Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35216242

RESUMO

Plants have two types of reproduction: sexual, resulting in embryo production, and asexual, resulting in vegetative bodies commonly derived from stems and roots (e.g., bulb, tuber). Dead organs enclosing embryos (DOEEs, such as seed coat and pericarp) are emerging as central components of the dispersal unit acting to nurture the embryo and ensure its survival in the habitat. Here we wanted to investigate the properties of dead organs enclosing plant asexual reproductive bodies, focusing on the garlic (Allium sativum) bulb. We investigated the biochemical and biological properties of the outer peel enclosing the bulb and the inner peel enclosing the clove using various methodologies, including bioassays, proteomics, and metabolomics. The garlic peels differentially affected germination and post-germination growth, with the outer peel demonstrating a strong negative effect on seed germination of Sinapis alba and on post-germination growth of Brassica juncea. Proteome analysis showed that dead garlic peels possess 67 proteins, including chitinases and proteases, which retained their enzymatic activity. Among primary metabolites identified in garlic peels, the outer peel accumulated multiple sugars, including rhamnose, mannitol, sorbitol, and trehalose, as well as the modified amino acid 5-hydroxylysine, known as a major component of collagen, at a higher level compared to the clove and the inner peel. Growth of Escherichia coli and Staphylococcus aureus was promoted by garlic peel extracts but inhibited by clove extract. All extracts strongly inhibited spore germination of Fusarium oxysporum f.sp. melonis. Thus, the garlic peels not only provide physical protection to vegetative offspring but also appear to function as a refined arsenal of proteins and metabolites for enhancing growth and development, combating potential pathogens, and conferring tolerance to abiotic stresses.


Assuntos
Alho/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Germinação/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Plantas/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Sementes/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
2.
Bioengineered ; 13(2): 2851-2865, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35037840

RESUMO

HBV (hepatitis B virus) infection still threatens human health. Therefore, it is essential to find new effective anti-HBV compounds. Here, we identified matrine as a novel inhibitor of PKC (protein kinase C) phosphorylated kinase by screening a natural compound library. After HepG2.215 cells were treated with matrine, we carried out a phosphorylated proteomics sequence study and analyzed the prediction of related kinase expression level. In the case of HBV infection, it was found that PKC kinase mediates the activation of mitogen-activated protein kinase (MAPK) signaling pathway known as son of sevenless (SOS) activation. It was also found that PKC kinase inhibits the expression of C-X-C Motif Chemokine Ligand 8 (CXCL8) by inhibiting the activity of activating transcription factor 2/ cAMP response element binding protein (ATF2/CREB), and this effect is independent of its activated MAPK signaling pathway. Finally, Western blot was used to detect the expression of MAPK, ATF2, CREB3 phosphorylation and nonphosphorylation in matrine-treated cells and PKC-treated cells. PKC phosphorylated kinase inhibitor-matrine suppresses the replication of HBV via modulating the MAPK/ATF2 signal. Matrine is a good clinical drug to enhance the autoimmunity in the adjuvant treatment of chronic HBV infection.


Assuntos
Alcaloides/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Quinolizinas/farmacologia , Replicação Viral/efeitos dos fármacos , Alcaloides/uso terapêutico , Células Hep G2 , Hepatite B/tratamento farmacológico , Hepatite B/metabolismo , Vírus da Hepatite B/fisiologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfoproteínas/efeitos dos fármacos , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Proteoma/efeitos dos fármacos , Proteoma/metabolismo , Quinolizinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Matrinas
3.
Int J Mol Sci ; 22(21)2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34769466

RESUMO

Thaxtomin A (TA) is a phytotoxin secreted by Streptomyces scabies that causes common scab in potatoes. However, the mechanism of potato proteomic changes in response to TA is barely known. In this study, the proteomic changes in potato leaves treated with TA were determined using the Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) technique. A total of 693 proteins were considered as differentially expressed proteins (DEPs) following a comparison of leaves treated with TA and sterile water (as a control). Among the identified DEPs, 460 and 233 were upregulated and downregulated, respectively. Based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, many DEPs were found to be involved in defense and stress responses. Most DEPs were grouped in carbohydrate metabolism, amino acid metabolism, energy metabolism, and secondary metabolism including oxidation-reduction process, response to stress, plant-pathogen interaction, and plant hormone signal transduction. In this study, we analyzed the changes in proteins to elucidate the mechanism of potato response to TA, and we provided a molecular basis to further study the interaction between plant and TA. These results also offer the option for potato breeding through analysis of the resistant common scab.


Assuntos
Indóis/farmacologia , Piperazinas/farmacologia , Proteínas de Plantas/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Solanum tuberosum/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/imunologia , Indóis/isolamento & purificação , Piperazinas/isolamento & purificação , Imunidade Vegetal/efeitos dos fármacos , Imunidade Vegetal/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteômica/métodos , Solanum tuberosum/genética , Solanum tuberosum/imunologia , Solanum tuberosum/metabolismo , Streptomyces/química
4.
PLoS One ; 16(10): e0258051, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34618857

RESUMO

Subcutaneous immunotherapy (SCIT) is a classic form of allergen-specific immunotherapy that is used to treat birch pollen induced allergic asthma. To investigate the underlying molecular mechanisms of SCIT, we aimed to profile lung samples to explore changes in the differential proteome before and after SCIT in mice with allergic asthma. Fresh lungs were collected from three groups of female BALB/c mice: 1) control mice, 2) birch pollen-induced allergic mice, and 3) birch pollen-induced allergic mice with SCIT. Tandem mass tag (TMT) labelling coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to analyze the lung proteome in the mice. Ingenuity pathway analysis (IPA) and Gene Ontology (GO) classification analysis were applied to identify differentially expressed proteins (DEPs) and crucial pathways. The screened DEPs were validated by immunohistochemistry analysis. A total of 317 proteins were upregulated and 184 proteins were downregulated in the asthma group compared to those of the control group. In contrast, 639 DEPs (163 upregulated and 456 downregulated proteins) were identified after SCIT in comparison with those of the asthma group. Among the 639 DEPs, 277 proteins returned to similar levels as those of the relative non-asthma condition. Bioinformatic analysis revealed that the 277 proteins played a significant role in the leukocyte extravasation signaling pathway. The leukocyte extravasation signaling pathway and related DEPs were of crucial importance in birch pollen SCIT.


Assuntos
Asma/genética , Dessensibilização Imunológica , Pulmão/metabolismo , Proteoma/genética , Alérgenos/efeitos adversos , Alérgenos/imunologia , Animais , Asma/induzido quimicamente , Asma/tratamento farmacológico , Asma/patologia , Betula/efeitos adversos , Biologia Computacional , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hipersensibilidade/genética , Hipersensibilidade/patologia , Infusões Subcutâneas , Leucócitos/efeitos dos fármacos , Leucócitos/imunologia , Pulmão/patologia , Camundongos , Pólen/efeitos adversos , Proteoma/efeitos dos fármacos , Espectrometria de Massas em Tandem
5.
Biomolecules ; 11(10)2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34680044

RESUMO

Cannabis (Cannabis sativa), popularly known as marijuana, is the most commonly used psychoactive substance and is considered illicit in most countries worldwide. However, a growing body of research has provided evidence of the therapeutic properties of chemical components of cannabis known as cannabinoids against several diseases including Alzheimer's disease (AD), multiple sclerosis (MS), Parkinson's disease, schizophrenia and glaucoma; these have prompted changes in medicinal cannabis legislation. The relaxation of legal restrictions and increased socio-cultural acceptance has led to its increase in both medicinal and recreational usage. Several biochemically active components of cannabis have a range of effects on the biological system. There is an urgent need for more research to better understand the molecular and biochemical effects of cannabis at a cellular level, to understand fully its implications as a pharmaceutical drug. Proteomics technology is an efficient tool to rigorously elucidate the mechanistic effects of cannabis on the human body in a cell and tissue-specific manner, drawing conclusions associated with its toxicity as well as therapeutic benefits, safety and efficacy profiles. This review provides a comprehensive overview of both in vitro and in vivo proteomic studies involving the cellular and molecular effects of cannabis and cannabis-derived compounds.


Assuntos
Canabinoides/uso terapêutico , Cannabis/genética , Proteoma/genética , Proteômica , Doença de Alzheimer/tratamento farmacológico , Analgésicos/uso terapêutico , Agonistas de Receptores de Canabinoides/uso terapêutico , Canabinoides/genética , Glaucoma/tratamento farmacológico , Humanos , Esclerose Múltipla/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , Proteoma/efeitos dos fármacos , Esquizofrenia/tratamento farmacológico
6.
Sci Rep ; 11(1): 17747, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493757

RESUMO

Deregulation of synaptic function and neurotransmission has been linked with the development of major depression disorder (MDD). Tianeptine (Tian) has been used as antidepressant with anxiolytic properties and recently as a nootropic to improve cognitive performance, but its mechanism of action is unknown. We conducted a proteomic study on the hippocampal synaptosomal fractions of adult male Wistar rats exposed to chronic social isolation (CSIS, 6 weeks), an animal model of depression and after chronic Tian treatment in controls (nootropic effect) and CSIS-exposed rats (lasting 3 weeks of 6-week CSIS) (therapeutic effect). Increased expression of Syn1 and Camk2-related neurotransmission, vesicle transport and energy processes in Tian-treated controls were found. CSIS led to upregulation of proteins associated with actin cytoskeleton, signaling transduction and glucose metabolism. In CSIS rats, Tian up-regulated proteins involved in mitochondrial energy production, mitochondrial transport and dynamics, antioxidative defense and glutamate clearance, while attenuating the CSIS-increased glycolytic pathway and cytoskeleton organization proteins expression and decreased the expression of proteins involved in V-ATPase and vesicle endocytosis. Our overall findings revealed that synaptic vesicle dynamics, specifically exocytosis, and mitochondria-related energy processes might be key biological pathways modulated by the effective nootropic and antidepressant treatment with Tian and be a potential target for therapeutic efficacy of the stress-related mood disorders.


Assuntos
Antidepressivos/farmacologia , Transtorno Depressivo/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Nootrópicos/farmacologia , Proteoma/efeitos dos fármacos , Isolamento Social , Vesículas Sinápticas/efeitos dos fármacos , Tiazepinas/farmacologia , Animais , Ansiolíticos/farmacologia , Ansiolíticos/uso terapêutico , Antidepressivos/uso terapêutico , Transtorno Depressivo/fisiopatologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/ultraestrutura , Masculino , Mitocôndrias/fisiologia , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Nootrópicos/uso terapêutico , Mapeamento de Interação de Proteínas , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Tiazepinas/uso terapêutico
7.
Pharmacol Res ; 171: 105798, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34352400

RESUMO

Skeletal muscle atrophy occurs in response to various pathophysiological stimuli, including disuse, aging, and neuromuscular disorders, mainly due to an imbalance of anabolic/catabolic signaling. Branched Chain Amino Acids (BCAAs: leucine, isoleucine, valine) supplements can be beneficial for counteracting muscle atrophy, in virtue of their reported anabolic properties. Here, we carried out a proof-of-concept study to assess the in vivo/ex vivo effects of a 4-week treatment with BCAAs on disuse-induced atrophy, in a murine model of hind limb unloading (HU). BCAAs were formulated in drinking water, alone, or plus two equivalents of L-Alanine (2 ALA) or the dipeptide L-Alanyl-L-Alanine (Di-ALA), to boost BCAAs bioavailability. HU mice were characterized by reduction of body mass, decrease of soleus - SOL - muscle mass and total protein, alteration of postural muscles architecture and fiber size, dysregulation of atrophy-related genes (Atrogin-1, MuRF-1, mTOR, Mstn). In parallel, we provided new robust readouts in the HU murine model, such as impaired in vivo isometric torque and ex vivo SOL muscle contractility and elasticity, as well as altered immune response. An acute pharmacokinetic study confirmed that L-ALA, also as dipeptide, enhanced plasma exposure of BCAAs. Globally, the most sensitive parameters to BCAAs action were muscle atrophy and myofiber cross-sectional area, muscle force and compliance to stress, protein synthesis via mTOR and innate immunity, with the new BCAAs + Di-ALA formulation being the most effective treatment. Our results support the working hypothesis and highlight the importance of developing innovative formulations to optimize BCAAs biodistribution.


Assuntos
Alanina/uso terapêutico , Aminoácidos de Cadeia Ramificada/uso terapêutico , Dipeptídeos/uso terapêutico , Atrofia Muscular/tratamento farmacológico , Alanina/farmacocinética , Aminoácidos de Cadeia Ramificada/farmacocinética , Animais , Dipeptídeos/farmacocinética , Modelos Animais de Doenças , Elevação dos Membros Posteriores , Masculino , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Músculo Esquelético/fisiologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Atrofia Muscular/fisiopatologia , Proteoma/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
8.
Artigo em Inglês | MEDLINE | ID: mdl-34333216

RESUMO

The root and rhizome of Sophora tonkinensis Gagnep. (ST) are widely used for the treatment of tonsillitis, sore throats, and heat-evil-induced diseases in traditional Chinese medicine. However, the clinical application of ST is relatively limited due to its toxicity. The mechanism and material basis of ST-induced pulmonary toxicity are still unclear. In the present research, integrated omics and bioinformatics analyses were used to investigate the toxic mechanism and material basis of ST in lung tissue. Proteomics and metabonomics were integrated to analyze the differentially expressed proteins and metabolites. Joint pathway analysis was used to analyze the significantly dysregulated pathways. PubChem and the Comparative Toxicogenomics Database were applied for the screen of toxic targets and compounds. Integrated omics revealed that 323 proteins and 50 metabolites were differentially expressed after treating with ST, out of which 19 proteins and 1 metabolite were significantly enriched in seven pathways. Bioinformatics showed that 15 compounds may indirectly affect the expression of 9 toxic targets of ST. Multiple toxic targets of ST-induced pulmonary injury were found in the study, whose dysregulation may trigger pulmonary cancer, dyspnea, and oxidative stress. Multiple compounds may be the toxic material basis in response to these effects.


Assuntos
Medicamentos de Ervas Chinesas/toxicidade , Pulmão , Metaboloma/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Sophora , Animais , Bases de Dados Genéticas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Pulmão/química , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Proteoma/análise , Proteômica
9.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361073

RESUMO

This study evaluated the immunonutritional effects caused by protease inhibitors from Avena sativa and Triticum durum to human macrophage-like cells. Macrophages were exposed (3 h) to extracts obtained from flours, and mitochondrial-associated oxygen consumption rates and inflammatory, metabolic, and proteome adaptations were quantified. Mass spectrometry 'm/z' signals of the extracts obtained from T. durum and A. sativa revealed molecular weights of 18-35 kDa and 16-22 kDa, respectively, for the compounds present at highest concentrations. Extracts from T. durum exhibited lower susceptibility to degradation by gastrointestinal enzymes than those from A. sativa: 9.5% vs 20.2%. Despite their different botanical origin, both extracts increased TLR4 expression. Metabolic protein levels were indicative of a decreased glycolytic to lactate flux in cell cultures upon stimulation with A. sativa extracts, which improved mitochondrial respiration in relation to those from T. durum. Principal components analysis confirmed relative similarities between immune-metabolic events triggered by immunonutritional ingredients in T. durum and A. sativa. Collectively, immunonutritional effects help to interpret the differences between both crops, worsening or improving, macrophage immune reactivity (tolerogenicity), and better control of inflammatory processes.


Assuntos
Avena/química , Macrófagos/imunologia , Macrófagos/metabolismo , Extratos Vegetais/farmacologia , Inibidores de Proteases/farmacologia , Proteoma/efeitos dos fármacos , Triticum/química , Humanos , Macrófagos/efeitos dos fármacos
10.
Artigo em Inglês | MEDLINE | ID: mdl-34329891

RESUMO

Depression is a chronic, common mental illness characterized by depressed mood, anxiety, insomnia, cognitive impairment, and even suicidal tendency. In traditional Chinese medicine theory, the cause of depression is deemed to be "stagnation of liver qi". So relieving "stagnation of liver qi" is effective for depression. The combination of Radix Bupleuri and Radix Paeoniae Alba, which is used to soothe the liver and relieve depression, has antidepressant effects, but the mechanisms of the effects are still unclear. In this study, a rat model of chronic unpredictable mild stress was established as a model of depression, and proteomics analysis was used to explore the potential mechanisms of this combination in alleviating depression. Biological information analysis was performed on the selected differential proteins, and the enriched pathways mainly included the Jak-STAT signaling pathway, valine, leucine, and isoleucine degradation, and oxidative phosphorylation. The expression of key proteins included metallothionein-1, cyclin-dependent kinase, ubiquitin carboxyl-terminal hydrolase-1, and Cryab was further verified by western blotting, and the results which were consistent with the proteomics results, confirmed the reliability of the proteomic analysis. The antidepressant mechanism of combined Radix Bupleuri and Radix Paeoniae Alba treatment may be related to the oxidative stress response, neuroplasticity, the immune response, and neuroprotection.


Assuntos
Antidepressivos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Fígado , Proteoma/efeitos dos fármacos , Animais , Bupleurum/química , Modelos Animais de Doenças , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Medicina Tradicional Chinesa , Paeonia/química , Proteômica , Ratos , Ratos Sprague-Dawley , Estresse Psicológico
11.
Placenta ; 110: 46-55, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34120018

RESUMO

INTRODUCTION: Placental oxidative stress features in pregnancy pathologies but in clinical trials antioxidant supplementation has not improved outcomes. N-acetylcysteine (NAC) stimulates glutathione production and is proposed as a therapeutic agent in pregnancy. However, key elements of N-acetylcysteine biology, including its cellular uptake mechanism, remains unclear. This study explores how the cystine/glutamate transporter xCT may mediate N-acetylcysteine uptake and how N-acetylcysteine alters placental redox status. METHODS: The involvement of xCT in NAC uptake by the human placenta was studied in perfused placenta and Xenopus oocytes. The effect of short-term N-acetylcysteine exposure on the placental villous proteome was determined using LC-MS. The effect of N-acetylcysteine on Maxi-chloride channel activity was investigated in perfused placenta, villous fragments and cell culture. RESULTS: Maternoplacental N-acetylcysteine administration stimulated intracellular glutamate efflux suggesting a role of the exchange transporter xCT, which was localised to the microvillous membrane of the placental syncytiotrophoblast. Placental exposure to a bolus of N-acetylcysteine inhibited subsequent activation of the redox sensitive Maxi-chloride channel independently of glutathione synthesis. Stable isotope quantitative proteomics of placental villi treated with N-acetylcysteine demonstrated changes in pathways associated with oxidative stress, apoptosis and the acute phase response. DISCUSSION: This study suggests that xCT mediates N-acetylcysteine uptake into the placenta and that N-acetylcysteine treatment of placental tissue alters the placental proteome while regulating the redox sensitive Maxi-chloride channel. Interestingly N-acetylcysteine had antioxidant effects independent of the glutathione pathway. Effective placental antioxidant therapy in pregnancy may require maintaining the balance between normalising redox status without inhibiting physiological redox signalling.


Assuntos
Acetilcisteína/farmacologia , Sistema y+ de Transporte de Aminoácidos/genética , Canais de Cloreto/antagonistas & inibidores , Placenta , Acetilcisteína/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Animais , Canais de Cloreto/metabolismo , Vilosidades Coriônicas/efeitos dos fármacos , Vilosidades Coriônicas/metabolismo , Feminino , Expressão Gênica/efeitos dos fármacos , Ácido Glutâmico/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Células HEK293 , Humanos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Placenta/efeitos dos fármacos , Placenta/metabolismo , Gravidez , Proteoma/efeitos dos fármacos , Proteoma/metabolismo , Xenopus laevis
12.
J Surg Res ; 266: 222-229, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34023578

RESUMO

INTRODUCTION: Trauma is the leading cause of death among young people. These patients have a high incidence of kidney injury, which independently increases the risk of mortality. As valproic acid (VPA) treatment has been shown to improve survival in animal models of lethal trauma, we hypothesized that it would also attenuate the degree of acute kidney injury. METHODS: We analyzed data from two separate experiments where swine were subjected to lethal insults.  Model 1: hemorrhage (50% blood volume hemorrhage followed by 72-h damage control resuscitation). Model 2: polytrauma (traumatic brain injury, 40% blood volume hemorrhage, femur fracture, rectus crush and grade V liver laceration). Animals were resuscitated with normal saline (NS) +/- VPA 150 mg/kg after a 1-h shock phase in both models (n = 5-6/group). Serum samples were analyzed for creatinine (Cr) using colorimetry on a Liasys 330 chemistry analyzer. Proteomic analysis was performed on kidney tissue sampled at the time of necropsy. RESULTS: VPA treatment significantly (P < 0.05) improved survival in both models. (Model 1: 80% vs 20%; Model 2: 83% vs. 17%). Model 1 (Hemorrhage alone): Cr increased from a baseline of 1.2 to 3.0 in NS control animals (P < 0.0001) 8 h after hemorrhage, whereas it rose only to 2.1 in VPA treated animals (P = 0.004). Model 2 (Polytrauma): Cr levels increased from baseline of 1.3 to 2.5 mg/dL (P = 0.01) in NS control animals 4 h after injury but rose to only 1.8 in VPA treated animals (P = 0.02). Proteomic analysis of kidney tissue identified metabolic pathways were most affected by VPA treatment. CONCLUSIONS: A single dose of VPA (150 mg/kg) offers significant protection against acute kidney injury in swine models of polytrauma and hemorrhagic shock.


Assuntos
Injúria Renal Aguda/prevenção & controle , Hemorragia/complicações , Inibidores de Histona Desacetilases/uso terapêutico , Traumatismo Múltiplo/complicações , Ácido Valproico/uso terapêutico , Injúria Renal Aguda/sangue , Injúria Renal Aguda/etiologia , Animais , Creatinina/sangue , Avaliação Pré-Clínica de Medicamentos , Hemorragia/sangue , Hemorragia/mortalidade , Inibidores de Histona Desacetilases/farmacologia , Rim/efeitos dos fármacos , Rim/metabolismo , Lipocalina-2/sangue , Traumatismo Múltiplo/sangue , Traumatismo Múltiplo/mortalidade , Proteoma/efeitos dos fármacos , Suínos , Ácido Valproico/farmacologia
13.
J Surg Res ; 266: 125-141, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33991999

RESUMO

OBJECTIVE: Valproic acid (VPA) treatment improves survival in animal models of injuries on doses higher than those allowed by Food and Drug Administration (FDA). We investigated the proteomic alterations induced by a single high-dose (140mg/kg) of VPA (VPA140) compared to the FDA-approved dose of 30mg/kg (VPA30) in healthy humans. We also describe the proteomic and transcriptomic changes induced by VPA140 in an injured patient. We hypothesized that VPA140 would induce cytoprotective changes in the study participants. METHODS: Serum samples were obtained from healthy subjects randomized to two groups; VPA140 and VPA30 at 3 timepoints: 0h(baseline), 2h, and 24h following infusion(n = 3/group). Samples were also obtained from an injured patient that received VPA140 at 0h, 6h and 24h following infusion. Proteomic analyses were performed using liquid chromatography-mass spectrometry (LC-MS/MS), and transcriptomic analysis was performed using RNA-sequencing. Differentially expressed (DE) proteins and genes were identified for functional annotation and pathway analysis using iPathwayGuide and gene set enrichment analysis (GSEA), respectively. RESULTS: For healthy individuals, a dose comparison was performed between VPA140 and VPA30 groups at 2 and 24 h. Functional annotation showed that top biological processes in VPA140 versus VPA30 analysis at 2 h included regulation of fatty acid (P = 0.002) and ATP biosynthesis (P = 0.007), response to hypoxia (P = 0.017), cell polarity regulation (P = 0.031), and sequestration of calcium ions (P = 0.031). Top processes at 24 h in VPA140 versus VPA30 analysis included amino acid metabolism (P = 0.023), collagen catabolism (P = 0.023), and regulation of protein breakdown (P = 0.023). In the injured patient, annotation of the DE proteins in the serum showed that top biological processes at 2 h included neutrophil chemotaxis (P = 0.002), regulation of cellular response to heat (P = 0.008), regulation of oxidative stress (P = 0.008) and regulation of apoptotic signaling pathway (P = 0.008). Top biological processes in the injured patient at 24 h included autophagy (P = 0.01), glycolysis (P = 0.01), regulation of apoptosis (P = 0.01) and neuron apoptotic processes (P = 0.02). CONCLUSIONS: VPA140 induces cytoprotective changes in human proteome not observed in VPA30. These changes may be responsible for its protective effects in response to injuries.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Substâncias Protetoras/farmacologia , Proteoma/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Ácido Valproico/farmacologia , Adolescente , Adulto , Idoso , Biomarcadores/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Cromatografia Líquida , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Seguimentos , Perfilação da Expressão Gênica/métodos , Voluntários Saudáveis , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Substâncias Protetoras/uso terapêutico , Proteoma/metabolismo , Proteômica/métodos , Fatores de Tempo , Resultado do Tratamento , Ácido Valproico/uso terapêutico , Adulto Jovem
14.
Chem Biol Interact ; 343: 109465, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33831383

RESUMO

Zingiberis Rhizome Carbonisata (ZRC) has been used as a hemostatic agent in traditional Chinese medicine (TCM). However, the underlying molecular mechanism remains unclear. In this study, network pharmacology method was used to predict the potential mechanism of ZRC on hemostasis, based on the structures of the main compounds. Then, iTRAQ-based quantitative proteomics analysis was used for verification of the candidate target proteins and pathways to illustrate the underlying mechanisms. Furthermore, the differentially expressed proteins (DEPs) in the enriched pathways were validated by Enzyme-linked immunosorbent assay. The results showed that the hemostasis mechanism of ZRC may be related to Platelet activation, Rap1 signaling pathway and Complement and coagulation cascades. And 10 proteins (Fermt3, ACTB, Talin, αIIbß3, Fga, Fgb, Fgg, FXIIIb, Kng and PLC-ß were identified as the target DEPs) are considered as the key factors related to hemostatic efficacy of ZRC. Thus, integrated network pharmacology and quantitative proteomics technology were applied for the effective illuminating the molecular mechanisms of Chinese material medica.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Transtornos Hemorrágicos/tratamento farmacológico , Hemostáticos/uso terapêutico , Proteoma/análise , Animais , Biologia Computacional , Zingiber officinale/química , Masculino , Mapas de Interação de Proteínas , Proteoma/efeitos dos fármacos , Proteômica , Ratos Sprague-Dawley , Rizoma/química
15.
Endocrinology ; 162(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33856454

RESUMO

In females, ovarian estradiol (E2) exerts both negative and positive feedback regulation on the neural circuits governing reproductive hormone secretion, but the cellular and molecular mechanisms underlying this remain poorly understood. In rodents, estrogen receptor α-expressing kisspeptin neurons in the hypothalamic anteroventral periventricular region (AVPV) are prime candidates to mediate E2 positive feedback induction of preovulatory gonadotropin-releasing hormone and luteinizing hormone (LH) surges. E2 stimulates AVPV Kiss1 expression, but the full extent of estrogen effects in these neurons is unknown; whether E2 stimulates or inhibits other genes in AVPV Kiss1 cells has not been determined. Indeed, understanding of the function(s) of AVPV kisspeptin cells is limited, in part, by minimal knowledge of their overall molecular phenotype, as only a few genes are currently known to be co-expressed in AVPV Kiss1 cells. To provide a more detailed profiling of co-expressed genes in AVPV Kiss1 cells, including receptors and other signaling factors, and test how these genes respond to E2, we selectively isolated actively translated mRNAs from AVPV Kiss1 cells of female mice and performed RNA sequencing (RNA-seq). This identified >13 000 mRNAs co-expressed in AVPV Kiss1 cells, including multiple receptor and ligand transcripts positively or negatively regulated by E2. We also performed RNAscope to validate co-expression of several transcripts identified by RNA-seq, including Pdyn (prodynorphin), Penk (proenkephalin), Vgf (VGF), and Cartpt (CART), in female AVPV Kiss1 cells. Given the important role of AVPV kisspeptin cells in positive feedback, E2 effects on identified genes may relate to the LH surge mechanism and/or other physiological processes involving these cells.


Assuntos
Estradiol/farmacologia , Hipotálamo/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Animais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fenótipo , Biossíntese de Proteínas/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Proteoma/metabolismo , Transcriptoma/genética
16.
Biomed Chromatogr ; 35(8): e5116, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33724505

RESUMO

Qianjinweijing Tang (QJWJ) is a classic traditional Chinese formula that is often used in the treatment of treat lung cancer (LC). However, the underlying cellular mechanisms of the anticancer effects of QJWJ remain unclear. Cell viability was determined by MTS assay and levels of apoptosis measured by flow cytometry. Animal experiments were conducted to determine the effects of QJWJ on tumor growth in vivo. We used a proteomics approach to study the effects of QJWJ on LC cells and applied bioinformatics analysis to identify differentially expressed proteins that were validated by western blotting. QJWJ inhibited the proliferation of LC cells and induced apoptosis. The tumor growth delay effects of QJWJ were confirmed in vivo. We identified 104 differentially expressed proteins following QJWJ treatments of which 45 proteins were upregulated and 59 were downregulated. The levels of differentially expressed proteins were validated by western blotting. Our study indicated that QJWJ has anticancer effects in vivo and in vitro and that these effects are mediated by modulating the expression of tumor-related proteins.


Assuntos
Antineoplásicos , Medicamentos de Ervas Chinesas , Neoplasias Pulmonares/metabolismo , Proteoma/efeitos dos fármacos , Proteômica/métodos , Células A549 , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteoma/análise , Espectrometria de Massas em Tandem , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Sci Rep ; 11(1): 7136, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785854

RESUMO

Due to the increase in the number of obese individuals, the incidence of obesity-related complications such as cardiovascular disease and type 2 diabetes is higher. The aim of the present study was to explore the effects of silybin on protein expression in obese mice. Firstly, serum was collected, and it was used to detect serum lipids and other serological indicators. Secondly, total protein from epididymal adipose tissue was extracted for differential expression analysis by quantitative tandem mass tag (TMT) combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS), followed by bioinformatics and protein-protein interaction (PPI) network analyses of these proteins. Lastly, real-time polymerase chain reaction (RT-PCR) and parallel reaction monitoring (PRM) were used to further validate the expression of identified differentially expressed proteins (DEPs) at the mRNA and protein level, respectively. The results revealed that silybin could improve abnormal lipid metabolism caused by the high fat diet in obese mice. A total of 341, 538 and 243 DEPs were found in the high fat/control (WF/WC), silybin/high fat (WS/WF) and WS/WC groups, respectively. These DEPs mainly participated in lipid metabolism and energy metabolism. Notably, tropomyosin 1 (TPM1), myosin light chain 2 (MYL2), myosin heavy chain 11 (MYH11) and other DEPs were involved in hypertrophic cardiomyopathy, dilated cardiomyopathy and other pathways. Silybin could protect cardiac function by inducing the protein expression of TPM1, MYL2 and MYH11 in the adipose tissue of obese mice.


Assuntos
Cardiomiopatias/prevenção & controle , Metabolismo dos Lipídeos/efeitos dos fármacos , Obesidade/tratamento farmacológico , Substâncias Protetoras/uso terapêutico , Silibina/uso terapêutico , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Cardiomiopatias/etiologia , Avaliação Pré-Clínica de Medicamentos , Masculino , Camundongos Endogâmicos C57BL , Obesidade/complicações , Substâncias Protetoras/farmacologia , Proteoma/efeitos dos fármacos , Silibina/farmacologia
18.
Mol Neurodegener ; 16(1): 17, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741046

RESUMO

The most common mutation in the Leucine-rich repeat kinase 2 gene (LRRK2), G2019S, causes familial Parkinson's Disease (PD) and renders the encoded protein kinase hyperactive. While targeting LRRK2 activity is currently being tested in clinical trials as a therapeutic avenue for PD, to date, the molecular effects of chronic LRRK2 inhibition have not yet been examined in vivo. We evaluated the utility of newly available phospho-antibodies for Rab substrates and LRRK2 autophosphorylation to examine the pharmacodynamic response to treatment with the potent and specific LRRK2 inhibitor, MLi-2, in brain and peripheral tissue in G2019S LRRK2 knock-in mice. We report higher sensitivity of LRRK2 autophosphorylation to MLi-2 treatment and slower recovery in washout conditions compared to Rab GTPases phosphorylation, and we identify pS106 Rab12 as a robust readout of downstream LRRK2 activity across tissues. The downstream effects of long-term chronic LRRK2 inhibition in vivo were evaluated in G2019S LRRK2 knock-in mice by phospho- and total proteomic analyses following an in-diet administration of MLi-2 for 10 weeks. We observed significant alterations in endolysosomal and trafficking pathways in the kidney that were sensitive to MLi-2 treatment and were validated biochemically. Furthermore, a subtle but distinct biochemical signature affecting mitochondrial proteins was observed in brain tissue in the same animals that, again, was reverted by kinase inhibition. Proteomic analysis in the lung did not detect any major pathway of dysregulation that would be indicative of pulmonary impairment. This is the first study to examine the molecular underpinnings of chronic LRRK2 inhibition in a preclinical in vivo PD model and highlights cellular processes that may be influenced by therapeutic strategies aimed at restoring LRRK2 physiological activity in PD patients.


Assuntos
Endossomos/efeitos dos fármacos , Indazóis/farmacologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Lisossomos/efeitos dos fármacos , Doença de Parkinson/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Avaliação Pré-Clínica de Medicamentos , Endossomos/fisiologia , Mutação com Ganho de Função , Técnicas de Introdução de Genes , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Lisossomos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Mitocondriais/metabolismo , Especificidade de Órgãos , Fosforilação/efeitos dos fármacos , Mutação Puntual , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Distribuição Aleatória , Proteínas rab de Ligação ao GTP/metabolismo
19.
Int J Mol Sci ; 22(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540902

RESUMO

Human epidermal keratinocytes are constantly exposed to UV radiation. As a result, there is a significant need for safe and effective compounds to protect skin cells against this environmental damage. This study aimed to analyze the effect of phytocannabinoid-cannabinoid (CBD)-on the proteome of UVA/B irradiated keratinocytes. The keratinocytes were cultured in a three-dimensional (3D) system, designed to mimic epidermal conditions closely. The obtained results indicate that CBD protected against the harmful effects of UVA/B radiation. CBD decreased the expression of proinflammatory proteins, including TNFα/NFκB and IκBKB complex and decreased the expression of proteins involved in de novo protein biosynthesis, which are increased in UVA/B-irradiated cells. Additionally, CBD enhanced the UV-induced expression of 20S proteasome subunits. CBD also protected protein structures from 4-hydroxynonenal (HNE)-binding induced by UV radiation, which primarily affects antioxidant enzymes. CBD-through its antioxidant/anti-inflammatory activity and regulation of protein biosynthesis and degradation-protects skin cells against UVA/B-induced changes. In the future, its long-term use in epidermal cells should be investigated.


Assuntos
Canabidiol/farmacologia , Queratinócitos/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Raios Ultravioleta , Aldeídos/farmacologia , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Canabidiol/química , Técnicas de Cultura de Células , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Quinase I-kappa B/metabolismo , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Estrutura Molecular , Complexos Multiproteicos/metabolismo , NF-kappa B/metabolismo , Análise de Componente Principal , Proteoma/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Fator de Necrose Tumoral alfa/metabolismo
20.
J Ethnopharmacol ; 270: 113787, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33422657

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Weining granule (WNG) is a "Qi-Enriching and Kidney-Tonifying, Spleen-Reinforcing and Stasis-Removing" formula for gastric cancer (GC). Past research we noted WNG inhibited cell growth and raised apoptosis in GC. However, the underlying mechanism of WNG for GC have yet to be systematically clarified. AIM OF THE STUDY: We sought to characterize the molecular landscape of GC cells in vitro after WNG treated, to identify the molecular targets and pathways that were associated with WNG for inducing the apoptosis of GC cells, and further to clarify underlying molecular mechanism of WNG for GC. MATERIALS AND METHODS: We performed the techniques of RNA sequencing, tandem mass tags (TMT) based quantitative proteomics, and reduced representation bisulfite sequencing (RRBS) in WNG-treated/or untreated SGC-7901 GC cells to gain a comprehensive molecular portrait of WNG treatment. Then we integrated methylomics, transcriptomics, and proteomics data to carry out the bioinformatics analysis, and constructed the protein-protein interaction (PPI) network to identify molecular targets, and to discover the underlying signaling pathways associated with WNG for GC by network analysis. Besides, we verified the candidate target genes by Kaplan-Meier plotter database. RESULTS: We identified 1249 significant differentially expressed genes (DEGs) from RNA expression datasets, 191 significant differentially abunabundant proteins (DAPs) from proteomics datasets, and 8293 significant differentially methylated regions (DMRs) from DNA methylation datasets. GO and KEGG analysis showed DEGs, DAPs, and DMRs enriched in the cancer-related biological processes of calcium signaling pathway, pathways in cancer, metabolic pathways, MAPK signaling pathway, PI3K-Akt signaling pathway, and transcriptional misregulation in cancer. We integrated three profile datasets and performed network analysis to distinguish the hub genes, and finally the genes of SOD2, HMOX1, MMP1, SRXN1, NOTCH1, MAPK14, TXNIP, VEGFA, POLR2F, and HSPA9 were identified. The Kaplan-Meier plotter confirmed that SOD2, MMP1, SRXN1, NOTCH1, MAPK14, TXNIP, VEGFA, and HSPA9 were significantly correlated with OS in GC patients (P < 0.01), while HMOX1 and POLR2F expression were not significantly relevant to survival of GC patients (P > 0.01). CONCLUSIONS: SOD2, MMP1, SRXN1, NOTCH1, MAPK14, TXNIP, VEGFA, and HSPA9 were the predictive pharmaceutical targets of WNG for GC. The anticancer function of WNG was significantly associated with the pathways of focal adhesion pathway, PI3K-Akt signaling pathway, MAPK signaling pathway, and Wnt signaling pathway.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Proteoma/efeitos dos fármacos , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Transcriptoma/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Biologia Computacional/métodos , Metilação de DNA/efeitos dos fármacos , Bases de Dados Factuais , Medicamentos de Ervas Chinesas/química , Epigênese Genética , Epigenômica , Adesões Focais/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Estimativa de Kaplan-Meier , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Oncogênica v-akt/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Mapas de Interação de Proteínas/efeitos dos fármacos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/mortalidade , Via de Sinalização Wnt/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA