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Metabolismo Energético/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Ácido Oleico/farmacologia , Aves Canoras/metabolismo , Animais , Comportamento Animal , Linhagem Celular , Proteínas de Transporte de Ácido Graxo/genética , Proteínas de Transporte de Ácido Graxo/metabolismo , Feminino , Voo Animal , Masculino , Camundongos , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/genética , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Especificidade da Espécie
3.
J Med Food ; 23(3): 281-288, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32119806

RESUMO

The aim of this study was to investigate the effect of a high-fat diet (HFD) on energy substrate utilization during long-term endurance exercise in mice. Male ICR mice (n = 32; 6 weeks old) were divided into two groups: low-fat diet (LFD, n = 16) and HFD (n = 16) and acclimatized to LFD or HFD feeding over 12 weeks. After 12 weeks, the two dietary groups were each divided into two groups with or without exercise (EX): LF-CON, LF-EX, HF-CON, and HF-EX groups. The exercise groups were trained to run on a treadmill for 12 weeks. At the end of the experimental protocol, energy metabolism in the whole body was measured at rest for 24 h and during exercise for 1 h using respiratory gas analysis. Furthermore, molecules involved in skeletal muscle fat metabolism were analyzed. Substrate utilization for energy metabolism in the whole body indicated that fat utilization was high in HFD intake. Notably, when HFD intake and exercise were combined, fat utilization was markedly increased during endurance exercise. In contrast, exercise showed no effect when combined with LFD intake. The gene expressions of Fat/Cd36, Fatp1, Fabp-pm, and Cpt1 were upregulated by HFD intake, with Fat/Cd36 and Cpt1 considerably elevated during long-term endurance exercise. In contrast, exercise showed no effect when combined with LFD intake. These results suggest that HFD intake effectively increased fat utilization as an energy substrate during long-term endurance exercise.


Assuntos
Gorduras na Dieta/metabolismo , Ácidos Graxos/metabolismo , Músculo Esquelético/metabolismo , Animais , Dieta Hiperlipídica , Gorduras na Dieta/análise , Metabolismo Energético , Proteínas de Transporte de Ácido Graxo/genética , Proteínas de Transporte de Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Oxirredução , Condicionamento Físico Animal
4.
Anim Sci J ; 90(9): 1200-1211, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31317623

RESUMO

The study aimed to evaluate nutrient digestibility and intestine gene expression in the progeny from cows supplemented during gestation and fed diets with or without rumen-protected fat (RPF) in the feedlot. Forty-eight Nellore steers, averaging 340 kg, were housed in individual pens and allotted in a completely randomized design using a 2 × 2 factorial arrangement (dams nutrition × RPF). Cows' supplementation started after 124 ± 21 days of gestation. The feedlot lasted 135 days and diets had the inclusion of zero or 6% of RPF. Digestibility was evaluated by total feces collection. Steers were slaughtered using the concussion technique and samples of pancreas and small intestine were collected immediately after the slaughter to analyze α-amylase activity, and the expression of SLC5A1, CD36, and CCK and villi morphometry. Feeding RPF increased nutrients digestibility (p < 0.01). There was no effect of maternal nutrition on digestibility and α-amylase activity in steers (p > 0.05). Duodenal expression of SLC5A1, CD36, and CCK increased in the progeny from restricted cows. In conclusion, protein restriction during mid to late gestation of dams has long-term effects on small-intestine length and on expression of membrane transporters genes in the duodenum of the progeny. However, maternal nutrition does not affect digestibility in the feedlot.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Dieta Hiperlipídica/veterinária , Dieta com Restrição de Proteínas/veterinária , Dieta/veterinária , Fenômenos Fisiológicos da Nutrição Materna , Prenhez , Animais , Bovinos , Digestão/fisiologia , Proteínas de Transporte de Ácido Graxo/genética , Proteínas de Transporte de Ácido Graxo/metabolismo , Feminino , Expressão Gênica , Intestino Delgado/anatomia & histologia , Intestino Delgado/metabolismo , Masculino , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Gravidez , Proteínas de Transporte de Sódio-Glucose/genética , Proteínas de Transporte de Sódio-Glucose/metabolismo , alfa-Amilases/genética , alfa-Amilases/metabolismo
5.
J Nutr ; 149(10): 1724-1731, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31179494

RESUMO

BACKGROUND: Developmental expression of fatty acid transporters and their role in polyunsaturated fatty acid concentrations in the postnatal period have not been evaluated. OBJECTIVE: We hypothesized that transporter expression is developmentally regulated, tissue-specific, and that expression can modulate fatty acid accretion independently of diet. METHODS: Brain and lung transporter expression were quantified in C57BL/6 wild-type (WT) and Fat1 mice. Pups were dam-fed until day 21. Dams were fed AIN-76A 10% corn oil to represent a typical North American/European diet. After weaning, mice were fed the same diet as dams. Gene expression of Fatp1, Fatp4, Fabp5, and Fat/cd36 was quantified by quantitative reverse transcriptase-polymerase chain reaction. Fatty acid concentrations were measured by GC-MS. RESULTS: Brain docosahexaenoic acid (DHA) concentrations increased from day 3 to day 28 in both genotypes, with higher concentrations at days 3 and 14 in Fat1 than in WT mice [median (IQR)]: 10.7 (10.6-11.2) mol% compared with 6.6 (6.4-7.2) mol% and 12.5 (12.4-12.9) mol% compared with 8.9 (8.7-9.1) mol%, respectively; P < 0.05). During DHA accrual, transporter expression decreased. Fold changes in brain Fatp4, Fabp5, and Fat/cd36 were inversely correlated with fold changes in brain DHA concentrations in Fat1 relative to WT mice (ρ = -0.85, -0.75, and -0.78, respectively; P ≤ 0.001). Lung DHA concentrations were unchanged across the 3 time points for both genotypes. Despite unchanging DHA concentrations, there was increased expression of Fatp1 at days 14 and 28 (5-fold), Fatp4 at day 14 (2.3-fold), and Fabp5 at day 14 (3.8-fold) relative to day 3 in Fat1 mice. In WT mice, Fatp1 increased almost 5-fold at day 28 relative to day 3. There was no correlation between lung transporters and DHA concentrations in Fat1 relative to WT mice. CONCLUSIONS: Development of fatty acid transporter expression in C57BL/6 WT and Fat1 mice is genotype and tissue specific. Further, postnatal accretion of brain DHA appears independent of transporter status, with tissue concentrations representing dietary contributions.


Assuntos
Encéfalo/metabolismo , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácidos Docosa-Hexaenoicos/farmacologia , Proteínas de Transporte de Ácido Graxo/metabolismo , Pulmão/metabolismo , Animais , Óleo de Milho/administração & dosagem , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/farmacologia , Ácidos Docosa-Hexaenoicos/metabolismo , Proteínas de Transporte de Ácido Graxo/genética , Ácidos Graxos/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA Mensageiro/isolamento & purificação
6.
Br J Nutr ; 118(12): 999-1009, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29198193

RESUMO

Dietary phospholipid (PL) supplementation has been shown to reduce lipid accumulation in the tissues of farmed fish; however, the mechanisms underlying this effect are largely unknown. Thus, the present study was conducted to evaluate the potential impacts of PL on hepatic lipid metabolism both in vivo and in vitro. For in vivo study, four experimental diets - low lipid and low PL diet, as control diet (LL-LP diet, containing 12 % lipid and 1·5 % PL), low-lipid and high-PL diet (containing 12 % lipid and 8 % PL), high-lipid and low-PL diet (HL-LP diet, containing 20 % lipid and 1·5 % PL) and high-lipid and high-PL diet (HL-HP diet, containing 20 % lipid and 8 % PL) - were randomly allocated to four groups of large yellow croaker (Larimichthys crocea) (three cages per group) with similar initial body weight (approximately 8 g). For in vitro study, primary hepatocytes isolated from large yellow croaker were incubated either with graded levels of phosphatidylcholine (PC) (0-250 µm) or small interfering RNA (siRNA) for CTP: choline phosphate cytidylyltranferase α (CCTα) (siRNA-CCTα). Results showed that survival was independent of dietary treatments (P>0·05). Weight gain and feed efficiency in the HL-HP group were significantly higher than in the LL-LP and HL-LP groups (P<0·05). High level of dietary PL could markedly reduce abnormal hepatic lipid accumulation induced by the HL-LP diet (P<0·05). Similarly, compared with the corresponding controls, a significant decrease/increase in lipid content was observed in primary hepatocytes incubated with PC/siRNA-CCTα (P<0·05). High level of dietary PL reversed the HL-LP diet-induced increased levels of mRNA of fatty acid uptake and lipid synthesis related genes (P<0·05). In addition, High level of dietary PL markedly down-regulated the transcript levels of fatty acid oxidation-related genes and enhanced the transcript levels of VLDL assembly-related genes regardless of dietary lipid levels (P<0·05). Compared with corresponding controls, primary hepatocytes treated with PC showed significantly higher mRNA expression of lipid synthesis and VLDL assembly-related genes and lower mRNA expression of fatty acid oxidation-related genes, with hepatocytes treated with siRNA-CCTα exhibiting the opposite trend (P<0·05). In summary, these results demonstrated that high level of dietary PL might reverse the HL-LP diet-induced abnormal lipid accumulation in the liver through inhibiting fatty acid uptake and lipid synthesis, together with promoting the lipid export at the transcriptional level. Lipid export-promoting effect of PC was confirmed by in vitro studies. The present study showed for the first time that PL or PC could influence various metabolic pathways to regulate hepatic lipid deposition in fish at least at the transcriptional level.


Assuntos
Dieta/veterinária , Metabolismo dos Lipídeos , Fígado/metabolismo , Perciformes/metabolismo , Fosfolipídeos/administração & dosagem , Ração Animal , Animais , Antígenos CD36/genética , Antígenos CD36/metabolismo , Células Cultivadas , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Proteínas de Transporte de Ácido Graxo/genética , Proteínas de Transporte de Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Hepatócitos/metabolismo , Lipase/genética , Lipase/metabolismo , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Fosfatidilcolinas/administração & dosagem , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
7.
Clin Nutr ; 36(2): 513-521, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-26869380

RESUMO

BACKGROUND & AIMS: Maternal-fetal transfer of docosahexaenoic acid (DHA) is impaired by gestational diabetes mellitus (GDM), but the underlying mechanisms are still unknown. MFSD2a was recently recognized as a lyso-phospholipid (lyso-PL) transporter that facilitates DHA accretion in brain. The role of this transporter in placenta is uncertain. We evaluated effects of GDM and its treatment (diet or insulin) on phospholipid species, fatty acid profile in women, cord blood and placental fatty acid carriers. METHODS: Prospective observational study of pregnant women recruited in the third trimester (25 controls, 23 GDM-diet, 20 GDM-insulin). Fetal ultrasound was performed at gestational week 38. At delivery, maternal and neonatal anthropometry was performed, and fatty acids in total lipids and phospholipid species were analyzed in placenta, maternal and venous cord blood. Western-blot analyses were performed for placental fatty acid carriers. RESULTS: Fetal abdominal circumference z-score at 38 weeks tended to higher values in GDM (P = 0.071), pointing toward higher fetal fat accretion in these babies. DHA percentage in cord serum total lipids (P = 0.029) and lyso-PL (P = 0.169) were reduced in GDM. Placental MFSD2a was reduced in both GDM groups and was positively correlated to DHA values in cord serum total lipids (r = 0.388, P = 0.003). Among established placental lipid carriers, only FATP4 was correlated to DHA concentration in placental lyso-PL. In all compartments, DHA percentage was inversely correlated to fetal abdominal circumference. CONCLUSIONS: In offspring of women with GDM treated either with diet or insulin, higher fetal fat accretion and lower placental MFSD2a contribute to reduce DHA availability. Lyso-PL appear to contribute to materno-fetal DHA transport.


Assuntos
Diabetes Gestacional/dietoterapia , Diabetes Gestacional/tratamento farmacológico , Ácidos Docosa-Hexaenoicos/sangue , Sangue Fetal/química , Placenta/metabolismo , Proteínas Supressoras de Tumor/genética , Adolescente , Adulto , Glicemia/metabolismo , Estudos de Casos e Controles , Diabetes Gestacional/sangue , Dieta , Proteínas de Transporte de Ácido Graxo/sangue , Proteínas de Transporte de Ácido Graxo/genética , Ácidos Graxos/sangue , Feminino , Feto/metabolismo , Idade Gestacional , Humanos , Insulina/sangue , Insulina/uso terapêutico , Masculino , Fosfolipídeos/sangue , Gravidez , Terceiro Trimestre da Gravidez , Estudos Prospectivos , Simportadores , Adulto Jovem
8.
Nutrients ; 8(4): 237, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27110821

RESUMO

Appropriate metabolic interventions after hemorrhagic shock/resuscitation injury have not yet been identified. We aimed to examine the effects of fish oil on lipid metabolic intervention after hemorrhagic shock/resuscitation. Firstly, 48 C57BL/6 mice were assigned to six groups (n = 8 per group). The sham group did not undergo surgery, while mice in the remaining groups were sacrificed 1-5 days after hemorrhagic shock/resuscitation. In the second part, mice were treated with saline or fish oil (n = 8 per group) five days after injury. We determined serum triglyceride levels and liver tissues were collected and prepared for qRT-PCR or Western blot analysis. We found that triglyceride levels were increased five days after hemorrhagic shock/resuscitation, but decreased after addition of fish oil. After injury, the protein and gene expression of carnitine palmitoyltransferase 1A, fatty acid transport protein 1, and peroxisome proliferator-activated receptor-α decreased significantly in liver tissue. In contrast, after treatment with fish oil, the expression levels of these targets increased compared with those in the saline group. The present results suggest n-3 polyunsaturated fatty acids could improve lipid oxidation-related enzymes in liver subjected to hemorrhagic shock/resuscitation. This function is possibly accomplished through activating the peroxisome proliferator-activated receptor-α pathway.


Assuntos
Carnitina O-Palmitoiltransferase/metabolismo , Proteínas de Transporte de Ácido Graxo/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Fígado/enzimologia , PPAR alfa/metabolismo , Choque Hemorrágico/complicações , Animais , Carnitina O-Palmitoiltransferase/genética , Proteínas de Transporte de Ácido Graxo/genética , Óleos de Peixe/administração & dosagem , Óleos de Peixe/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , PPAR alfa/genética , RNA Mensageiro , Ressuscitação/efeitos adversos , Organismos Livres de Patógenos Específicos , Triglicerídeos/sangue
9.
Mol Nutr Food Res ; 60(7): 1695-706, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26920079

RESUMO

SCOPE: A number of findings suggest that zero-calorie d-allulose, also known as d-psicose, has beneficial effects on obesity-related metabolic disturbances. However, it is unclear whether d-allulose can normalize the metabolic status of diet-induced obesity without having an impact on the energy density. We investigated whether 5% d-allulose supplementation in a high fat diet(HFD) could normalize body fat in a diet-induced obesity animal model under isocaloric pair-fed conditions. METHODS AND RESULTS: Mice were fed an HFD with or without various sugar substitutes (d-glucose, d-fructose, erytritol, or d-allulose, n = 10 per group) for 16 wk. Body weight and fat-pad mass in the d-allulose group were dramatically lowered to that of the normal group with a simultaneous decrease in plasma leptin and resistin concentrations. d-allulose lowered plasma and hepatic lipids while elevating fecal lipids with a decrease in mRNA expression of CD36, ApoB48, FATP4, in the small intestine in mice. In the liver, activities of both fatty acid synthase and ß-oxidation were downregulated by d-allulose to that of the normal group; however, in WAT, fatty acid synthase was decreased while ß-oxidation activity was enhanced. CONCLUSION: Taken together, our findings suggest that 5% dietary d-allulose led to the normalization of the metabolic status of diet-induced obesity by altering lipid-regulating enzyme activities and their gene-expression level along with fecal lipids.


Assuntos
Peso Corporal/efeitos dos fármacos , Frutose/administração & dosagem , Metabolismo dos Lipídeos/efeitos dos fármacos , Obesidade/tratamento farmacológico , Adiposidade/efeitos dos fármacos , Animais , Apolipoproteína B-48/genética , Apolipoproteína B-48/metabolismo , Glicemia/metabolismo , Antígenos CD36/genética , Antígenos CD36/metabolismo , Dieta Hiperlipídica , Suplementos Nutricionais , Proteínas de Transporte de Ácido Graxo/genética , Proteínas de Transporte de Ácido Graxo/metabolismo , Regulação da Expressão Gênica , Glucose/administração & dosagem , Leptina/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/etiologia , Resistina/sangue , Edulcorantes/administração & dosagem
10.
Br J Nutr ; 113(5): 739-48, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25704496

RESUMO

Revealing the expression patterns of fatty acid and amino acid transporters as affected by dietary n-6:n-3 PUFA ratio would be useful for further clarifying the importance of the balance between n-6 and n-3 PUFA. A total of ninety-six finishing pigs were fed one of four diets with the ratio of 1:1, 2·5:1, 5:1 and 10:1. Pigs fed the dietary n-6:n-3 PUFA ratio of 5:1 had the highest (P< 0·05) daily weight gain, and those fed the dietary n-6:n-3 PUFA ratio of 1:1 had the largest loin muscle area (P< 0·01). The concentration of n-3 PUFA was raised as the ratio declined (P< 0·05) in the longissimus dorsi and subcutaneous adipose tissue. The contents of tryptophan, tasty amino acids and branched-chain amino acids in the longissimus dorsi were enhanced in pigs fed the dietary n-6:n-3 PUFA ratios of 1:1-5:1. The mRNA expression level of the fatty acid transporter fatty acid transport protein-1 (FATP-1) was declined (P< 0·05) in the longissimus dorsi of pigs fed the dietary n-6:n-3 PUFA ratios of 1:1-5:1, and increased (P< 0·05) in the subcutaneous adipose tissue of pigs fed the dietary n-6:n-3 PUFA ratios of 5:1 and 10:1. The expression profile of FATP-4 was similar to those of FATP-1 in the adipose tissue. The mRNA expression level of the amino acid transceptors LAT1 and SNAT2 was up-regulated (P< 0·05) in the longissimus dorsi of pigs fed the dietary n-6:n-3 PUFA ratios of 1:1 and 2·5:1. In conclusion, maintaining the dietary n-6:n-3 PUFA ratios of 1:1-5:1 would facilitate the absorption and utilisation of fatty acids and free amino acids, and result in improved muscle and adipose composition.


Assuntos
Dieta/veterinária , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-6/administração & dosagem , Regulação da Expressão Gênica no Desenvolvimento , Músculo Esquelético/metabolismo , Gordura Subcutânea/metabolismo , Sus scrofa/metabolismo , Sistema A de Transporte de Aminoácidos/genética , Sistema A de Transporte de Aminoácidos/metabolismo , Aminoácidos/análise , Aminoácidos/metabolismo , Animais , Cruzamentos Genéticos , Gorduras na Dieta/análise , Ingestão de Energia , Proteínas de Transporte de Ácido Graxo/genética , Proteínas de Transporte de Ácido Graxo/metabolismo , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-3/análise , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/análise , Ácidos Graxos Ômega-6/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/genética , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Óleo de Semente do Linho/administração & dosagem , Óleo de Semente do Linho/metabolismo , Carne/análise , Desenvolvimento Muscular , Músculo Esquelético/crescimento & desenvolvimento , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Óleo de Soja/administração & dosagem , Óleo de Soja/metabolismo , Gordura Subcutânea/crescimento & desenvolvimento , Sus scrofa/crescimento & desenvolvimento , Aumento de Peso
11.
Artigo em Inglês | MEDLINE | ID: mdl-25123062

RESUMO

Specific mechanisms for maintaining docosahexaenoic acid (DHA) concentration in brain cells but also transporting DHA from the blood across the blood-brain barrier (BBB) are not agreed upon. Our main objective was therefore to evaluate the level of gene expression of fatty acid transport and fatty acid binding proteins in the cerebral cortex and at the BBB level during the perinatal period of active brain DHA accretion, at weaning, and until the adult age. We measured by real time RT-PCR the mRNA expression of different isoforms of fatty acid transport proteins (FATPs), long-chain acyl-CoA synthetases (ACSLs), fatty acid binding proteins (FABPs) and the fatty acid transporter (FAT)/CD36 in cerebral cortex and isolated microvessels at embryonic day 18 (E18) and postnatal days 14, 21 and 60 (P14, P21 and P60, respectively) in rats receiving different n-3 PUFA dietary supplies (control, totally deficient or DHA-supplemented). In control rats, all the genes were expressed at the BBB level (P14 to P60), the mRNA levels of FABP5 and ACSL3 having the highest values. Age-dependent differences included a systematic decrease in the mRNA expressions between P14-P21 and P60 (2 to 3-fold), with FABP7 mRNA abundance being the most affected (10-fold). In the cerebral cortex, mRNA levels varied differently since FATP4, ACSL3 and ACSL6 and the three FABPs genes were highly expressed. There were no significant differences in the expression of the 10 genes studied in n-3 deficient or DHA-supplemented rats despite significant differences in their brain DHA content, suggesting that brain DHA uptake from the blood does not necessarily require specific transporters within cerebral endothelial cells and could, under these experimental conditions, be a simple passive diffusion process.


Assuntos
Barreira Hematoencefálica/metabolismo , Córtex Cerebral/metabolismo , Ácidos Docosa-Hexaenoicos/genética , Proteínas de Transporte de Ácido Graxo/biossíntese , Proteínas de Ligação a Ácido Graxo/metabolismo , Animais , Barreira Hematoencefálica/crescimento & desenvolvimento , Córtex Cerebral/crescimento & desenvolvimento , Ácidos Docosa-Hexaenoicos/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Proteínas de Transporte de Ácido Graxo/genética , Proteínas de Transporte de Ácido Graxo/metabolismo , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-3/metabolismo , Regulação da Expressão Gênica , RNA Mensageiro/biossíntese , Ratos
12.
Artigo em Inglês | MEDLINE | ID: mdl-24928794

RESUMO

Our previous cross-sectional studies have shown altered proportions of long chain polyunsaturated fatty acids (LCPUFA) in preeclampsia (PE) at the end of pregnancy when the pathology has already progressed. The present longitudinal study for the first time reports fatty acid proportions from 16th week of gestation till delivery and placental transport in PE. This is a hospital based study where women were recruited in early pregnancy. Maternal blood was collected at 3 time points i.e. T1=16-20th week, T2=26-30th week and T3=at delivery. Cord blood and placenta were collected at delivery. This study reports data on 140 normotensive control (NC) and 54 PE women. In PE we report lower proportions of DHA in maternal plasma at T1, cord plasma and placenta (p<0.05 for all). The mRNA levels of placental ∆5 desaturase, fatty acid transport proteins -1, -4, were lower (p<0.05 for all) in PE. There was also a positive association between cord and maternal plasma DHA and total omega-3 fatty acids at T1. This study demonstrates that women with PE have lower fatty acids stores at 16-20th week of gestation and lower placental synthesis and transport. It is likely that supplementation of omega-3 fatty acids during the 16-20th week of gestation may help in improving fatty acid status in infants born to mothers with PE.


Assuntos
Ácidos Docosa-Hexaenoicos/sangue , Proteínas de Transporte de Ácido Graxo/metabolismo , Ácidos Graxos/sangue , Feto/metabolismo , Pré-Eclâmpsia/sangue , Adulto , Estudos de Casos e Controles , Dessaturase de Ácido Graxo Delta-5 , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Proteínas de Transporte de Ácido Graxo/genética , Feminino , Expressão Gênica , Idade Gestacional , Humanos , Estudos Longitudinais , Placenta/química , Placenta/metabolismo , Pré-Eclâmpsia/fisiopatologia , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
PLoS One ; 8(9): e74021, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24040150

RESUMO

Variations in plasma fatty acid (FA) concentrations are detected by FA sensing neurons in specific brain areas such as the hypothalamus. These neurons play a physiological role in the control of food intake and the regulation of hepatic glucose production. Le Foll et al. previously showed in vitro that at least 50% of the FA sensing in ventromedial hypothalamic (VMH) neurons is attributable to the interaction of long chain FA with FA translocase/CD36 (CD36). The present work assessed whether in vivo effects of hypothalamic FA sensing might be partly mediated by CD36 or intracellular events such as acylCoA synthesis or ß-oxidation. To that end, a catheter was implanted in the carotid artery toward the brain in male Wistar rats. After 1 wk recovery, animals were food-deprived for 5 h, then 10 min infusions of triglyceride emulsion, Intralipid +/- heparin (IL, IL(H), respectively) or saline/heparin (SH) were carried out and food intake was assessed over the next 5 h. Experimental groups included: 1) Rats previously injected in ventromedian nucleus (VMN) with shRNA against CD36 or scrambled RNA; 2) Etomoxir (CPT1 inhibitor) or saline co-infused with IL(H)/S(H); and 3) Triacsin C (acylCoA synthase inhibitor) or saline co-infused with IL(H)/S(H). IL(H) significantly lowered food intake during refeeding compared to S(H) (p<0.001). Five hours after refeeding, etomoxir did not affect this inhibitory effect of IL(H) on food intake while VMN CD36 depletion totally prevented it. Triacsin C also prevented IL(H) effects on food intake. In conclusion, the effect of FA to inhibit food intake is dependent on VMN CD36 and acylCoA synthesis but does not required FA oxidation.


Assuntos
Antígenos CD36/metabolismo , Ácidos Graxos/metabolismo , Comportamento Alimentar/fisiologia , Hipotálamo/fisiologia , Animais , Antígenos CD36/genética , Ingestão de Alimentos , Emulsões/administração & dosagem , Proteínas de Transporte de Ácido Graxo/genética , Ácidos Graxos/sangue , Expressão Gênica , Masculino , Modelos Biológicos , Fosfolipídeos/administração & dosagem , Proteínas Proto-Oncogênicas c-fos/genética , Ratos , Óleo de Soja/administração & dosagem
14.
Artigo em Inglês | MEDLINE | ID: mdl-23332769

RESUMO

Adequate supply of LCPUFA from maternal plasma is crucial for fetal normal growth and development. The present study examines the effect of maternal micronutrients (folic acid and vitamin B12) and omega 3 fatty acids on placental mRNA levels of fatty acid desaturases (Δ5 and Δ6) and transport proteins. Pregnant female rats were divided into 6 groups at 2 levels of folic acid both in the presence and absence of vitamin B12. Both the vitamin B12 deficient groups were supplemented with omega 3 fatty acid. Maternal vitamin B12 deficiency reduced placental mRNA and protein levels of Δ5 desaturase, mRNA levels of FATP1 and FATP4 (p<0.05 for all) as compared to control while omega 3 fatty acid supplementation normalized the levels. Our data for the first time indicates that altered maternal micronutrients and omega 3 fatty acids play a key role in regulating fatty acid desaturase and transport protein expression in placenta.


Assuntos
Proteínas de Transporte de Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Ácido Fólico/administração & dosagem , Linoleoil-CoA Desaturase/metabolismo , Micronutrientes/administração & dosagem , Placenta/enzimologia , Vitamina B 12/administração & dosagem , Animais , Dessaturase de Ácido Graxo Delta-5 , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Proteínas de Transporte de Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/genética , Feminino , Expressão Gênica , Linoleoil-CoA Desaturase/genética , Micronutrientes/deficiência , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Deficiência de Vitamina B 12
15.
PLoS One ; 7(9): e46275, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029459

RESUMO

Escherichia coli FadR plays two regulatory roles in fatty acid metabolism. FadR represses the fatty acid degradation (fad) system and activates the unsaturated fatty acid synthetic pathway. Cross-talk between E. coli FadR and the ArcA-ArcB oxygen-responsive two-component system was observed that resulted in diverse regulation of certain fad regulon ß-oxidation genes. We have extended such analyses to the fadL and fadD genes, the protein products of which are required for long chain fatty acid transport and have also studied the role of a third global regulator, the CRP-cAMP complex. The promoters of both the fadL and fadD genes contain two experimentally validated FadR-binding sites plus binding sites for ArcA and CRP-cAMP. Despite the presence of dual binding sites FadR only modestly regulates expression of these genes, indicating that the number of binding sites does not determine regulatory strength. We report complementary in vitro and in vivo studies indicating that the CRP-cAMP complex directly activates expression of fadL and fadD as well as the ß-oxidation gene, fadH. The physiological relevance of the fadL and fadD transcription data was validated by direct assays of long chain fatty acid transport.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Coenzima A Ligases/genética , Proteína Receptora de AMP Cíclico/genética , AMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Proteínas de Transporte de Ácido Graxo/genética , Ácidos Graxos/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas Repressoras/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Transporte Biológico , Coenzima A Ligases/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Ácido Graxo/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Oxirredução , Oxigênio/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Regulon , Proteínas Repressoras/metabolismo , Transdução de Sinais , Transcrição Gênica
16.
Appl Physiol Nutr Metab ; 35(4): 447-55, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20725110

RESUMO

Dietary polyunsaturated fatty acid (PUFA) incorporation into bone may alter its metabolism through changes in the fatty acid composition of membrane phospholipids. Alteration of the membrane phospholipid fatty acid composition may influence bone cell signalling and, potentially, bone mineralization. The objective of this study was to use the fat-1 mouse, a transgenic model that synthesizes n-3 from n-6 PUFA, to determine if the fat-1 gene modulates the fatty acid composition of femoral and vertebral phospholipids, and if so, whether the fatty acid levels would correlate with bone mineral density (BMD) at both skeletal sites. Male and female wild-type and fat-1 mice were fed an AIN93-G diet, containing 10% safflower oil, from weaning to 12 weeks of age. The fatty acid composition of femoral and vertebral phospholipids was measured by gas liquid chromatography. At 12 weeks of age, phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine fractions in the vertebrae of fat-1 mice had a significantly lower n-6/n-3 ratio than wild-type mice (p<0.05). In fat-1 femurs, these fractions, along with phosphatidylinositol, had a lower n-6/n-3 ratio than wild-type mice (p<0.001). Docosahexaenoic acid (DHA) was positively correlated with BMD in all fractions in the vertebrae, and in phosphatidylinositol and phosphatidylserine in the femur (p<0.05). Overall, the fat-1 gene resulted in changes in the fatty acid composition of both femoral and vertebral phospholipids. Significant correlations between DHA and BMD may indicate a positive effect on bone mineralization.


Assuntos
Proteínas de Transporte de Ácido Graxo/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Fêmur/metabolismo , Vértebras Lombares/metabolismo , Fosfolipídeos/metabolismo , Animais , Peso Corporal , Densidade Óssea , Ácidos Docosa-Hexaenoicos/metabolismo , Proteínas de Transporte de Ácido Graxo/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidilinositóis/metabolismo , Fosfatidilserinas/metabolismo
17.
Am J Clin Nutr ; 84(4): 853-61, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17023713

RESUMO

BACKGROUND: Better understanding of the mechanisms involved in docosahexaenoic acid (DHA) transfer to the neonate may contribute to improve dietary support for infants born prematurely to mothers with placental lipid transport disorders. OBJECTIVE: We studied whether DHA supplements modify the messenger RNA (mRNA) expression of placental lipid transport proteins to allow a selective transfer of DHA to the fetus. DESIGN: Healthy pregnant women (n = 136) received, in a double-blind randomized trial, 500 mg DHA + 150 mg eicosapentaenoic acid, 400 microg 5-methyl-tetrahydrofolic acid, 500 mg DHA + 400 microg 5-methyl-tetrahydrofolic acid, or placebo during the second half of gestation. We analyzed the fatty acid composition of maternal and cord blood phospholipids and of placenta; we quantified placental mRNA expression of fatty acid-transport protein 1 (FATP-1), FATP-4, FATP-6, fatty acid translocase, fatty acid-binding protein (FABP) plasma membrane, heart-FABP, adipocyte-FABP, and brain-FABP. RESULTS: The mRNA expression of the lipid carriers assayed did not differ significantly between the 4 groups. However, the mRNA expression of FATP-1 and FATP-4 in placenta was correlated with DHA in both maternal plasma and placental phospholipids, although only FATP-4 expression was significantly correlated with DHA in cord blood phospholipids. Additionally, the mRNA expression of several membrane lipid carriers was correlated with EPA and DHA in placental triacylglycerols and with EPA in placental free fatty acids. CONCLUSIONS: Correlation of the mRNA expression of the membrane placental proteins FATP-1 and especially of FATP-4 with maternal and cord DHA leads us to conclude that these lipid carriers are involved in placental transfer of long-chain polyunsaturated fatty acids.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Proteínas de Transporte de Ácido Graxo/metabolismo , Placenta/efeitos dos fármacos , Placenta/metabolismo , Gravidez/metabolismo , Adulto , Ácidos Docosa-Hexaenoicos/administração & dosagem , Método Duplo-Cego , Proteínas de Transporte de Ácido Graxo/sangue , Proteínas de Transporte de Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Feminino , Humanos , Reação em Cadeia da Polimerase , RNA Mensageiro/metabolismo
18.
Mol Cell Biol ; 26(9): 3455-67, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16611988

RESUMO

Fatty acid transport protein 1 (FATP1), a member of the FATP/Slc27 protein family, enhances the cellular uptake of long-chain fatty acids (LCFAs) and is expressed in several insulin-sensitive tissues. In adipocytes and skeletal muscle, FATP1 translocates from an intracellular compartment to the plasma membrane in response to insulin. Here we show that insulin-stimulated fatty acid uptake is completely abolished in FATP1-null adipocytes and greatly reduced in skeletal muscle of FATP1-knockout animals while basal LCFA uptake by both tissues was unaffected. Moreover, loss of FATP1 function altered regulation of postprandial serum LCFA, causing a redistribution of lipids from adipocyte tissue and muscle to the liver, and led to a complete protection from diet-induced obesity and insulin desensitization. This is the first in vivo evidence that insulin can regulate the uptake of LCFA by tissues via FATP1 activation and that FATPs determine the tissue distribution of dietary lipids. The strong protection against diet-induced obesity and insulin desensitization observed in FATP1-null animals suggests FATP1 as a novel antidiabetic target.


Assuntos
Proteínas de Transporte de Ácido Graxo/agonistas , Proteínas de Transporte de Ácido Graxo/fisiologia , Ácidos Graxos Insaturados/metabolismo , Insulina/farmacologia , Síndrome Metabólica/genética , Obesidade/genética , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Gorduras Insaturadas na Dieta/metabolismo , Gorduras Insaturadas na Dieta/toxicidade , Proteínas de Transporte de Ácido Graxo/genética , Ácidos Graxos Insaturados/sangue , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Obesidade/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA