Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Brain ; 132(Pt 6): 1523-35, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19336457

RESUMO

Pilocytic astrocytomas are WHO grade I gliomas that occur predominantly in childhood. They share features of both astroglial and oligodendroglial lineages. These tumours affect preferentially the cerebellum (benign clinical course) and the optic pathway, especially the hypothalamo-chiasmatic region (poor prognosis). Understanding the molecular basis responsible for the aggressive behaviour of hypothalamo-chiasmatic pilocytic astrocytomas is a prerequisite to setting up new molecular targeted therapies. We used the microarray technique to compare the transcriptional profiles of five hypothalamo-chiasmatic and six cerebellar pilocytic astrocytomas. Validation of the microarray results and comparison of the tumours with normal developing tissue was done by quantitative real-time PCR and immunohistochemistry. Results demonstrate that cerebellar and hypothalamo-chiasmatic pilocytic astrocytomas are two genetically distinct and topography-dependent entities. Numerous genes upregulated in hypothalamo-chiasmatic pilocytic astrocytomas also increased in the developing chiasm, suggesting that developmental genes mirror the cell of origin whereas migrative, adhesive and proliferative genes reflect infiltrative properties of these tumours. Of particular interest, NOTCH2, a gene expressed in radial glia and involved in gliomagenesis, was upregulated in hypothalamo-chiasmatic pilocytic astrocytomas. In order to find progenitor cells that could give rise to hypothalamo-chiasmatic pilocytic astrocytomas, we performed a morphological study of the hypothalamo-chiasmatic region and identified, in the floor of the third ventricle, a unique population of vimentin- and glial fibrillary acidic protein-positive cells highly suggestive of radial glia cells. Therefore, pilocytic astrocytomas of the hypothalamo-chiasmatic region should be considered as a distinct entity which probably originates from a unique population of cells with radial glia phenotype.


Assuntos
Astrocitoma/diagnóstico , Neoplasias do Nervo Óptico/diagnóstico , Adolescente , Adulto , Astrócitos/metabolismo , Astrocitoma/genética , Astrocitoma/patologia , Proliferação de Células , Neoplasias Cerebelares/diagnóstico , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Criança , Pré-Escolar , DNA de Neoplasias/genética , Diagnóstico Diferencial , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Hipotálamo/metabolismo , Lactente , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/patologia , Neuroglia/patologia , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Quiasma Óptico/citologia , Quiasma Óptico/embriologia , Quiasma Óptico/metabolismo , Neoplasias do Nervo Óptico/genética , Neoplasias do Nervo Óptico/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Regulação para Cima , Vimentina/metabolismo , Adulto Jovem
2.
Genes Dev ; 21(4): 367-78, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17322396

RESUMO

Vertebrate eye development has been an excellent model system to investigate basic concepts of developmental biology ranging from mechanisms of tissue induction to the complex patterning and bidimensional orientation of the highly specialized retina. Recent advances have shed light on the interplay between numerous transcriptional networks and growth factors that are involved in the specific stages of retinogenesis, optic nerve formation, and topographic mapping. In this review, we summarize this recent progress on the molecular mechanisms underlying the development of the eye, visual system, and embryonic tumors that arise in the optic system.


Assuntos
Quiasma Óptico/crescimento & desenvolvimento , Quiasma Óptico/metabolismo , Retina/crescimento & desenvolvimento , Retina/metabolismo , Animais , Polaridade Celular , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/fisiologia , Efrinas/metabolismo , Olho/anatomia & histologia , Olho/crescimento & desenvolvimento , Olho/metabolismo , Humanos , Quiasma Óptico/citologia , Retina/citologia , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Tálamo/anatomia & histologia , Tálamo/fisiologia
3.
Neurol Res ; 27(4): 346-50, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15949230

RESUMO

OBJECTIVES: The present study characterized glial cell injury provoked in adult rat chiasm within 24 hours after a single, high-dose irradiation of 20 Gy. METHODS: All chiasmal glial cells in a section were counted, and the percentage of TUNEL-positive glial cells exhibiting apoptotic morphology was defined as the apoptotic rate. RESULTS: Numbers of apoptotic cells increased significantly (p<0.0001) from 3 to 8 hours after exposure, but returned to baseline levels by 24 hours. Little evidence of apoptosis was observed in non-irradiated chiasms. Similar patterns of increase in apoptotic rate were observed in the genu of the corpus callosum, but the extent was significantly lower (p=0.047) in the optic chiasm, with a maximal rate of 1.9%. Immunohistochemically, apoptotic cells were positive for CNP, a marker for oligodendrocytes. DISCUSSION: These data indicate that chiasmal irradiation induces limited, but significant apoptotic depletion of the oligodendroglial population, and may participate in the development of radiation-induced optic neuropathy.


Assuntos
Apoptose/efeitos da radiação , Oligodendroglia/efeitos da radiação , Quiasma Óptico/citologia , Lesões Experimentais por Radiação/patologia , Radiação , Análise de Variância , Animais , Contagem de Células , Corpo Caloso/efeitos da radiação , Relação Dose-Resposta à Radiação , Imuno-Histoquímica/métodos , Marcação In Situ das Extremidades Cortadas , Masculino , Nucleosídeo-Trifosfatase/metabolismo , Oligodendroglia/citologia , Quiasma Óptico/efeitos da radiação , Lesões Experimentais por Radiação/metabolismo , Ratos , Ratos Wistar , Fatores de Tempo
4.
J Comp Neurol ; 415(3): 393-403, 1999 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-10553121

RESUMO

Retinal projections in vertebrates reach the primary visual, accessory optic, and circadian timing structures. The central feature of the circadian timing system is the principal circadian pacemaker, the suprachiasmatic nucleus (SCN) of the hypothalamus. The direct projections from the retina to the SCN are considered the entrainment pathway of the circadian timing system. In this study, unilateral intravitreal injections of cholera toxin subunit B were used to trace the retinal projections to the marmoset hypothalamus. The retinohypothalamic tract reaches the ventral suprachiasmatic nucleus bilaterally, as anticipated from previous studies. However, labeled fibers were found in several other hypothalamic regions, such as the medial and lateral preoptic areas, supraoptic nucleus, anterior and lateral hypothalamic areas, retrochiasmatic area, and subparaventricular zone. These results reveal new aspects of retinohypothalamic projection in primates and are discussed in terms of their implications for circadian as well as noncircadian control systems.


Assuntos
Callithrix/anatomia & histologia , Toxina da Cólera/análise , Hipotálamo/anatomia & histologia , Hipotálamo/citologia , Retina/anatomia & histologia , Retina/citologia , Vias Visuais , Animais , Callithrix/fisiologia , Toxina da Cólera/administração & dosagem , Ritmo Circadiano/fisiologia , Hipotálamo/fisiologia , Masculino , Fibras Nervosas/fisiologia , Vias Neurais , Quiasma Óptico/anatomia & histologia , Quiasma Óptico/citologia , Quiasma Óptico/fisiologia , Área Pré-Óptica/anatomia & histologia , Área Pré-Óptica/citologia , Área Pré-Óptica/fisiologia , Retina/fisiologia , Coloração e Rotulagem , Núcleo Supraquiasmático/anatomia & histologia , Núcleo Supraquiasmático/citologia , Núcleo Supraquiasmático/fisiologia
5.
Exp Neurol ; 155(2): 228-42, 1999 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10072298

RESUMO

To have a proper spatial visual perception, vertebrate retinal ganglion cells connect to their brain targets in a highly ordered fashion. The molecular bases for such topographic retinotectal connection in mammals still remain largely unknown. Using the gene knock-out approach in mice, we report here a key role for the GAP-43 growth cone protein in the development of the visual system. In mice bearing a targeted disruption of GAP-43 exon 1, a high proportion of retinal ganglion cell (RGC) axons was found to grow abnormally into the ipsilateral optic tract and into the hypothalamus. After leaving the optic chiasm during development, the GAP-43-deficient RGC axons generally follow the optic tracts but are unable to form proper terminal zones in the lateral geniculate nucleus. Moreover, in the superior colliculus, RGC axons lacking GAP-43 are intermingled. These results suggest an essential role for GAP-43 in development of the topographic retinotectal connection.


Assuntos
Proteína GAP-43/fisiologia , Retina/fisiologia , Animais , Axônios/fisiologia , Western Blotting , Éxons , Proteína GAP-43/genética , Marcação de Genes , Hipotálamo/embriologia , Hipotálamo/fisiologia , Hipotálamo/ultraestrutura , Camundongos , Camundongos Knockout , Quiasma Óptico/citologia , Quiasma Óptico/embriologia , Retina/citologia , Retina/embriologia , Células Ganglionares da Retina/fisiologia , Células Ganglionares da Retina/ultraestrutura , Deleção de Sequência , Células-Tronco/fisiologia , Vias Visuais/citologia , Vias Visuais/embriologia , Vias Visuais/fisiologia
6.
Eur J Neurosci ; 9(9): 1929-39, 1997 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9383216

RESUMO

Electrophysiological recordings were carried out in the callosal recipient zone of area 19 in normal and split-chiasm cats and, for comparison purposes, at the border of areas 17 and 18 of split-chiasm cats. The influences of retinothalamic and callosal inputs on a single cortical neurons were thereby evaluated. Extracellular recordings of single cells were made in anaesthetized and paralysed cats in the zone representing the central visual field. Receptive field properties were assessed using sine wave gratings drifting in optimal directions. Results showed that in area 19 and areas 17/18 one-third of the cells were binocularly driven after section of the optic chiasm. In area 19, the spatial resolution and contrast sensitivity of cells driven via the dominant eye were similar in the normal and split-chiasm groups. In areas 17/18 and area 19 of split-chiasm cats, binocular cells showed significant interocular matching of their receptive field properties (spatial resolution and contrast threshold), although small differences were observed. These small interocular differences were related to the cell's ocular dominance rather than to the signal transmission route (thalamic or callosal).


Assuntos
Mapeamento Encefálico/métodos , Sensibilidades de Contraste , Corpo Caloso/fisiologia , Neurônios/fisiologia , Quiasma Óptico/fisiologia , Córtex Visual/fisiologia , Animais , Gatos , Corpo Caloso/citologia , Dominância Cerebral/fisiologia , Feminino , Modelos Lineares , Masculino , Quiasma Óptico/citologia , Tálamo/fisiologia , Córtex Visual/citologia , Campos Visuais/fisiologia , Vias Visuais/fisiologia
7.
Peptides ; 18(2): 263-7, 1997.
Artigo em Inglês | MEDLINE | ID: mdl-9149299

RESUMO

This is the first report showing VIP fibers in the optic chiasm and the optic nerves of intact rats. These fibers form a fan-shaped dorso-medial bundle in the optic nerves. After colchicine injection into the vitreous body VIP fibers could be followed farther in the optic nerve toward the eye when compared to intact rats. After removal of eyes (enucleation) the VIP fiber-bundle became more prominent and VIP immunoreactive perikarya appeared in the supraoptic and para ventricular nuclei. When five-nine months after the enucleation Phaseolus vulgaris leucoagglutinin was administered to the paraventricular or supraoptic area, the anterogradely transported tracer was demonstrated in the optic nerve. These observations suggest the existence of a hypothalamic projection to the eye, which is, at least in part, VIP immunoreactive.


Assuntos
Hipotálamo/citologia , Fibras Nervosas/ultraestrutura , Neurônios/citologia , Quiasma Óptico/citologia , Nervo Óptico/citologia , Peptídeo Intestinal Vasoativo/análise , Animais , Transporte Axonal , Colchicina , Enucleação Ocular , Hipotálamo/fisiologia , Imuno-Histoquímica , Masculino , Neurônios/fisiologia , Quiasma Óptico/fisiologia , Nervo Óptico/fisiologia , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Fito-Hemaglutininas , Ratos , Ratos Sprague-Dawley , Núcleo Supraóptico/citologia , Núcleo Supraóptico/fisiologia
8.
Science ; 269(5220): 98-101, 1995 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-7541558

RESUMO

Mouse retinal ganglion cell axons growing from the eye encounter embryonic neurons at the future site of the optic chiasm. After in vivo ablation of these chiasm neurons with a monoclonal antibody and complement, retinal axons did not cross the midline and stalled at approximately the entry site into the chiasm region. Thus, in the mouse, the presence of early-generated neurons that reside at the site of the future chiasm is required for formation of the optic chiasm by retinal ganglion cell axons.


Assuntos
Axônios/fisiologia , Neurônios/fisiologia , Quiasma Óptico/embriologia , Células Ganglionares da Retina/fisiologia , Vias Visuais/embriologia , Animais , Anticorpos Monoclonais , Axônios/ultraestrutura , Proteínas de Transporte/imunologia , Receptores de Hialuronatos , Hipotálamo/citologia , Hipotálamo/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/ultraestrutura , Quiasma Óptico/citologia , Nervo Óptico/embriologia , Receptores de Superfície Celular/imunologia , Receptores de Retorno de Linfócitos/imunologia , Retina/embriologia
9.
Ann Anat ; 176(3): 259-61, 1994 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-8059970

RESUMO

Natrix maura snakes were processed for immunocytochemistry and lectin histochemistry at both light- and electron-microscopic levels. Antisera against bovine neurophysins, vasotocin and mesotocin were used as well as concanavalin A, wheat germ and Limax flavus agglutinin lectins. The hypothalamic supraoptic and paraventricular nuclei were studied. Vasotocin neurons should contain a glycopeptide and displayed large colloid droplets consisting of large cisternae filled with packed secretory material. Mesotocin was located in different neurons.


Assuntos
Hipotálamo/citologia , Neurônios/citologia , Sistemas Neurossecretores/citologia , Neuro-Hipófise/citologia , Serpentes/anatomia & histologia , Animais , Axônios/ultraestrutura , Bovinos , Histocitoquímica/métodos , Hipotálamo/ultraestrutura , Soros Imunes , Imuno-Histoquímica/métodos , Lectinas , Neurônios/ultraestrutura , Neurofisinas/análise , Sistemas Neurossecretores/ultraestrutura , Quiasma Óptico/citologia , Ocitocina/análogos & derivados , Ocitocina/análise , Neuro-Hipófise/ultraestrutura , Núcleo Supraóptico/citologia , Vasotocina/análise
10.
Anat Rec ; 231(4): 457-66, 1991 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-1793175

RESUMO

The decapeptide gonadotropin-releasing hormone (GnRH) stimulates release of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) from the anterior pituitary. In the present study we used a 51-base oligonucleotide probe and in situ hybridization to study the neuronal content of GnRH mRNA at several time points in the estrous cycle and 7 days after castration of male rats. GnRH mRNA containing cells were found in the medial septum (SEPT), the vertical and horizontal limbs of the diagonal band of Broca (DBB), and throughout the preoptic area (POA) from the organum vasculosum of the lamina terminalis (OVLT) to its caudal merger with the anterior hypothalamus. The number of neurons producing detectable quantities of GnRH mRNA was not different either among females killed at 0700 h proestrus, 1000 h estrus, or 1900 h of diestrus 1 or between intact male rats and male rats killed 1 week after castration. We did, however, detect a significant difference in the number of GnRH mRNA producing neurons between males and females (P less than 0.05), where females had 20% more labeled cells. We detected no significant difference in the relative copy number of GnRH mRNA molecules (grains per labeled cell) either over the estrous cycle or between intact and castrate males. However, females overall had 24% more grains per labeled cell than males (P less than 0.05). These results suggest that gonadal steroid regulation of GnRH both over the estrous cycle and after short-term castration of males is mediated primarily by cellular processes subsequent to GnRH gene regulation. Furthermore, these results suggest that biosynthetic activity of GnRH is higher in females than in males.


Assuntos
Estro/fisiologia , Hormônio Liberador de Gonadotropina/genética , Neurônios/química , Orquiectomia , RNA Mensageiro/análise , Animais , Sondas de DNA , Feminino , Hormônio Foliculoestimulante/sangue , Hormônio Liberador de Gonadotropina/fisiologia , Hipotálamo/química , Hipotálamo/citologia , Hormônio Luteinizante/sangue , Masculino , Neurônios/fisiologia , Hibridização de Ácido Nucleico , Quiasma Óptico/química , Quiasma Óptico/citologia , Adeno-Hipófise/metabolismo , Área Pré-Óptica/química , Área Pré-Óptica/citologia , RNA Mensageiro/genética , Ratos
11.
Proc Natl Acad Sci U S A ; 87(20): 8065-9, 1990 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-1978319

RESUMO

The retinohypothalamic tract is the neural pathway mediating the photic entrainment of circadian rhythms in mammals. Important targets for these retinal fibers are the suprachiasmatic nuclei (SCN) of the hypothalamus, which are thought to be primary sites for the biological clock. The neurotransmitters that operate in this projection system have not yet been determined. Immunohistochemistry and radioimmunoassay performed with affinity-purified antibodies to N-acetylaspartylglutamate (NAAG) demonstrate that this neuron-specific dipeptide, which may act as an excitatory neurotransmitter, is localized extensively in the retinohypothalamic tract and its target zones, including the SCN. Optic nerve transections resulted in significant reductions in NAAG immunoreactivity in the optic chiasm and SCN. Analysis of NAAG concentrations in micropunches of SCN, by means of radioimmunoassay, showed approximately 50% reductions in NAAG levels. These results suggest that this peptide may act as one of the neurotransmitters involved in retinohypothalamic communication and circadian rhythm entrainment.


Assuntos
Dipeptídeos/análise , Hipotálamo/citologia , Neurotransmissores/análise , Quiasma Óptico/citologia , Retina/citologia , Núcleo Supraquiasmático/citologia , Vias Visuais/citologia , Animais , Especificidade de Anticorpos , Hipotálamo/química , Imuno-Histoquímica , Masculino , Quiasma Óptico/química , Nervo Óptico/fisiologia , Radioimunoensaio , Ratos , Ratos Endogâmicos , Retina/química , Núcleo Supraquiasmático/química , Vias Visuais/química
12.
J Comp Neurol ; 283(4): 526-40, 1989 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-2787335

RESUMO

The retinotopic organization of the anuran visual system has been investigated with the method of selective anterograde transport of horseradish peroxidase (HRP) following retinal lesions. The course of optic axons to specific structures was also confirmed by retrograde transport in the optic tract following HRP injections in the tectum and pretectum. As the optic nerve reaches the optic chiasm, the fibers from each of the four retinal quadrants appear as bands with the nasal (n) quadrant entering the chiasmal anterior pole, followed by ventral (v), temporal (t), and dorsal (d) quadrants. The preoptic nucleus is the first structure to be innervated, followed by the suprachiasmatic nucleus; both are innervated directly from fibers in the dorsal part of the optic nerve, which contains fibers from all the retinal quadrants. Each quadrant expands across the dorsoventral extent of the chiasm at the point where it enters. At this level the quadrants are arrayed along the rostrocaudal axis (as they are later in the marginal optic tract) in the sequence n-v-t-d. Optic fibers then spread across the chiasm, the nasal quadrant splits, taking up positions in the rostral and caudal margins of the optic radiation. Following the split in the nasal representation, the optic tract is transformed into topographically arranged sheets in the marginal optic tract. In the other retinorecipient nuclei, the sheet of optic axons is transformed back into the shape of the retinal hemisphere. Topographic maps of this kind display one of two possible orientations: (1) in the tectum and the nucleus lentiformis mesencephali (nLM), the temporal retina is represented in the anterior portion of the nucleus, whereas the nasal quadrant is found in the posterior portion; (2) in the thalamus, the retinotopic map is organized as a mirror-image reversal of that seen in the tectum and nLM (i.e., the nasal pole is anterior, whereas the temporal pole is in the posterior portion of the nucleus). Structures with this type of retinal map include the rostral visual nucleus, the corpus geniculatum, the nucleus of Bellonci, and the posterior thalamic nucleus. A third type of innervation occurs in the nucleus of the basal optic root (nBOR), which is the only mesencephalic visual nucleus not innervated by the marginal optic tract. The basal optic root is formed by the fibers exiting most caudally from the optic chiasm. All the retinal quadrants contribute to the basal optic root, but no evidence of retinotopy was found in nBOR.4+ target nuclei.


Assuntos
Quiasma Óptico/citologia , Rana pipiens/anatomia & histologia , Retina/citologia , Núcleo Supraquiasmático/citologia , Vias Visuais/anatomia & histologia , Animais , Peroxidase do Rábano Silvestre , Colículos Superiores/citologia , Tálamo/citologia
13.
J Comp Neurol ; 203(4): 595-612, 1981 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-7035505

RESUMO

The accessory optic system of Rana pipiens was investigated by autoradiographic, horseradish peroxidase, and Golgi techniques, revealing a complexity of neuroanatomical organization previously unrecognized. Retinal afferents project to the nucleus of the basal optic root (nBOR) via a primary bundle and more diffuse, medial bundle of optic axons, both of which contain large- and small-diameter fibers. At least six types of retinal ganglion cell contribute to the basal optic root (BOR), including giant ganglion cells, two intermediate-sized ganglion cell types, small ganglion cells, and two types of displaced ganglion cell. The major retinal projection is contralateral, but a small, ipsilateral component also exists. Afferents from neurons which are postsynaptic to the thalamic retinal terminal fields also reach nBOR. Four distinct cell types were identified within the terminal field of nBOR: stellate neurons (63%), amacrine cells (19%), elongate neurons (14%), and large ganglionic neurons (4%). Both stellate and amacrine cells appear to be intrinsic neurons, while elongate and ganglionic neurons constitute the efferent neuron population of nBOR. In addition, cells which lie medial to the terminal field, pyriform and commissural neurons, send dendrites into nBOR. Pyriform neurons project to the nucleus of the medial longitudinal fasciculus (nMLF) and cranial nerve nuclei III and IV, while commissural neurons project to the contralateral nBOR. Large reticular neurons of the nMLF also send dendrites into nBOR. Efferent projections from nBOR were observed in the large-celled pretectal nucleus and in nucleus lateralis profundus. A second major projection originates from the peri-nBOR region and is associated with the oculomotor system and with the nMLF. Efferent projections from the nMLF to the vestibular nuclei and to the rostral spinal cord were also observed, as well as projections which reach the brainstem from the large-celled pretectal nucleus, the posterior thalamic and anterior mesencephalic central gray.


Assuntos
Mesencéfalo/citologia , Lobo Óptico de Animais não Mamíferos/citologia , Rana pipiens/anatomia & histologia , Retina/citologia , Vias Aferentes/citologia , Animais , Axônios/ultraestrutura , Técnicas Citológicas , Dendritos/ultraestrutura , Vias Eferentes/citologia , Peroxidase do Rábano Silvestre , Neurônios/citologia , Quiasma Óptico/citologia , Nervo Óptico/fisiologia , Tálamo/citologia
14.
J Comp Neurol ; 193(3): 659-75, 1980 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-7002962

RESUMO

The presence of parvocellular vasopressin- and neurophysin-containing neurons in the suprachiasmatic nucleus (SCN) was investigated in 13 mammalian species representing six mammalian orders (marsupials, rodents, lagomorphs, artiodactyls, carnivores, and primates), using specific antisera to vasopressin and neurophysin in the unlabelled antibody=enzyme immunoperoxidase method. In all mammals examined, including man, parvocellular vasopressin and neurophysin neurons were found in the SCN. Only a portion of SCN neurons contain vasopressin and neurophysin, the number varying with species. Cell counts comparing the number of immunoreactive to Nissl-stained neurons showed averages of 17% immunopositive neurons in the rat SCN, and 31% in the human SCN. No oxytocin-containing SCN neurons were observed. These findings suggest that parvocellular vasopressin and neurophysin neurons are widely represented in mammals.


Assuntos
Hipotálamo/citologia , Neurofisinas/metabolismo , Quiasma Óptico/citologia , Núcleo Supraóptico/citologia , Vasopressinas/metabolismo , Animais , Gatos , Bovinos , Cricetinae , Cobaias , Humanos , Técnicas Imunoenzimáticas , Macaca mulatta , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Ocitocina/metabolismo , Coelhos , Ratos , Saimiri , Suínos , Tupaiidae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA