Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Fitoterapia ; 156: 105083, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34785238

RESUMO

Since glucolipid metabolism disorders is often the mono-target therapy fails in managing blood glucose and lipid levels and the other complications, it is urgent and necessary to seek for the new potential drugs or functional food acting on multi-targets. The hypoglycemic and hypolipidemic dual activities of the root, stems and leaves of Desmodium caudatum, which is used for traditional Chinese medicine, was evaluated. Twelve extracts with different extraction conditions were prepared and extract 9 was find to exhibit potential inhibitory activities of fructose-1, 6-bisphosphatase (FBPase), α-glucosidase, and pancrelipase, as well as promote cellular glucose consumption and reduce cellular content of lipid. Five flavonoids were isolated and identified from extract 9, among which 8-prenylquercetin exhibited potent α-glucosidase (IC50 = 4.38 µM) and FBPase (IC50 = 3.62 µM) dual inhibitory activity, which were 75-fold higher than acarbose (IC50 = 330.10 µM) and comparable with AMP (IC50 = 2.92 µM). In addition, 8-prenylquercetin was able to promote glucose consumption and reduce lipid content. Besides, an efficient synthesis of the most potent 8-prenylquercetin was developed from inexpensive and commercially available rutin in 21% overall yield by 6 steps, which lay the foundation of preparation sufficient amount for follow-up study.


Assuntos
Fabaceae/química , Flavonoides/metabolismo , Extratos Vegetais/metabolismo , Quercetina/biossíntese , Apigenina/química , Apigenina/isolamento & purificação , Western Blotting , Flavanonas/química , Flavanonas/isolamento & purificação , Flavonoides/isolamento & purificação , Glucose/metabolismo , Inibidores de Glicosídeo Hidrolases/farmacologia , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Lipase/antagonistas & inibidores , Extratos Vegetais/isolamento & purificação , Quercetina/química , alfa-Glucosidases/efeitos dos fármacos , alfa-Glucosidases/metabolismo
2.
Sci Rep ; 11(1): 15596, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34341423

RESUMO

Dihydroquercetin (DHQ), an extremely low content compound (less than 3%) in plants, is an important component of dietary supplements and used as functional food for its antioxidant activity. Moreover, as downstream metabolites of DHQ, an extremely high content of dihydromyricetin (DHM) is up to 38.5% in Ampelopsis grossedentata. However, the mechanisms involved in the biosynthesis and regulation from DHQ to DHM in A. grossedentata remain unclear. In this study, a comparative transcriptome analysis of A. grossedentata containing extreme amounts of DHM was performed on the Illumina HiSeq 2000 sequencing platform. A total of 167,415,597 high-quality clean reads were obtained and assembled into 100,584 unigenes having an N50 value of 1489. Among these contigs, 57,016 (56.68%) were successfully annotated in seven public protein databases. From the differentially expressed gene (DEG) analysis, 926 DEGs were identified between the B group (low DHM: 210.31 mg/g) and D group (high DHM: 359.12 mg/g) libraries, including 446 up-regulated genes and 480 down-regulated genes (B vs. D). Flavonoids (DHQ, DHM)-related DEGs of ten structural enzyme genes, three myeloblastosis transcription factors (MYB TFs), one basic helix-loop-helix (bHLH) TF, and one WD40 domain-containing protein were obtained. The enzyme genes comprised three PALs, two CLs, two CHSs, one F3'H, one F3'5'H (directly converts DHQ to DHM), and one ANS. The expression profiles of randomly selected genes were consistent with the RNA-seq results. Our findings thus provide comprehensive gene expression resources for revealing the molecular mechanism from DHQ to DHM in A. grossedentata. Importantly, this work will spur further genetic studies about A. grossedentata and may eventually lead to genetic improvements of the DHQ content in this plant.


Assuntos
Ampelopsis/genética , Vias Biossintéticas/genética , Flavonóis/biossíntese , Genes de Plantas , Quercetina/análogos & derivados , Análise por Conglomerados , Flavonoides/biossíntese , Flavonoides/química , Flavonoides/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Anotação de Sequência Molecular , Quercetina/biossíntese , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma/genética
3.
Pak J Biol Sci ; 23(3): 264-270, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31944087

RESUMO

BACKGROUND AND OBJECTIVE: Flavonols in plants are catalyzed by flavonol synthase (FLS) enzyme. FLS was reported expressed in flowers and fruits, i.e., Dianthus caryophyllus L. (Caryophyllaceae), Petunia hybrida Hort. (Solanaceae), Arabidopsis thaliana L. (Brassicaceae), Citrus unshiu Marc. (Rutaceae). However, none reported about FLS in medicinal plants, particularly those which possess anti-inflammatory activity. This study was aimed to extract and identify FLS in the rhizome of Boesenbergia rotunda (Zingiberaceae) and to determine quercetin in the ethanol extract of the rhizome. MATERIALS AND METHODS: The protein extraction of the rhizome was carried out by employing Laing and Christeller's (2004) and Wang's (2014) methods. The extracted-proteins were separated by using SDS-PAGE, followed by the measurement of FLS intensity by using Gel Analyzer. The FLS-1 of recombinant A. thaliana was employed as the standard. The determination of quercetin in the rhizome was carried out using LC-MS. RESULTS: The FLS occurred as a thick band at 38 kDa with intensity 116-158. The LC chromatogram of the extract indicated a small peak at 7.94 min similar to that of quercetin standard. The MS spectra at 7.94 min indicated that quercetin is present in the B. rotunda rhizome (m/z = 303.0549). The concentration of quercetin in the extract is 0.022% w/v. CONCLUSION: The FLS, an enzyme which plays an important role in producing quercetin, was detected in B. rotunda rhizome planted in Indonesia. As a consequence, quercetin in a small amount, was also quantified in the rhizome of this plant. This report will add a scientific insight of B. rotunda for biological sciences.


Assuntos
Flores/enzimologia , Frutas/enzimologia , Oxirredutases/química , Proteínas de Plantas/química , Quercetina/biossíntese , Zingiberaceae/enzimologia , Arabidopsis/enzimologia , Citrus/enzimologia , Dianthus/enzimologia , Etanol , Flavonóis/química , Indonésia , Petunia/enzimologia , Extratos Vegetais , Plantas Medicinais/enzimologia , Rizoma/enzimologia
4.
J Agric Food Chem ; 68(4): 1126-1135, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31891261

RESUMO

Phenylpropanoid (PPPN) compounds are widely used in agriculture, medical, food, and cosmetic industries because of their multiple bioactivities. Alternaria sp. MG1, an endophytic fungus isolated from grape, is a new natural source of PPPNs. However, the PPPN biosynthesis pathway in MG1 tends to be suppressed under normal growth conditions. Starvation has been reported to stimulate the PPPN pathway in plants, but this phenomenon has not been well studied in endophytic fungi. Here, metabolomics analysis was used to examine the profile of PPPN compounds, and quantitative reverse transcription-polymerase chain reaction was used to detect the expression of key genes in the PPPN biosynthesis pathway under starvation conditions. Starvation treatment significantly increased the accumulation of shikimate and PPPN compounds and upregulated the expression of key genes in their biosynthesis pathways. In addition to previously reported PPPNs, sinapate, 4-hydroxystyrene, piceatannol, and taxifolin were also detected under starvation treatment. These findings suggest that starvation treatment provides an effective way to optimize the production of PPPN compounds and may permit the investigation of compounds that are undetectable under normal conditions. Moreover, the diversity of its PPPNs makes strain MG1 a rich repository of valuable compounds and an extensive genetic resource for future studies.


Assuntos
Alternaria/metabolismo , Endófitos/metabolismo , Vitis/metabolismo , Vitis/microbiologia , Alternaria/genética , Alternaria/isolamento & purificação , Vias Biossintéticas , Ácidos Cumáricos/metabolismo , Endófitos/genética , Endófitos/isolamento & purificação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Metabolômica , Fenóis/metabolismo , Quercetina/análogos & derivados , Quercetina/biossíntese , Metabolismo Secundário , Estilbenos/metabolismo
5.
Biotechnol Appl Biochem ; 67(1): 95-104, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31489710

RESUMO

Dysosma pleiantha (Hance) Woodson is one of the endangered traditional Chinese medicinal herbs, highly valued for its medicinal properties by Taiwan's mountain tribes. The present study aims to develop an efficient protocol for callus biomass by optimizing suitable culture medium, carbon source culture condition, and enhanced production of pharmaceutically important podophyllotoxin, kaempferol, and quercetin from callus culture of D. pleiantha under the influence of different additives. Best callus induction was achieved in Gamborg's medium (B5) with 1 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) along with 0.2 mg/L kinetin under dark condition. Tender leaves of D. pleiantha showed the maximum of 86% callus induction among the different explants tested. Highest leaf callus proliferation was noted in B5 medium with 1 mg/L 2,4-D incubated under complete darkness. In addition, it was found that B5 medium with 1 mg/L 2,4-D along with 2 g/L peptone produced more leaf callus biomass and enhanced production of podophyllotoxin (16.3-fold), kaempferol (12.39-fold), and quercetin (5.03-fold) compared to control. Therefore, D. pleiantha callogenesis can provide an alternative source for enhanced production of secondary compounds regardless of the exploitation of its natural plant population.


Assuntos
Berberidaceae/química , Medicamentos de Ervas Chinesas/metabolismo , Quempferóis/biossíntese , Plantas Medicinais/química , Podofilotoxina/biossíntese , Quercetina/biossíntese , Berberidaceae/metabolismo , Medicamentos de Ervas Chinesas/química , Quempferóis/química , Medicina Tradicional Chinesa , Estrutura Molecular , Plantas Medicinais/metabolismo , Podofilotoxina/química , Quercetina/química
6.
Plant Physiol Biochem ; 138: 48-57, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30849677

RESUMO

Widely distributed in tea plants, the flavonoid flavonol and its glycosylated derivatives have important roles in determining tea quality. However, the biosynthesis and accumulation of these compounds has not been fully studied, especially in response to nitrogen (N) supply. In the present study, 'Longjing 43' potted tea seedlings were subjected to N deficiency (0g/pot), normal N (4g/pot) or excess N (16g/pot). Quantitative analyses using Ultra Performance Liquid Chromatography-Triple Quadrupole Mass Spectrometry (UPLC-QqQ-MS/MS) revealed that most flavonol glycosides (e.g., Quercetin-3-glucoside, Kaempferol-3-rgalactoside and Kaempferol-3-glucosyl-rhamnsoyl-glucoside) accumulated to the highest levels when treated with normal N. Results from metabolomics using Gas Chromatography-Mass Spectrometer (GC-MS) suggested that the levels of carbohydrate substrates of flavonol glycosides (e.g., sucrose, sucrose-6-phosphate, D-fructose 1,6-bisphosphate and glucose-1-phosphate) were positively correlated with flavonol glycoside content in response to N availability. Furthermore, Quantitative Real-time PCR analysis of 28 genes confirmed that genes related to flavonoid (e.g., flavonol synthase 1, flavonol 3-O-galactosyltransferase) and carbohydrate (e.g., sucrose phosphate synthase, sucrose synthase and glucokinase) metabolism have important roles in regulating the biosynthesis and accumulation of flavonol glycosides. Collectively, our results suggest that normal N levels promote the biosynthesis of flavonol glycosides through gene regulation and the accumulation of substrate carbohydrates, while abnormal N availability has inhibitory effects, especially excess N.


Assuntos
Camellia sinensis/metabolismo , Glicosídeos/biossíntese , Quempferóis/biossíntese , Nitrogênio , Folhas de Planta/metabolismo , Quercetina/análogos & derivados , Plântula/metabolismo , Camellia sinensis/genética , Glicosídeos/genética , Quempferóis/genética , Nitrogênio/metabolismo , Nitrogênio/farmacologia , Folhas de Planta/genética , Quercetina/biossíntese , Quercetina/genética , Plântula/genética
7.
PLoS One ; 13(11): e0207278, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30440014

RESUMO

Flavonols are a flavonoid subfamily widely distributed in plants, including several ones of great importance in human and animal diet (apple, tomato, broccoli, onion, beans, tea). These polyphenolic nutraceuticals exert potent antimicrobial (membrane potential disruptors), antioxidant (free-radical scavengers), pharmacokinetic (CYP450 modulators), anti-inflammatory (lipoxygenase inhibitors), antiangiogenic (VEGF inhibitors) and antitumor (cyclin inhibitors) activities. Biotechnological production of these nutraceuticals, for example via heterologous biosynthesis in industrial actinomycetes, is favored since in plants these polyphenols appear as inactive glycosylated derivatives, in low concentrations or as part of complex mixtures with other polyphenolic compounds. In this work, we describe the de novo biosynthesis of three important flavonols, myricetin, kaempferol and quercetin, in the industrially relevant actinomycetes Streptomyces coelicolor and S. albus. De novo biosynthesis of kaempferol, myricetin and quercetin in actinomycetes has not been described before.


Assuntos
Suplementos Nutricionais , Flavonoides , Quempferóis , Microrganismos Geneticamente Modificados , Quercetina , Streptomyces coelicolor , Flavonoides/biossíntese , Flavonoides/genética , Quempferóis/biossíntese , Quempferóis/genética , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , Quercetina/biossíntese , Quercetina/genética , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo
8.
Proc Natl Acad Sci U S A ; 114(10): 2538-2543, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28193870

RESUMO

Cytochrome P450 monooxygenases (P450) in the honey bee, Apis mellifera, detoxify phytochemicals in honey and pollen. The flavonol quercetin is found ubiquitously and abundantly in pollen and frequently at lower concentrations in honey. Worker jelly consumed during the first 3 d of larval development typically contains flavonols at very low levels, however. RNA-Seq analysis of gene expression in neonates reared for three days on diets with and without quercetin revealed that, in addition to up-regulating multiple detoxifying P450 genes, quercetin is a negative transcriptional regulator of mitochondrion-related nuclear genes and genes encoding subunits of complexes I, III, IV, and V in the oxidative phosphorylation pathway. Thus, a consequence of inefficient metabolism of this phytochemical may be compromised energy production. Several P450s metabolize quercetin in adult workers. Docking in silico of 121 pesticide contaminants of American hives into the active pocket of CYP9Q1, a broadly substrate-specific P450 with high quercetin-metabolizing activity, identified six triazole fungicides, all fungal P450 inhibitors, that dock in the catalytic site. In adults fed combinations of quercetin and the triazole myclobutanil, the expression of five of six mitochondrion-related nuclear genes was down-regulated. Midgut metabolism assays verified that adult bees consuming quercetin with myclobutanil metabolized less quercetin and produced less thoracic ATP, the energy source for flight muscles. Although fungicides lack acute toxicity, they may influence bee health by interfering with quercetin detoxification, thereby compromising mitochondrial regeneration and ATP production. Thus, agricultural use of triazole fungicides may put bees at risk of being unable to extract sufficient energy from their natural food.


Assuntos
Abelhas/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/química , Complexo de Proteínas da Cadeia de Transporte de Elétrons/química , Fungicidas Industriais/toxicidade , Proteínas de Insetos/química , Nitrilas/toxicidade , Quercetina/antagonistas & inibidores , Triazóis/toxicidade , Trifosfato de Adenosina/antagonistas & inibidores , Trifosfato de Adenosina/biossíntese , Animais , Abelhas/genética , Abelhas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Fungicidas Industriais/química , Regulação da Expressão Gênica , Mel/análise , Inativação Metabólica/efeitos dos fármacos , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Simulação de Acoplamento Molecular , Nitrilas/química , Fosforilação Oxidativa/efeitos dos fármacos , Pólen/química , Pólen/metabolismo , Quercetina/biossíntese , Quercetina/química , Triazóis/química
9.
Molecules ; 21(1): 92, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26784158

RESUMO

A small Chilean variety of pears growing in the town of Toconao, an oasis located at the northeastern edge of the Salar de Atacama, northern Chile, was studied by means of modern PDA and high resolution mass spectral data (UHPLC-PDA-HESI-orbitrap-MS/MS). In addition, the antioxidant features of the fruits were compared with the varieties Packhman's Triumph and Abate Fetel and correlated with the presence of phenolic compounds. The non-pigmented phenolics were fingerprinted and related to the antioxidant capacities measured by the bleaching of the DPPH radical, the ferric reducing antioxidant power (FRAP), the superoxide anion scavenging activity assay (SA), and total content of phenolics and flavonoids measured by spectroscopic methods. The machine allowed a fast separation of 15 min employing a flow rate of 1 mL per minute and could accurately identify 25 compounds, including several isorhamnetin derivatives and phenolic acids, present in the peel and pulps of this Chilean variety for the first time. The compounds were monitored using a wavelength range of 210-800 nm. The native small Chilean pear showed the highest antioxidant activity measured as the bleaching of the DPPH radical, the ferric reducing antioxidant power and superoxide anion scavenging activity (8.61 ± 0.65 µg/mL, 712.63 ± 12.12 micromols trolox equivalents (µmol/TE)/100 g FW, and 82.89% ± 2.52% at 100 µg/mL, respectively).


Assuntos
Antioxidantes/isolamento & purificação , Flavonoides/isolamento & purificação , Frutas/química , Fenóis/isolamento & purificação , Pyrus/química , Quercetina/análogos & derivados , Antioxidantes/química , Antioxidantes/metabolismo , Compostos de Bifenilo/antagonistas & inibidores , Compostos de Bifenilo/química , Chile , Cromatografia Líquida de Alta Pressão/instrumentação , Cromatografia Líquida de Alta Pressão/métodos , Clima Desértico , Flavonoides/biossíntese , Flavonoides/química , Fenóis/química , Fenóis/metabolismo , Picratos/antagonistas & inibidores , Picratos/química , Extratos Vegetais/química , Pyrus/metabolismo , Quercetina/biossíntese , Quercetina/química , Quercetina/isolamento & purificação , Superóxidos/antagonistas & inibidores , Superóxidos/química , Espectrometria de Massas em Tandem/instrumentação , Espectrometria de Massas em Tandem/métodos
10.
Int J Food Microbiol ; 189: 1-10, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25108759

RESUMO

Buckwheat (Fagopyrum spp.) is a "pseudo-cereal" of great interest in the production of healthy foods since its flour, derived from achenes, is enriched with bioactive compounds and, due to the absence of gluten, may be used in composition of celiac diets. Amongst buckwheat species, F. tataricum achenes possess a larger amount of the antioxidant flavenol rutin than the common buckwheat F. esculentum. Ongoing climate change may favor plant susceptibility to the attack by pathogenic, often mycotoxigenic, fungi with consequent increase of mycotoxins in previously unexploited feeds and foodstuffs. In particular, Aspergillus flavus, under suitable environmental conditions such as those currently occurring in Italy, may produce aflatoxin B1 (AFB1), the most carcinogenic compound of fungal origin which is classified by IARC as Category 1. In this study, the viable achenes of two buckwheat species, F. tataricum (var. Golden) and F. esculentum (var. Aelita) were inoculated with an AFB1-producing A. flavus NRRL 3357 to analyze their relative performances against fungal invasion and toxin contamination. Notably, we sought the existence of a correlation between the amount of tocols/flavonols in the achenes of buckwheat, infected and non-infected with A. flavus, and to analyze the ability of the pathogen to grow and produce toxin during achene infection. Results suggest that achenes of F. tataricum, the best producer of antioxidant compounds in this study, are less susceptible to A. flavus infection and consequently, but not proportionally, to mycotoxin contamination compared with F. esculentum. Moreover, rutin-derived quercetin appears to be more efficient in inhibiting aflatoxin biosynthesis than the parent compound.


Assuntos
Aflatoxina B1/antagonistas & inibidores , Antioxidantes/farmacologia , Aspergillus flavus/efeitos dos fármacos , Fagopyrum/metabolismo , Doenças das Plantas/microbiologia , Sementes/metabolismo , Aflatoxina B1/biossíntese , Antioxidantes/isolamento & purificação , Antioxidantes/metabolismo , Aspergillus flavus/crescimento & desenvolvimento , Fagopyrum/microbiologia , Itália , Extratos Vegetais/química , Quercetina/biossíntese , Quercetina/isolamento & purificação , Quercetina/farmacologia , Rutina/biossíntese , Rutina/isolamento & purificação , Rutina/farmacologia , Sementes/microbiologia , gama-Tocoferol/isolamento & purificação , gama-Tocoferol/metabolismo , gama-Tocoferol/farmacologia
11.
Food Chem ; 145: 220-7, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24128471

RESUMO

Our previous work exhibited Aspergillus awamori fermentation of the litchi pericarp increased significantly antioxidant activity and DNA protection effect. In this present study, the litchi pericarp and its aqueous-organic extracted residues were fermented by A. awamori in order to elucidate the enhanced beneficial effects. The study identified that rutin which present in litchi pericarp could be deglycosylated to form quercetin and quercetin-3-glucoside after the fermentation. Application the standard compounds (rutin, quercetin 3-glucoside, quercetin, kaempferol-3-glucoside and kaempferol) further revealed the effective biotransformation by A. awamori fermentation. It was hypothesised that rutin was initially dehydroxylated to form kaempferol-3-rutinoside and then deglycosylated to form kaempferol-3-glucoside and kaempferol. To our best knowledge, it is the first report on dehydroxylated effect of polyphenols caused by A. awamori fermentation. Thus, A. awamori fermentation can provide an effective way to produce health benefiting value-added products from litchi pericarp in food industry.


Assuntos
Aspergillus/metabolismo , Frutas/química , Quempferóis/biossíntese , Litchi/química , Quercetina/análogos & derivados , Rutina/biossíntese , Cromatografia Líquida de Alta Pressão , Fermentação , Quempferóis/análise , Extratos Vegetais/análise , Extratos Vegetais/química , Polifenóis/análise , Polifenóis/química , Quercetina/análise , Quercetina/biossíntese , Rutina/análise
12.
Photochem Photobiol ; 89(2): 391-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23057576

RESUMO

Antioxidant compounds protect plants against oxidative stress caused by environmental conditions. Different light qualities, such as UV-A radiation and blue light, have shown positive effects on the production of phenols in plants. Kalanchoe pinnata (Lamarck) Persoon (Crassulaceae) is used for treating wounds and inflammations. Some of these beneficial effects are attributed to the antioxidant activity of plant components. We investigated the effects of blue light and UV-A radiation supplementation on the total phenol content, antioxidant activity and chromatographic profile of aqueous extracts from leaves of K. pinnata. Monoclonal plants were grown under white light, white plus blue light and white plus UV-A radiation. Supplemental blue light improved the antioxidant activity and changed the phenolic profile of the extracts. Analysis by HPLC of supplemental blue-light plant extracts revealed a higher proportion of the major flavonoid quercetin 3-O-α-L-arabinopyranosyl (1→2) α-L-rhamnopyranoside, as well as the presence of a wide variety of other phenolic substances. These findings may explain the higher antioxidant activity observed for this extract. Blue light is proposed as a supplemental light source in the cultivation of K. pinnata, to improve its antioxidant activity.


Assuntos
Antioxidantes/metabolismo , Kalanchoe/efeitos da radiação , Fenóis/metabolismo , Folhas de Planta/efeitos da radiação , Quercetina/análogos & derivados , Kalanchoe/metabolismo , Luz , Oxirredução , Extratos Vegetais/química , Folhas de Planta/metabolismo , Quercetina/biossíntese
13.
Plant Sci ; 193-194: 1-7, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22794913

RESUMO

The lignan nordihydroguaiaretic acid (NDGA) and its derivatives existing in Larrea divaricata species show a wide range of pharmacological activities which makes this genus an interesting target to consider the plant in vitro cultivation systems as a feasible alternative source for their production. These compounds are potentially useful in treating diseases related to heart condition, asthma, arteriosclerosis, viral and bacterial infections, inflammation and cancer. In the present study, calli, cell suspension cultures, and in vitro and wild plants of L. divaricata were investigated for their potential to synthesize phenolic compounds. Calli, both with and without organogenesis, produced NDGA and quercetin, as did plantlet and wild plants. NDGA was also produced by the cell suspension cultures, together with p-coumaric acid, ferulic acid and sinapyl alcohol. The capacity of undifferentiated tissues to form phenolic compounds is very limited, but when the calli underwent organogenesis, developing mainly adventitious shoots, the phenolic compound production increased significantly. Plantlets regenerated from adventitious shoots of L. divaricata calli did not show the same phenolic pattern as wild plants, with levels of NDGA and quercetin being 3.6- and 5.9-fold lower, respectively.


Assuntos
Larrea/citologia , Larrea/metabolismo , Masoprocol/metabolismo , Brotos de Planta/citologia , Brotos de Planta/metabolismo , Quercetina/biossíntese , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas/efeitos dos fármacos , Ácidos Cumáricos/metabolismo , Fenilpropionatos/metabolismo , Plantas Medicinais/citologia , Plantas Medicinais/metabolismo
14.
Zhongguo Zhong Yao Za Zhi ; 35(11): 1391-4, 2010 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-20822005

RESUMO

OBJECTIVE: To establish the transformation system of mulberry, and test its ability of quercetin biosynthesis. METHOD: Hairy roots of mulberry were obtained through infecting etiolated seedlings with Agrobacterium tumefaciens strain C58C1. The culture condition of hairy roots was optimized. The transformation of T-DNA was examined by PCR assay and quercetin content was determined by HPLC. RESULT: When infecting stem cutting of etiolated seedlings via C58C1 strain, the optimal transformation conditions were as follows: 10 minutes' infection, two-days pre-culture and co-culture, additional hydroxylacetosyringone (As) 100 mg x L(-1). The PCR examination result showed that rolB and rolC genes could be inserted into the hairy roots of mulberry. Hairy roots appeared in 10 days after infecting, the frequency of stems explants was up to 92% after 30 days culturing. After 50 days culturing in 1/2MS + 0.05 mg x L(-1) IBA liquid medium, the content of quercetin increased by 8. 5-fold. CONCLUSION: Hairy root culture system of Moraceae plants was established successfully for the first time. In addition, it also provides a foundation for further industrial production of active compounds such as quercetin.


Assuntos
Marcação de Genes/métodos , Morus/genética , Morus/metabolismo , Quercetina/biossíntese , Transformação Genética , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Células Cultivadas , DNA Bacteriano/genética , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Morus/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA