Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Braz J Microbiol ; 55(1): 201-213, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38099979

RESUMO

The extensive distribution of Xylopia aethiopica across the continent of Africa has firmly established its medicinal value in diverse disease management. While its phytochemistry is well established, the diversity, molecular, biochemical, and antimicrobial-biosynthetic characterizations of culturable bacterial endophytes residing in fruits of X. aethiopica have not been studied previously. Additionally, danger continues to loom the global health care and management due to antibiotic resistance; hence, the discovery of microbial natural products especially from endophytes could offer a lasting solution to the quest for novel antimicrobial compounds. In this study, we isolated two bacterial endophytes Serratia sp. XAFb12 and Pseudomonas sp. XAFb13 from fresh X. aethiopica fruit. The 16S rRNA gene sequencing, Vitex biochemical test, Gram staining, and 16S rRNA gene analysis were used to confirm their phenotypic and genotypic profiles. Phylogenetic tree analysis reveals their divergence in a separate branch, indicating their uniqueness. The crude extract of both strains showed inhibition against all tested bacterial and fungal pathogens. The minimum inhibition concentration (MIC) ranged from 2.5 to 10%. Chemical analysis of the crude extracts using gas chromatography-mass spectroscopy (GC-MS) revealed the most abundant compounds to be hydrocinnamic acid, 2-piperidinone, 5-isopropylidene-3,3-dimethyl-dihydrofuran-2-one, and diethyl trisulfide. The bacterial endophytes linked to X. aethiopica were described in this study for the first time in relation to clinically significant pathogens. Our findings imply that crude extracts of the endophytic bacteria from X. aethiopica could be potentially employed as antibiotics. Hence, it is crucial to characterize the active ingredient in further detail for future pharmaceutical applications.


Assuntos
Xylopia , Xylopia/química , Filogenia , RNA Ribossômico 16S/genética , Pseudomonas/genética , Antibacterianos/farmacologia , Extratos Vegetais/farmacologia , Endófitos
2.
Genes (Basel) ; 14(12)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38136929

RESUMO

Pseudomonas chengduensis is a new species of Pseudomonas discovered in 2014, and currently, there is a scarcity of research on this bacterium. The P. chengduensis strain WD211 was isolated from a fish pond. This study investigated the purification capability and environmental adaptability of strain WD211 in wastewater and described the basic features and functional genes of its complete genome. According to the results, the sewage treated with strain WD211 showed a decrease in concentration of 18.12% in total nitrogen, 89.39% in NH4+, 62.16% in NO3-, 79.97% in total phosphorus, and 71.41% in COD after 24 h. Strain WD211 is able to survive in a pH range of 6-11. It shows resistance to 7% sodium chloride and different types of antibiotics. Genomic analysis showed that strain WD211 may remove nitrogen and phosphorus through the metabolic pathway of nitrogen assimilation and phosphorus accumulation, and that it can promote organic decomposition through oxygenase. Strain WD211 possesses genes for producing betaine, trehalose, and sodium ion transport, which provide it with salt tolerance. It also has genes for antibiotic efflux and multiple oxidases, which give it antibiotic resistance. This study contributes to the understanding of the sewage treatment ability and potential applications of P. chengduensis.


Assuntos
Pseudomonas , Esgotos , Animais , Esgotos/microbiologia , Pseudomonas/genética , Pseudomonas/metabolismo , Aquicultura , Antibacterianos/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo
3.
Metab Eng ; 77: 219-230, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37031949

RESUMO

Malonyl-CoA is a central precursor for biosynthesis of a wide range of complex secondary metabolites. The development of platform strains with increased malonyl-CoA supply can contribute to the efficient production of secondary metabolites, especially if such strains exhibit high tolerance towards these chemicals. In this study, Pseudomonas taiwanensis VLB120 was engineered for increased malonyl-CoA availability to produce bacterial and plant-derived polyketides. A multi-target metabolic engineering strategy focusing on decreasing the malonyl-CoA drain and increasing malonyl-CoA precursor availability, led to an increased production of various malonyl-CoA-derived products, including pinosylvin, resveratrol and flaviolin. The production of flaviolin, a molecule deriving from five malonyl-CoA molecules, was doubled compared to the parental strain by this malonyl-CoA increasing strategy. Additionally, the engineered platform strain enabled production of up to 84 mg L-1 resveratrol from supplemented p-coumarate. One key finding of this study was that acetyl-CoA carboxylase overexpression majorly contributed to an increased malonyl-CoA availability for polyketide production in dependence on the used strain-background and whether downstream fatty acid synthesis was impaired, reflecting its complexity in metabolism. Hence, malonyl-CoA availability is primarily determined by competition of the production pathway with downstream fatty acid synthesis, while supply reactions are of secondary importance for compounds that derive directly from malonyl-CoA in Pseudomonas.


Assuntos
Malonil Coenzima A , Policetídeos , Pseudomonas , Ácidos Graxos/metabolismo , Malonil Coenzima A/metabolismo , Policetídeos/metabolismo , Pseudomonas/classificação , Pseudomonas/genética , Pseudomonas/metabolismo , Resveratrol/metabolismo , Metabolismo Secundário , Estilbenos/metabolismo , Ácidos Cumáricos/metabolismo , Fenilalanina/metabolismo , Genoma Bacteriano/genética , Deleção de Sequência , Acetilcoenzima A/metabolismo , Citrato (si)-Sintase/metabolismo , Ácido Pirúvico/metabolismo , Fitoalexinas/metabolismo , Naftoquinonas/metabolismo
4.
Chemosphere ; 326: 138460, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36948049

RESUMO

In recent years, it is urgent to solve nitrogen and phosphorus pollution in domestic wastewater. The target strain Pseudomonas sp. Y1 was immobilized using polyvinyl alcohol (PVA) matrix coupled with bentonite and lanthanum (La), respectively, to fabricate four hydrogel materials that used to construct bioreactors. The optimal operating parameters and dephosphorization mechanism were discussed, and the effects of hydrogel materials and different loads on the performance of the bioreactor were contrastively analyzed. The results manifested that when the hydraulic retention time (HRT) was 6.0 h, the C/N was 6.0, and the Ca2+ concentration was 100.0 mg L-1, the bioreactors had the best heterotrophic nitrification-aerobic denitrification (HNAD) and biomineralization capacity, and the maximum removal efficiencies of Ca2+, PO43--P, and NH4+-N were 82.57, 99.17, and 89.08%, respectively. The operation data indicated that the addition of bentonite significantly promoted HNAD, and the bioreactor had stronger dephosphorization ability in the presence of La. The main phosphorous removal mechanisms were confirmed to be adsorption and co-precipitation. Finally, high-throughput sequencing results indicated that Pseudomonas accounted for the paramount proportion in the bioreactor, and the prediction of functional genes indicated that the C/N of 6.0 is more favorable for the expression of nitrogen removal-related functional genes in the bioreactor system. This study highlights the superiority of microbial induced calcium precipitation (MICP) combined with PVA hydrogel, and provides a theoretical basis for simultaneous nitrogen and phosphate removal of wastewater.


Assuntos
Fosfatos , Águas Residuárias , Desnitrificação , Cálcio , Amônia/metabolismo , Bentonita , Lantânio , Álcool de Polivinil , Hidrogéis , Nitrificação , Fósforo , Cálcio da Dieta , Nitrogênio , Reatores Biológicos , Pseudomonas/genética , Pseudomonas/metabolismo
5.
Ecotoxicol Environ Saf ; 250: 114498, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36608568

RESUMO

The understanding of bacterial resistance to hexavalent chromium [Cr(VI)] are crucial for the enhancement of Cr(VI)-polluted soil bioremediation. However, the mechanisms related to plant-associated bacteria remain largely unclear. In this study, we investigate the resistance mechanisms and remediation potential of Cr(VI) in a plant-associated strain, AN-B15. The results manifested that AN-B15 efficiently reduced Cr(VI) to soluble organo-Cr(III). Specifically, 84.3 % and 56.5 % of Cr(VI) was removed after 48 h in strain-inoculated solutions supplemented with 10 and 20 mg/L Cr(VI) concentrations, respectively. Transcriptome analyses revealed that multiple metabolic systems are responsible for Cr(VI) resistance at the transcriptional level. In response to Cr(VI) exposure, strain AN-B15 up-regulated the genes involved in central metabolism, providing the reducing power by which enzymes (ChrR and azoR) transformed Cr(VI) to Cr(III) in the cytoplasm. Genes involved in the alleviation of oxidative stress and DNA repair were significantly up-regulated to neutralize Cr(VI)-induced toxicity. Additionally, genes involved in organosulfur metabolism and certain ion transporters were up-regulated to counteract the starvation of sulfur, molybdate, iron, and manganese induced by Cr(VI) stress. Furthermore, a hydroponic culture experiment showed that toxicity and uptake of Cr(VI) by plants under Cr(VI) stress were reduced by strain AN-B15. Specifically, strain AN-B15 inoculation increased the fresh weights of the wheat root and shoot by 55.5 % and 18.8 %, respectively, under Cr(VI) stress (5 mg/L). The elucidation of bacterial resistance to Cr(VI) has an important implication for exploiting microorganism for the effective remediation of Cr(VI)-polluted soils.


Assuntos
Cromo , Pseudomonas , Pseudomonas/genética , Pseudomonas/metabolismo , Cromo/análise , Bactérias/metabolismo , Ferro/metabolismo , Biodegradação Ambiental
6.
Plant Dis ; 107(6): 1721-1729, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36451309

RESUMO

Bacterial diseases pose a severe challenge to growers and cause significant loss to the billion-dollar onion industry in the United States. Texas is the sixth largest onion producing state, yet the bacterial communities associated with short-day onion crops grown in Texas have not been studied. This study was conducted to identify, characterize, and understand the diversity of bacteria associated with onion production in Texas. In 2020, 190 foliar and 210 bulb samples were collected from onion crops in the Rio Grande Valley and Winter Garden regions of Texas. Sequencing of the 16s rRNA gene was used to identify each bacterial strains to a genus. The pathogenicity to onion of each bacterial strain was tested using three assays: a red onion scale assay, a yellow onion bulb assay, and a foliar assay. Whole genome sequencing was done to identify the onion-pathogenic strains to species. Collectively, isolates of 24 genera belonging to three phyla were detected, including 19 genera from foliar samples and nine genera from bulb samples. Isolates in the Phylum Proteobacteria, including 15 genera of Gram-negative bacteria, were the most abundant of the taxa, comprising 90.0% of the strains isolated. The diversity of foliar isolates was evenly distributed between Gram-positive and Gram-negative bacteria, while Gram-negative bacteria dominated the isolates from bulb samples. In total, 83.9% of the bacterial isolates were not pathogenic on onion, with only isolates of Pantoea, Pseudomonas, Burkholderia, Erwinia, Enterobacter, and Curtobacterium proving pathogenic. Strains of Burkholderia gladioli, Pseudomonas alliivorans, Pantoea agglomerans, P. ananatis, and P. allii are the first documented cases of these pathogens of onion in Texas. Identifying and characterizing the nature of onion microflora, including pathogens of onion, is vital to developing rapid disease detection techniques via pathogenomics and minimizing losses through the application of effective disease management measures.


Assuntos
Cebolas , Pantoea , Estados Unidos , Cebolas/microbiologia , Texas , RNA Ribossômico 16S/genética , Antibacterianos , Bactérias Gram-Positivas/genética , Produtos Agrícolas , Pantoea/genética , Pseudomonas/genética
7.
Microb Ecol ; 86(1): 431-445, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35867140

RESUMO

The interaction of plants with bacteria and the long-term success of their adaptation to challenging environments depend upon critical traits that include nutrient solubilization, remodeling of root architecture, and modulation of host hormonal status. To examine whether bacterial promotion of phosphate solubilization, root branching and the host auxin response may account for plant growth, we isolated and characterized ten bacterial strains based on their high capability to solubilize calcium phosphate. All strains could be grouped into six Pseudomonas species, namely P. brassicae, P. baetica, P. laurylsulfatiphila, P. chlororaphis, P. lurida, and P. extremorientalis via 16S rRNA molecular analyses. A Solibacillus isronensis strain was also identified, which remained neutral when interacting with Arabidopsis roots, and thus could be used as inoculation control. The interaction of Arabidopsis seedlings with bacterial streaks from pure cultures in vitro indicated that their phytostimulation properties largely differ, since P. brassicae and P. laurylsulfatiphila strongly increased shoot and root biomass, whereas the other species did not. Most bacterial isolates, except P. chlororaphis promoted lateral root formation, and P. lurida and P. chlororaphis strongly enhanced expression of the auxin-inducible gene construct DR5:GUS in roots, but the most bioactive probiotic bacterium P. brassicae could not enhance the auxin response. Inoculation with P. brassicae and P. lurida improved shoot and root growth in medium supplemented with calcium phosphate as the sole Pi source. Collectively, our data indicate the differential responses of Arabidopsis seedlings to inoculation with several Pseudomonas species and highlight the potential of P. brassicae to manage phosphate nutrition and plant growth in a more eco-friendly manner.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Pseudomonas/genética , Plântula , Fosfatos/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Raízes de Plantas/microbiologia , Ácidos Indolacéticos/metabolismo , Bactérias/genética
8.
Int J Mol Sci ; 23(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36430408

RESUMO

The B12-producing strains Pseudomonas nitroreducens DSM 1650 and Pseudomonas sp. CCUG 2519 (both formerly Pseudomonas denitrificans), with the most distributed pathway among bacteria for exogenous choline/betaine utilization, are promising recombinant hosts for the endogenous production of B12 precursor betaine by direct methylation of bioavailable glycine or non-proteinogenic ß-alanine. Two plasmid-based de novo betaine pathways, distinguished by their enzymes, have provided an expression of the genes encoding for N-methyltransferases of the halotolerant cyanobacterium Aphanothece halophytica or plant Limonium latifolium to synthesize the internal glycine betaine or ß-alanine betaine, respectively. These betaines equally allowed the recombinant pseudomonads to grow effectively and to synthesize a high level of cobalamin, as well as to increase their protective properties against abiotic stresses to a degree comparable with the supplementation of an exogenous betaine. Both de novo betaine pathways significantly enforced the protection of bacterial cells against lowering temperature to 15 °C and increasing salinity to 400 mM of NaCl. However, the expression of the single plant-derived gene for the ß-alanine-specific N-methyltransferase additionally increased the effectiveness of exogenous glycine betaine almost twofold on cobalamin biosynthesis, probably due to the Pseudomonas' ability to use two independent pathways, their own choline/betaine pathway and the plant ß-alanine betaine biosynthetic pathway.


Assuntos
Betaína , Colina , Betaína/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Estresse Fisiológico/genética , Metiltransferases/metabolismo , beta-Alanina , Vitamina B 12
9.
Appl Environ Microbiol ; 88(24): e0155422, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36445356

RESUMO

The development of suppressive soil is an ideal strategy to sustainably combat soilborne diseases. Previously, the cultivation of Allium plants increased antagonistic bacteria populations in soil, alleviating Fusarium wilt of different crops. This study aimed to identify a compound produced by Allium plants that can induce bacteria-mediated soil suppressiveness toward Fusarium wilt. The amendment of soils with γ-glutamyl-S-allyl-l-cysteine (GSAC), a unique dipeptide abundantly detected in the root extract of Welsh onion (Allium fistulosum), significantly suppressed Fusarium wilt diseases, whereas three other commercial dipeptides had no such effects. GSAC application did not suppress the disease in sterilized soil. Furthermore, the suppressiveness of soil amended with GSAC could be transferred to sterilized soil via soil microflora transplantation. This suppressiveness was eliminated by pretreating GSAC-amended soil microflora with antibacterial antibiotics, indicating that the suppressiveness of GSAC-amended soil is generated by the activity of antagonistic bacteria. Amplicon sequencing of the 16S rRNA gene revealed that GSAC application significantly increased the relative abundance of Pseudomonas (OTU224), Burkholderia-Caballeronia-Paraburkholderia (OTU387), and Bdellovibrio (OTU1259) in soils. Surprisingly, the relative abundance of OTU224 was significantly greater in Welsh onion rhizospheres than in noncultivated soil. Pseudomonas strains corresponding to OTU224, isolated from Welsh onion rhizospheres, displayed a remarkable suppressive effect against cucumber Fusarium wilt, implying that OTU224 was involved in GSAC-mediated suppressiveness. This is the first study on the potential of GSAC as a soil microflora-manipulating agent that can enhance soil suppressiveness to Fusarium wilt. IMPORTANCE Methods for increasing soil suppressiveness via soil microflora manipulation have long been explored as an ideal strategy to protect plants from soilborne pathogens. However, viable methods offering consistent disease control effects have not yet been developed. Previously, the cultivation of Allium plants was demonstrated to induce bacteria-mediated soil suppressiveness to Fusarium wilt of different crop plants. This study discovered that the application of γ-glutamyl-S-allyl-l-cysteine, a unique dipeptide synthesized by Welsh onion, to soil enhances Fusarium wilt suppressiveness by increasing the relative abundance of indigenous antagonistic bacteria irrespective of the soil type. This finding will facilitate research supporting the development of environmentally friendly control measures for soilborne diseases.


Assuntos
Fusarium , Fusarium/genética , Solo/química , Microbiologia do Solo , Cisteína/farmacologia , RNA Ribossômico 16S/genética , Bactérias/genética , Cebolas , Pseudomonas/genética , Dipeptídeos , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
10.
J Appl Microbiol ; 133(2): 720-732, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35462451

RESUMO

AIMS: The purpose of this study was to analyse the effects of siderophore-producing bacteria and bacterial siderophore on the iron nutrition of apple rootstocks under iron-deficient conditions. METHODS AND RESULTS: We isolated three Pseudomonas strains, SP1, SP2 and SP3 from the rhizosphere of the Fe-efficient apple rootstocks using the chrome azurol S agar plate assay. We found that all three strains had the ability to secrete indole acetic acid-like compounds and siderophores, especially SP3. When Fe-inefficient rootstocks treated with SP3 were grown in alkaline soil, an increase in the biomass, root development, and Fe concentration was observed in the plants. In addition, SP3 secreted pyoverdine, a siderophore that can chelate Fe3+ to enhance the bioavailability of Fe for plants. We purified the pyoverdine from the SP3 culture supernatant. Hydroponic experiments were conducted with a Fe-deficient solution supplemented with pyoverdine, resulting in a reduction in the chlorosis caused by Fe deficiency and marked improvement in Fe uptake. CONCLUSIONS: Under iron-deficient conditions, Pseudomonas sp. strain SP3 can effectively promote apple rootstock growth and improve plant iron nutrition by secreting siderophores that enhance Fe availability. SIGNIFICANCE AND IMPACT OF THE STUDY: This study showed that plant growth-promoting rhizobacteria from Fe-efficient plants have the potential to improve iron nutrition in Fe-inefficient plants, and Fe-siderophore chelates can be used as an effective source of iron for apple plants. Based on these findings, it may be possible to develop biological agents such as siderophore-producing bacteria for sustainable agricultural and horticultural production.


Assuntos
Malus , Sideróforos , Bactérias , Ferro , Plantas , Pseudomonas/genética , Rizosfera
11.
Folia Microbiol (Praha) ; 67(4): 591-604, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35318574

RESUMO

One of the most frequently used methods for elimination of oil pollution is the use of biological preparations based on oil-degrading microorganisms. Such microorganisms often relate to bacteria of the genus Pseudomonas. Pseudomonads are ubiquitous microorganisms that often have the ability to oxidize various pollutants, including oil hydrocarbons. To date, individual biochemical pathways of hydrocarbon degradation and the organization of the corresponding genes have been studied in detail. Almost all studies of this kind have been performed on degraders of individual hydrocarbons belonging to a single particular class. Microorganisms capable of simultaneous degradation of aliphatic and aromatic hydrocarbons are very poorly studied. Most of the works on such objects have been devoted only to phenotype characteristic and some to genetic studies. To identify the patterns of interaction of several metabolic systems depending on the growth conditions, the most promising are such approaches as transcriptomics and proteomics, which make it possible to obtain a comprehensive assessment of changes in the expression of hundreds of genes and proteins at the same time. This review summarizes the existing data on bacteria of the genus Pseudomonas capable of the simultaneous oxidation of hydrocarbons of different classes (alkanes, monoaromatics, and polyaromatics) and presents the most important results obtained in the studies on the biodegradation of hydrocarbons by representatives of this genus using methods of transcriptomic and proteomic analyses.


Assuntos
Hidrocarbonetos Aromáticos , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Bactérias , Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Petróleo/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Proteômica , Pseudomonas/genética , Pseudomonas/metabolismo
12.
Microbiol Spectr ; 10(1): e0034521, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35196785

RESUMO

Polyphosphate (polyP) accumulation is an important trait of microorganisms. Implication of polyP accumulating bacteria (PAB) in enhanced biological phosphate removal, heavy metal sequestration, and dissolution of dental enamel is well studied. Phosphorous (P) accumulated within microbial biomass also regulates labile P in soil; however, abundance and diversity of the PAB in soil is still unexplored. Present study investigated the genetic and functional diversity of PAB in rhizosphere soil. Here, we report the abundance of Pseudomonas spp. as high PAB in soil, suggesting their contribution to global P cycling. Additional subset analysis of functional genes i.e., polyphosphate kinase (ppk) and exopolyphosphatase (ppx) in all PAB, indicates their significance in bacterial growth and metabolism. Distribution of functional genes in phylogenetic tree represent a more biologically realistic discrimination for the two genes. Distribution of ppx gene disclosed its phylogenetic conservation at species level, however, clustering of ppk gene of similar species in different clades illustrated its environmental condition mediated modifications. Selected PAB showed tolerance to abiotic stress and strong correlation with plant growth promotary (PGP) traits viz. phosphate solubilization, auxin and siderophore production. Interaction of PAB with A. thaliana enhanced the growth and phosphate status of the plant under salinity stress, suggestive of their importance in P cycling and stress alleviation. IMPORTANCE Study discovered the abundance of Pseudomonas genera as a high phosphate accumulator in soil. The presence of functional genes (polyphosphate kinase [ppk] and exopolyphosphatase [ppx]) in all PAB depicts their importance in polyphosphate metabolism in bacteria. Genetic and functional diversity reveals conservation of the ppx gene at species level. Furthermore, we found a positive correlation between PAB and plant growth promotary traits, stress tolerance, and salinity stress alleviation in A. thaliana.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Polifosfatos/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Microbiologia do Solo , Hidrolases Anidrido Ácido/genética , Hidrolases Anidrido Ácido/metabolismo , Arabidopsis/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Variação Genética , Ácidos Indolacéticos/metabolismo , Fósforo/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Filogenia , Pseudomonas/classificação , Pseudomonas/enzimologia , Rizosfera , Sideróforos/biossíntese , Solo/química
13.
Syst Appl Microbiol ; 45(1): 126278, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34800898

RESUMO

This study provides a taxonomic characterization of three bacterial strains isolated from onion seedlings in Georgia USA. Yellow-colored colonies were isolated, and a diffusible fluorescent pigment was visible under ultraviolet light on King's medium B. Preliminary analysis of the basic phenotype tests and 16S rRNA gene sequence analysis indicated the onion strains were closely related to Pseudomonas viridiflava with the highest similarity to P. viridiflava DSM 6694T (99.6%). The phylogenomic analyses based on whole genome sequences showed that the onion strains formed a separate monophyletic clade from other species with P. viridiflava as the closest neighbor. When the onion strains and the P. viridiflava type strain were compared, the average nucleotide identity values was 91.6%. Additionally, the digital DNA-DNA hybridization values of the onion strains were 45.8% or less when compared to the type strains of their close relatives, including P. viridiflava. In addition, biochemical, physiological features, and cellular fatty acid compositions were determined for a polyphasic taxonomic analysis. The results supported that the three onion strains represented a novel Pseudomonas species. We propose a new species as Pseudomonas alliivorans sp. nov., with 20GA0068T (=LMG 32210T = CFBP 8885T) as the type strain. The DNA G + C content of the strain 20GA0068T is 59.1 mol%.


Assuntos
Cebolas , Pseudomonas , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/análise , Georgia , Hibridização de Ácido Nucleico , Filogenia , Pseudomonas/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
14.
Environ Microbiol Rep ; 13(6): 773-789, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34369104

RESUMO

Non-metal, metal and metalloid oxyanions occur naturally in minerals and rocks of the Earth's crust and are mostly found in low concentrations or confined in specific regions of the planet. However, anthropogenic activities including urban development, mining, agriculture, industrial activities and new technologies have increased the release of oxyanions to the environment, which threatens the sustainability of natural ecosystems, in turn affecting human development. For these reasons, the implementation of new methods that could allow not only the remediation of oxyanion contaminants but also the recovery of valuable elements from oxyanions of the environment is imperative. From this perspective, the use of microorganisms emerges as a strategy complementary to physical, mechanical and chemical methods. In this review, we discuss the opportunities that the Pseudomonas genus offers for the bioremediation of oxyanions, which is derived from its specialized central metabolism and the high number of oxidoreductases present in the genomes of these bacteria. Finally, we review the current knowledge on the transport and metabolism of specific oxyanions in Pseudomonas species. We consider that the Pseudomonas genus is an excellent starting point for the development of biotechnological approaches for the upcycling of oxyanions into added-value metal and metalloid byproducts.


Assuntos
Ecossistema , Pseudomonas , Bactérias/metabolismo , Biodegradação Ambiental , Humanos , Minerais/metabolismo , Pseudomonas/genética
15.
World J Microbiol Biotechnol ; 37(7): 122, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34151386

RESUMO

The contamination of the environment by crude oil and its by-products, mainly composed of aliphatic and aromatic hydrocarbons, is a widespread problem. Biodegradation by bacteria is one of the processes responsible for the removal of these pollutants. This study was conducted to determine the abilities of Burkholderia sp. B5, Cupriavidus sp. B1, Pseudomonas sp. T1, and another Cupriavidus sp. X5 to degrade binary mixtures of octane (representing aliphatic hydrocarbons) with benzene, toluene, ethylbenzene, or xylene (BTEX as aromatic hydrocarbons) at a final concentration of 100 ppm under aerobic conditions. These strains were isolated from an enriched bacterial consortium (Yabase or Y consortium) that prefer to degrade aromatic hydrocarbon over aliphatic hydrocarbons. We found that B5 degraded all BTEX compounds more rapidly than octane. In contrast, B1, T1 and X5 utilized more of octane over BTX compounds. B5 also preferred to use benzene over octane with varying concentrations of up to 200 mg/l. B5 possesses alkane hydroxylase (alkB) and catechol 2,3-dioxygenase (C23D) genes, which are responsible for the degradation of alkanes and aromatic hydrocarbons, respectively. This study strongly supports our notion that Burkholderia played a key role in the preferential degradation of aromatic hydrocarbons over aliphatic hydrocarbons in the previously characterized Y consortium. The preferential degradation of more toxic aromatic hydrocarbons over aliphatics is crucial in risk-based bioremediation.


Assuntos
Burkholderia/metabolismo , Cupriavidus/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Octanos/metabolismo , Pseudomonas/metabolismo , Técnicas de Tipagem Bacteriana , Benzeno/metabolismo , Derivados de Benzeno/metabolismo , Biodegradação Ambiental , Burkholderia/classificação , Burkholderia/genética , Catecol 2,3-Dioxigenase/genética , Cupriavidus/classificação , Cupriavidus/genética , Citocromo P-450 CYP4A/genética , DNA Bacteriano , Microbiologia Ambiental , Poluentes Ambientais/metabolismo , Campos de Petróleo e Gás/microbiologia , Petróleo/microbiologia , Pseudomonas/classificação , Pseudomonas/genética , RNA Ribossômico 16S , Tolueno/metabolismo , Xilenos/metabolismo
16.
mSphere ; 6(3): e0042721, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34077259

RESUMO

Phenazine-producing Pseudomonas spp. are effective biocontrol agents that aggressively colonize the rhizosphere and suppress numerous plant diseases. In this study, we compared the ability of 63 plant-beneficial phenazine-producing Pseudomonas strains representative of the worldwide diversity to inhibit the growth of three major potato pathogens: the oomycete Phytophthora infestans, the Gram-positive bacterium Streptomyces scabies, and the ascomycete Verticillium dahliae. The 63 Pseudomonas strains are distributed among four different subgroups within the P. fluorescens species complex and produce different phenazine compounds, namely, phenazine-1-carboxylic acid (PCA), phenazine-1-carboxamide (PCN), 2-hydroxyphenazine-1-carboxylic acid, and 2-hydroxphenazine. Overall, the 63 strains exhibited contrasted levels of pathogen inhibition. Strains from the P. chlororaphis subgroup inhibited the growth of P. infestans more effectively than strains from the P. fluorescens subgroup. Higher inhibition was not associated with differential levels of phenazine production nor with specific phenazine compounds. The presence of additional biocontrol-related traits found in P. chlororaphis was instead associated with higher P. infestans inhibition. Inhibition of S. scabies by the 63 strains was more variable, with no clear taxonomic segregation pattern. Inhibition values did not correlate with phenazine production nor with specific phenazine compounds. No additional synergistic biocontrol-related traits were found. Against V. dahliae, PCN producers from the P. chlororaphis subgroup and PCA producers from the P. fluorescens subgroup exhibited greater inhibition. Additional biocontrol-related traits potentially involved in V. dahliae inhibition were identified. This study represents a first step toward harnessing the vast genomic diversity of phenazine-producing Pseudomonas spp. to achieve better biological control of potato pathogens. IMPORTANCE Plant-beneficial phenazine-producing Pseudomonas spp. are effective biocontrol agents, thanks to the broad-spectrum antibiotic activity of the phenazine antibiotics they produce. These bacteria have received considerable attention over the last 20 years, but most studies have focused only on the ability of a few genotypes to inhibit the growth of a limited number of plant pathogens. In this study, we investigated the ability of 63 phenazine-producing strains, isolated from a wide diversity of host plants on four continents, to inhibit the growth of three major potato pathogens: Phytophthora infestans, Streptomyces scabies, and Verticillium dahliae. We found that the 63 strains differentially inhibited the three potato pathogens. These differences are in part associated with the nature and the quantity of the phenazine compounds being produced but also with the presence of additional biocontrol-related traits. These results will facilitate the selection of versatile biocontrol agents against pathogens.


Assuntos
Bactérias/efeitos dos fármacos , Fenazinas/farmacologia , Pseudomonas/química , Pseudomonas/genética , Solanum tuberosum/microbiologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/patogenicidade , Agentes de Controle Biológico/química , Agentes de Controle Biológico/metabolismo , Variação Genética , Genoma Bacteriano , Fenazinas/química , Fenazinas/metabolismo , Phytophthora infestans/efeitos dos fármacos , Phytophthora infestans/crescimento & desenvolvimento , Pseudomonas/classificação , Streptomyces/efeitos dos fármacos , Streptomyces/crescimento & desenvolvimento
17.
ACS Synth Biol ; 10(3): 620-631, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33719397

RESUMO

l-Theanine, as an active component of the leaves of the tea plant, possesses many health benefits and broad applications. Chemical synthesis of l-theanine is possible; however, this method generates chiral compounds and needs further isolation of the pure l-isoform. Heterologous biosynthesis is an alternative strategy, but one main limitation is the toxicity of the substrate ethylamine on microbial host cells. In this study, we introduced a cell-free protein synthesis (CFPS) system for l-theanine production. The CFPS expressed l-theanine synthetase 2 from Camellia sinensis (CsTS2) could produce l-theanine at a concentration of 11.31 µM after 32 h of the synthesis reaction. In addition, three isozymes from microorganisms were expressed in CFPS for l-theanine biosynthesis. The γ-glutamylcysteine synthetase from Escherichia coli could produce l-theanine at the highest concentration of 302.96 µM after 24 h of reaction. Furthermore, CFPS was used to validate a hypothetical two-step l-theanine biosynthetic pathway consisting of the l-alanine decarboxylase from C. sinensis (CsAD) and multiple l-theanine synthases. Among them, the combination of CsAD and the l-glutamine synthetase from Pseudomonas taetrolens (PtGS) could synthesize l-theanine at the highest concentration of 13.42 µM. Then, we constructed an engineered E. coli strain overexpressed CsAD and PtGS to further confirm the l-theanine biosynthesis ability in living cells. This engineered E. coli strain could convert l-alanine and l-glutamate in the medium to l-theanine at a concentration of 3.82 mM after 72 h of fermentation. Taken together, these results demonstrated that the CFPS system can be used to produce the l-theanine through the two-step l-theanine biosynthesis pathway, indicating the potential application of CFPS for the biosynthesis of other active compounds.


Assuntos
Sistema Livre de Células , Glutamatos/biossíntese , Amida Sintases/classificação , Amida Sintases/genética , Proteínas de Bactérias/genética , Camellia sinensis/enzimologia , Camellia sinensis/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Glutamato-Amônia Ligase/genética , Glutamato-Cisteína Ligase/genética , Isoenzimas/classificação , Isoenzimas/economia , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Pseudomonas/enzimologia , Pseudomonas/genética
18.
Science ; 371(6533): 1033-1037, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674490

RESUMO

Microbial production of antibiotics is common, but our understanding of their roles in the environment is limited. In this study, we explore long-standing observations that microbes increase the production of redox-active antibiotics under phosphorus limitation. The availability of phosphorus, a nutrient required by all life on Earth and essential for agriculture, can be controlled by adsorption to and release from iron minerals by means of redox cycling. Using phenazine antibiotic production by pseudomonads as a case study, we show that phenazines are regulated by phosphorus, solubilize phosphorus through reductive dissolution of iron oxides in the lab and field, and increase phosphorus-limited microbial growth. Phenazines are just one of many examples of phosphorus-regulated antibiotics. Our work suggests a widespread but previously unappreciated role for redox-active antibiotics in phosphorus acquisition and cycling.


Assuntos
Antibacterianos/biossíntese , Fenazinas/metabolismo , Fósforo/metabolismo , Pseudomonas/metabolismo , Técnicas de Cultura Celular por Lotes , Disponibilidade Biológica , Oxirredução , Pseudomonas/genética , Pseudomonas/crescimento & desenvolvimento
19.
Microb Biotechnol ; 14(2): 488-502, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32762153

RESUMO

The rhizosphere microbiome plays an important role in the growth and health of many plants, particularly for plant growth-promoting rhizobacteria (PGPR). Although the use of PGPR could improve plant production, real-world applications are still held back by low-efficiency methods of finding and using PGPR. In this study, the structure of bacterial and fungal rhizosphere communities of Jinxiang garlic under different growth periods (resume growth, bolting and maturation), soil types (loam, sandy loam and sandy soil) and agricultural practices (with and without microbial products) were explored by using amplicon sequencing. High-efficiency top-down approaches based on high-throughput technology and synthetic community (SynCom) approaches were used to find PGPR in garlic rhizosphere and improve plant production. Our findings indicated that Pseudomonas was a key PGPR in the rhizosphere of garlic. Furthermore, SynCom with six Pseudomonas strains isolated from the garlic rhizosphere were constructed, which showed that they have the ability to promote plant growth.


Assuntos
Alho , Microbiota , Desenvolvimento Vegetal , Raízes de Plantas , Pseudomonas/genética , Rizosfera , Microbiologia do Solo
20.
Int J Biol Macromol ; 165(Pt B): 2197-2204, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33058985

RESUMO

A denitrifying bacterium Pseudomonas veronii A-6-5 was isolated from a deep aquifer contaminated with nitrates and uranium. The O-polysaccharide (OPS) was isolated by mild acid degradation of the lipopolysaccharide of P. veronii A-6-5 and studied using sugar analysis and 1D and 2D 1H and 13C NMR spectroscopy. The trisaccharide O-repeating unit was found to have the following structure: [Formula: see text] [Formula: see text] where Hb is 3-hydroxybutanoyl. The genome of P. veronii A-6-5 was sequenced and a respective OPS gene cluster was identified. Functions of the proteins encoded in the gene cluster, including the enzymes involved in the O-polysaccharide biosynthesis and glycosyl transferases, were putatively assigned by comparison with available database sequences. Formation of a new coordination bond between uranyl and the O-polysaccharide from P. veronii A-6-5 was demonstrated using FTIR spectroscopy; it may affect uranyl migration in the groundwaters due to its immobilization on microbial biofilms. Applied importance of this work is that the structure of the O-polysaccharide of a strain isolated from uranium-contaminated groundwater was determined and the character of interaction between the polysaccharide and the uranyl ion was established. The data obtained are of importance for development of the biotechnologies for treatment of uranium-contaminated groundwater and activated sludge.


Assuntos
Família Multigênica , Antígenos O/química , Antígenos O/genética , Pseudomonas/química , Urânio/isolamento & purificação , Biodegradação Ambiental , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Genoma Bacteriano , Conformação Molecular , Monossacarídeos/química , Espectroscopia de Prótons por Ressonância Magnética , Pseudomonas/genética , Espectroscopia de Infravermelho com Transformada de Fourier , Urânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA