Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Med Virol ; 91(1): 45-55, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30153335

RESUMO

Influenza is a highly infectious disease caused by three types of viruses, including influenza A virus (IAV), influenza B virus, and, rarely, influenza C virus. IAV is a major, global public health threat, causing approximately 500 000 deaths per year worldwide. The new strains of IAV have emerged due to a mutation called antigenic shift, which results in a new subtype of the virus that shows resistance to common antiviral drugs. Here, guava and lemon extracts, including green leaves and flowers, were investigated for their activity against IAV replication in human A549 cells. Concomitantly, the cytotoxicity of a potent extract on host-cell multiplication was assessed. Our results reveal that guava extracts inhibit IAV replication, indicated by viral nucleoprotein expression profile and traditional plaque assay. Interestingly, treatment with guava extract inactivates Akt protein kinase and stimulates the pro-apoptotic protein P53, at early stages of infection. Furthermore, purified guava flavonoid glycosides (GFGs) show competitive inhibition of IAV-virus replication via early regulation of IL-1ß and IL-8 in association with P53 gene expression. The docking analysis of GFGs and the protein structure of upstream targets for the Akt signaling pathway indicates a sufficient interaction and stabilization with Gbr2 protein. These data indicate that treatment with GFGs disturbs IAV replication via activation of P53 and its apoptotic related factors after infection. Collectively, these data show that targeting of essential host kinases that are involved in the replication cycle of IAV and rescue of P53 activity by GFGs could represent a new strategy to eradicate IAV.


Assuntos
Antivirais/farmacologia , Glicosídeos/metabolismo , Vírus da Influenza A/crescimento & desenvolvimento , Extratos Vegetais/farmacologia , Psidium/química , Proteína Supressora de Tumor p53/metabolismo , Replicação Viral/efeitos dos fármacos , Células A549 , Antivirais/isolamento & purificação , Citrus/química , Glicosídeos/isolamento & purificação , Humanos , Vírus da Influenza A/efeitos dos fármacos , Interleucina-1beta/metabolismo , Interleucina-8/metabolismo , Proteínas do Nucleocapsídeo , Extratos Vegetais/isolamento & purificação , Proteínas de Ligação a RNA/análise , Proteínas do Core Viral/análise , Ensaio de Placa Viral
2.
Antiviral Res ; 160: 55-63, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30339849

RESUMO

Supplementation with vitamin D (VD) has been reported to improve the efficacy of interferon-based therapy for chronic hepatitis C. We found that 25-hydroxyvitamin D3 (25-(OH)D3), one of the metabolites of VD, has antiviral effects by inhibiting the infectious virus production of the hepatitis C virus (HCV). In this study, to clarify the underlying mechanisms of the anti-HCV effects, we searched VD derivatives that have anti-HCV effects and identified the common target molecule in the HCV life cycle by using an HCV cell culture system. After infection of Huh-7.5.1 cells with cell culture-generated HCV, VD derivatives were added to culture media, and the propagation of HCV was assessed by measuring the HCV core antigen levels in culture media and cell lysates. To determine the step in the HCV life cycle affected by these compounds, the single-cycle virus production assay was used with a CD81-negative cell line. Of the 14 structural derivatives of VD, an anti-HCV effect was detected in 9 compounds. Cell viability was not affected by these effective compounds. The 2 representative VD derivatives inhibited the infectious virus production in the single-cycle virus production assay. Treatment with these compounds and 25-(OH)D3 suppressed the expression of apolipoprotein A1 and C3, which are known to be involved in infectious virus production of HCV, and the knockdown of these apolipoproteins reduced infectious virus production. In conclusion, we identified several compounds with anti-HCV activity by screening VD derivatives. These compounds reduce the infectious virus production of HCV by suppressing the expression of apolipoproteins in host cells.


Assuntos
Antivirais/farmacologia , Apolipoproteína A-I/antagonistas & inibidores , Apolipoproteína C-III/antagonistas & inibidores , Hepacivirus/crescimento & desenvolvimento , Hepatócitos/virologia , Replicação Viral/efeitos dos fármacos , Vitamina D/farmacologia , Linhagem Celular , Meios de Cultura/química , Hepatócitos/enzimologia , Humanos , Proteínas do Core Viral/análise , Cultura de Vírus
3.
BMC Complement Altern Med ; 18(1): 184, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29903008

RESUMO

BACKGROUND: Influenza infection is a major public health threat. The role of influenza A virus-induced inflammatory response in severe cases of this disease is widely recognized. Drug resistance and side effects of chemical treatments have been observed, resulting in increased interest in alternative use of herbal medications for prophylaxis against this infection. The South African medicinal plant, Rapanea melanophloeos (RM) (L.) Mez of the family Myrsinaceae was selected owing to its traditional use for the treatment of several diseases such as respiratory ailments and also previous preliminary studies of anti-influenza activity of its methanolic extract. The aim of this study was to investigate the immunomodulatory properties of a glycoside flavone isolated from RM against influenza A virus. METHODS: The non-cytotoxic concentration of the quercetin-3-O-α-L-rhamnopyranoside (Q3R) was determined by MTT assay and tested for activity against influenza A virus (IAV) in simultaneous, pre-penetration and post-penetration combination treatments over 1 h incubation on MDCK cells. The virus titer and viral load targeting NP and M2 viral genes were determined using HA and qPCR, respectively. TNF-α and IL-27 as pro- and anti-inflammatory cytokines were measured at RNA and protein levels by qPCR and ELISA, respectively. RESULTS: Quercetin-3-O-α-L-rhamnopyranoside at 150 µg/ml decreased the viral titer by 6 logs (p < 0.01) in the simultaneous procedure. The NP and M2 genes copy numbers as viral target genes, calculated based on the Ct values and standard formula, significantly decreased in simultaneous treatment (p < 0.01). The expression of cytokines was also considerably affected by the compound treatment. CONCLUSIONS: This is the first report of quercetin-3-O-α-L-rhamnopyranoside from RM and its immunomodulatory properties against influenza A virus. Further research will focus on detecting the specific mechanism of virus-host interactions.


Assuntos
Antivirais/farmacologia , Glicosídeos/farmacologia , Fatores Imunológicos/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Extratos Vegetais/química , Primulaceae/química , Quercetina/análogos & derivados , Animais , Citocinas/análise , Citocinas/genética , Citocinas/metabolismo , Variações do Número de Cópias de DNA/efeitos dos fármacos , Cães , Vírus da Influenza A/genética , Células Madin Darby de Rim Canino , Proteínas do Nucleocapsídeo , Quercetina/farmacologia , Proteínas de Ligação a RNA/análise , Proteínas de Ligação a RNA/genética , Proteínas do Core Viral/análise , Proteínas do Core Viral/genética , Proteínas da Matriz Viral/análise , Proteínas da Matriz Viral/genética
4.
J Virol ; 76(24): 12703-11, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12438596

RESUMO

The multifunctional genome-linked protein (VPg) of Potato virus A (PVA; genus Potyvirus) was found to be phosphorylated as a part of the virus particle by a cellular kinase activity from tobacco. Immunoprecipitation, immunolabeling, and immunoelectron microscopy experiments showed that VPg is exposed at one end of the virion and it is accessible to protein-protein interactions. Substitution Ser185Leu at the C-proximal part of VPg reduces accumulation of PVA in inoculated leaves of the wild potato species Solanum commersonii and delays systemic infection, which is not observed in tobacco plants. Our data show that kinases of S. commersonii differentially recognize the VPg containing Ser or Leu at position 185, whereas both forms of VPg are similarly recognized by tobacco kinases. Taken together, our data imply that the virion-bound VPg may interact with host proteins and that phosphorylation of VPg may play a role in the VPg-mediated functions during the infection cycle of potyviruses.


Assuntos
Proteínas de Plantas/fisiologia , Potyvirus/química , Proteínas Quinases/fisiologia , Solanum tuberosum/virologia , Proteínas do Core Viral/análise , Vírion/química , Genoma Viral , Fosforilação , Testes de Precipitina , Solanum tuberosum/enzimologia , Especificidade por Substrato , Proteínas do Core Viral/metabolismo
5.
Virology ; 149(2): 139-51, 1986 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-2418584

RESUMO

The sequence of 1690 nucleotides from the 5' end of the viral complementary RNA for the human parainfluenza 3 virus was determined by molecular cloning. One large open reading frame consisting of 1548 nucleotides was demonstrated. The encoded protein, the nucleocapsid protein (NP), consists of 515 amino acids, and has a predicted molecular weight of 57,819. A noncoding 5' sequence of 51 nucleotides is present at the end of the NP-mRNA. Two consensus sequences were identified which are homologous with sequences found in Sendai virus. One of these sequences, AGGATTAAAG, was located at the 5' end of the nucleocapsid mRNA and may function in transcription initiation. The other consensus sequence, GTAAGGGAA, was found in the viral genomic leader sequence. The nucleocapsid protein amino acid sequence was compared to other members of the Paramyxoviridae family. The parainfluenza 3 virus protein nucleocapsid amino acid sequence demonstrated a high degree of homology with the Sendai virus nucleocapsid protein. Seventy percent of the first 387 amino acids from the amino termini were identical. Little homology was observed in the distal carboxy termini.


Assuntos
Capsídeo/genética , Vírus da Parainfluenza 3 Humana/genética , RNA Viral/genética , Respirovirus/genética , Proteínas do Core Viral/genética , Sequência de Aminoácidos , Aminoácidos/análise , Sequência de Bases , Capsídeo/análise , Clonagem Molecular , DNA/genética , Genes Virais , Humanos , Peso Molecular , Vírus da Parainfluenza 3 Humana/análise , Paramyxoviridae/genética , RNA/genética , RNA Complementar , RNA Mensageiro/genética , Proteínas do Core Viral/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA