Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Pharm Sci ; 130: 234-246, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30711688

RESUMO

Designing novel drug delivery systems to improve drug efficiencies have gained great interests in recent years. In this study, a new vesicular system has been prepared using thin film hydration method with slight modifications, hydrophobic drugs have been used in both lipophilic and hydrophilic phases and dry film was hydrated by hyaluronan polymeric solution, to overcome curcumin and quercetin formulation drawbacks. Briefly, different formulations were prepared according to Box-Behnken design to assess the effect of HLB value, cholesterol and hyaluronan contents on the properties of niosomes. Then, the best formulation was selected for further studies and compared with conventional niosomes. The results showed that both niosomes had spherical shapes according to Transmission Electron and Atomic Force Microscopic images. Results also showed that hyaluronan containing niosomes had smaller size and higher values of zeta potential and entrapment than conventional niosomes. The average size of hyaluronan containing niosomes was 260.37 ±â€¯6.58 nm, the zeta potential was -34.97 ±â€¯1.50 mv and the entrapment for curcumin and quercetin were 98.85 ±â€¯0.55% and 93.13 ±â€¯1.22%, respectively. The release kinetic of quercetin was best fitted to Peppas model for both conventional niosome and hyaluronan containing niosomes; while, the release kinetic of curcumin was best fitted with non-conventional order 2 and three second roots of mass for hyaluronan containing niosomes and conventional niosomes, respectively. Hyaluronan containing niosomes showed higher antioxidant and anti-inflammatory effects in comparison with conventional niosomes.


Assuntos
Curcumina/síntese química , Portadores de Fármacos/síntese química , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Ácido Hialurônico/síntese química , Quercetina/síntese química , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/síntese química , Curcumina/administração & dosagem , Portadores de Fármacos/administração & dosagem , Edema/tratamento farmacológico , Edema/patologia , Feminino , Ácido Hialurônico/administração & dosagem , Lipossomos , Quercetina/administração & dosagem , Ratos
2.
Amino Acids ; 51(2): 319-329, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30392096

RESUMO

Quercetin and resveratrol are polyphenolic compounds, members of the flavonoid and the stilbene family, respectively, both medicinally important as dietary anticancer and antioxidant agents. They are present in a variety of foods-including fruits, vegetables, tea, wine, as well as other dietary supplements-and are responsible for various health benefits. Different quercetin and resveratrol esters of Leu/Met-enkephalin and tetrapeptide Leu-Ser-Lys-Leu (LSKL) were synthesized as model systems for monitoring the influence of the peptides on biological activity of resveratrol and quercetin. General formula of the main peptidyl-quercetin derivatives is 2-[3-(aa)n-4-hydroxyphenyl]-3,5,7-tri-hydroxy-4H-1-benzopyran-4-on, and the general formula of the main peptidyl-resveratrol derivatives is (E)-5-[4-(aa)n)styryl]benzene-1,3-diol. The antioxidant and anticancer activities of prepared compounds were investigated. Significant anticancer activity was obtained for the LSKL-based both quercetin and resveratrol derivatives. All prepared compounds exhibit antioxidant activity, in particular quercetin derivative containing Met-enkephalin.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Neoplasias/dietoterapia , Quercetina/análogos & derivados , Quercetina/farmacologia , Resveratrol/análogos & derivados , Resveratrol/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Antioxidantes/síntese química , Antioxidantes/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Suplementos Nutricionais , Encefalina Leucina/química , Encefalina Metionina/química , Ésteres/síntese química , Células HCT116 , Humanos , Células MCF-7 , Peptídeos/química , Compostos Fitoquímicos/síntese química , Quercetina/síntese química , Quercetina/uso terapêutico , Resveratrol/síntese química , Resveratrol/uso terapêutico , Solubilidade , Fator de Crescimento Transformador beta/metabolismo
3.
Arch Pharm Res ; 40(5): 623-630, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28258480

RESUMO

Quercetin is a major component of the plant Glycyrrhiza uralensis, which is largely used as a traditional medicine in Asia. Quercetin has been reported to have several biological activities, which include anti-viral and anti-inflammatory effects. We explored the molecular mechanism linking anti-viral and anti-inflammatory activities using an in vitro herpes simplex virus-1 (HSV-1) infection model. Raw 264.7 cells were infected with HSV-1 in the presence or absence of different concentrations of quercetin and infected cell lysates were harvested 24 h later. HSV plaque reduction assays, western blotting (HSV-1gD, HSV-1 ICP0, TLR-2, 3, 9, NF-κB, IRF3), and real time PCR (HSV-1ICP0, HSV-1UL13, HSV-1UL52) were performed to elucidate the mechanism responsible for the anti-HSV-1 effect of quercetin. In addition, TNF-α level was measured. Quercetin significantly lowered HSV infectivity in Raw 264.7 cells and inhibited the expressions of HSV proteins (gD, ICP0) and genes (ICP0, UL13, UL52). Interestingly, quercetin specifically suppressed the expression of TLR-3, and this led to the inhibitions of inflammatory transcriptional factors (NF-κB and IRF3). These findings suggest that the anti-HSV-1 effects of quercetin are related to the suppression of TLR-3 dependent inflammatory responses in Raw 264.7 cells.


Assuntos
Antivirais/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Quercetina/farmacologia , Receptor 3 Toll-Like/antagonistas & inibidores , Animais , Antivirais/síntese química , Antivirais/química , Células Cultivadas , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Herpesvirus Humano 1/genética , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Quercetina/síntese química , Quercetina/química , Células RAW 264.7 , Relação Estrutura-Atividade , Receptor 3 Toll-Like/metabolismo , Células Vero
4.
Nat Prod Commun ; 10(9): 1565-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26594760

RESUMO

Reaction of quercetin (QR) (1) with bromine under various conditions was studied. Interaction of QR with 2-3 equiv. of bromine in glacial acetic acid at 35-40°C for 2-4 h and 20-22°C for 24 h led to the formation of QR 6,8-dibromide (2) (52-54% yields, 96-98% purity by HPLC). Interaction of QR with 2-5 equiv. bromine in absolute ethanol at 0-5°C and 20-22°C for 24 h led to the formation of 3-O-ethyl-QR-2,3,6,8,5'-pentabromide (3) (95-97% purity by HPLC) the output of which depends on the quantity of bromine. It was shown in MDCK cell culture that compound 2 exhibits a moderate inhibitory activity against pandemic influenza virus A/H1N1/pdm09 (EC50 6.0 µg/mL, CTD50 97.7 µg/mL, SI 16). Compound 3 was inactive.


Assuntos
Antivirais/farmacologia , Bromo/química , Quercetina/análogos & derivados , Quercetina/farmacologia , Animais , Antivirais/química , Cães , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/fisiologia , Células Madin Darby de Rim Canino , Estrutura Molecular , Quercetina/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA