Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Molecules ; 25(20)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092204

RESUMO

CXCL12 are small pro-inflammatory chemo-attractant cytokines that bind to a specific receptor CXCR4 with a role in angiogenesis, tumor progression, metastasis, and cell survival. Globally, cancer metastasis is a major cause of morbidity and mortality. In this study, we targeted CXCL12 rather than the chemokine receptor (CXCR4) because most of the drugs failed in clinical trials due to unmanageable toxicities. Until now, no FDA approved medication has been available against CXCL12. Therefore, we aimed to find new inhibitors for CXCL12 through virtual screening followed by molecular dynamics simulation. For virtual screening, active compounds against CXCL12 were taken as potent inhibitors and utilized in the generation of a pharmacophore model, followed by validation against different datasets. Ligand based virtual screening was performed on the ChEMBL and in-house databases, which resulted in successive elimination through the steps of pharmacophore-based and score-based screenings, and finally, sixteen compounds of various interactions with significant crucial amino acid residues were selected as virtual hits. Furthermore, the binding mode of these compounds were refined through molecular dynamic simulations. Moreover, the stability of protein complexes, Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), and radius of gyration were analyzed, which led to the identification of three potent inhibitors of CXCL12 that may be pursued in the drug discovery process against cancer metastasis.


Assuntos
Aminoácidos/antagonistas & inibidores , Quimiocina CXCL12/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos , Ligantes , Aminoácidos/química , Sítios de Ligação/efeitos dos fármacos , Quimiocina CXCL12/química , Química Computacional , Humanos , Ligação de Hidrogênio/efeitos dos fármacos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica/efeitos dos fármacos , Relação Quantitativa Estrutura-Atividade , Receptores CXCR4/química , Interface Usuário-Computador
2.
J Pain ; 21(9-10): 1060-1074, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32006698

RESUMO

Complex regional pain syndrome (CRPS) results in chronic and excruciating pain in patients. Conventional therapies lack effectiveness, rendering it one of the most difficult to treat neurological conditions.. Electroacupuncture (EA) is an effective alternative therapy for pain relief. Here, we investigated whether EA exerts analgesic effect on a rat model of CRPS type-I (CRPS-I) and related mechanisms. The rat chronic postischemic pain (CPIP) model was established to mimic CRPS-I. 100Hz EA exerted robust and persistent antiallodynic effect on CPIP model compared with 2 Hz EA or sham EA. EA markedly suppressed the overexpression of CXCL12/CXCR4 in spinal cord dorsal horn (SCDH) of CPIP model, leading to substantial decrease in neuronal and glial cell activities in SCDH. Pharmacological blocking CXCR4 mimicked EA-induced antiallodynic effect and related cellular events in SCDH, whereas exogenous CXCL12 abolished EA's effect. CXCR4 signaling resulted in ERK activation in SCDH, contributing to mechanical allodynia of CPIP model rats, whereas EA markedly reduced ERK activation. Therefore, we demonstrated that EA interferes with CXCL12/CXCR4 signaling in SCDH and downstream ERK pathway to exert robust antiallodynic effect on an animal model of CRPS-I. Our work suggests that EA may be a potential therapeutic option for CRPS-I in clinic. PERSPECTIVE: Our work identified that EA exerts robust antiallodynic effect on an animal model of CRPS-I, via mechanisms involving inhibition of CXCL12/CXCR4 signaling. EA further attenuates downstream neuronal and glial cell activation and ERK pathway in SCDH. This work suggests that EA may be a potential therapeutic option for CRPS-I management in clinic.


Assuntos
Quimiocina CXCL12/antagonistas & inibidores , Síndromes da Dor Regional Complexa/terapia , Eletroacupuntura/métodos , Hiperalgesia/terapia , Receptores CXCR4/antagonistas & inibidores , Medula Espinal/metabolismo , Animais , Quimiocina CXCL12/biossíntese , Síndromes da Dor Regional Complexa/metabolismo , Modelos Animais de Doenças , Hiperalgesia/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Receptores CXCR4/biossíntese , Transdução de Sinais/fisiologia
3.
J Bone Miner Res ; 34(2): 310-326, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30395366

RESUMO

Dexamethasone (Dex) is known to cause significant bone growth impairment in childhood. Although previous studies have suggested roles of osteocyte apoptosis in the enhanced osteoclastic recruitment and local bone loss, whether it is so in the growing bone following Dex treatment requires to be established. The current study addressed the potential roles of chemokine CXCL12 in chondroclast/osteoclast recruitment and bone defects following Dex treatment. Significant apoptosis was observed in cultured mature ATDC5 chondrocytes and IDG-SW3 osteocytes after 48 hours of 10-6 M Dex treatment, and CXCL12 was identified to exhibit the most prominent induction in Dex-treated cells. Conditioned medium from the treated chondrocytes/osteocytes enhanced migration of RAW264.7 osteoclast precursor cells, which was significantly inhibited by the presence of the anti-CXCL12 neutralizing antibody. To investigate the roles of the induced CXCL12 in bone defects caused by Dex treatment, young rats were orally gavaged daily with saline or Dex at 1 mg/kg/day for 2 weeks, and received an intraperitoneal injection of anti-CXCL12 antibody or control IgG (1 mg/kg, three times per week). Aside from oxidative stress induction systemically, Dex treatment caused reductions in growth plate thickness, primary spongiosa height, and metaphysis trabecular bone volume, which are associated with induced chondrocyte/osteocyte apoptosis and enhanced chondroclast/osteoclast recruitment and osteoclastogenic differentiation potential. CXCL12 was induced in apoptotic growth plate chondrocytes and metaphyseal bone osteocytes. Anti-CXCL12 antibody supplementation considerably attenuated Dex-induced chondroclast/osteoclast recruitment and loss of growth plate cartilage and trabecular bone. CXCL12 neutralization did not affect bone marrow osteogenic potential, adiposity, and microvasculature. Thus, CXCL12 was identified as a potential molecular linker between Dex-induced skeletal cell apoptosis and chondroclastic/osteoclastic recruitment, as well as growth plate cartilage/bone loss, revealing a therapeutic potential of CXCL12 functional blockade in preventing bone growth defects during/after Dex treatment. © 2018 American Society for Bone and Mineral Research.


Assuntos
Apoptose/efeitos dos fármacos , Osso Esponjoso , Quimiocina CXCL12/metabolismo , Dexametasona/efeitos adversos , Lâmina de Crescimento , Músculo Esquelético/metabolismo , Animais , Anticorpos Neutralizantes/farmacologia , Osso Esponjoso/crescimento & desenvolvimento , Osso Esponjoso/patologia , Linhagem Celular , Quimiocina CXCL12/antagonistas & inibidores , Dexametasona/farmacologia , Lâmina de Crescimento/crescimento & desenvolvimento , Lâmina de Crescimento/patologia , Masculino , Camundongos , Músculo Esquelético/patologia , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley
4.
PLoS One ; 13(9): e0204041, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30248140

RESUMO

We observed in PRESTO-Tango ß-arrestin recruitment assays that the α1-adrenergic receptor (AR) antagonist prazosin activates chemokine (C-X-C motif) receptor (CXCR)4. This prompted us to further examine this unexpected pharmacological behavior. We screened a panel of 14 α1/2- and ß1/2/3-AR antagonists for CXCR4 and atypical chemokine receptor (ACKR)3 agonist activity in PRESTO-Tango assays against the cognate agonist CXCL12. We observed that multiple α1-AR antagonists activate CXCR4 (CXCL12 = prazosin = cyclazosin > doxazosin) and ACKR3 (CXCL12 = prazosin = cyclazosin > alfuzosin = doxazosin = phentolamine > terazosin = silodosin = tamsulosin). The two strongest CXCR4/ACKR3 activators, prazosin and cyclazosin, were selected for a more detailed evaluation. We found that the drugs dose-dependently activate both receptors in ß-arrestin recruitment assays, stimulate ERK1/2 phosphorylation in HEK293 cells overexpressing each receptor, and that their effects on CXCR4 could be inhibited with AMD3100. Both α1-AR antagonists induced significant chemical shift changes in the 1H-13C-heteronuclear single quantum correlation spectrum of CXCR4 and ACKR3 in membranes, suggesting receptor binding. Furthermore, prazosin and cyclazosin induced internalization of endogenous CXCR4/ACKR3 in human vascular smooth muscle cells (hVSMC). While these drugs did not in induce chemotaxis in hVSMC, they inhibited CXCL12-induced chemotaxis with high efficacy and potency (IC50: prazosin-4.5 nM, cyclazosin 11.6 pM). Our findings reveal unexpected pharmacological properties of prazosin, cyclazosin, and likely other α1-AR antagonists. The results of the present study imply that prazosin and cyclazosin are biased or partial CXCR4/ACKR3 agonists, which function as potent CXCL12 antagonists. Our findings could provide a mechanistic basis for previously observed anti-cancer properties of α1-AR antagonists and support the concept that prazosin could be re-purposed for the treatment of disease processes in which CXCR4 and ACKR3 are thought to play significant pathophysiological roles, such as cancer metastases or various autoimmune pathologies.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Receptores CXCR4/agonistas , Receptores CXCR/agonistas , Sítios de Ligação , Células Cultivadas , Quimiocina CXCL12/antagonistas & inibidores , Quimiotaxia/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Ressonância Magnética Nuclear Biomolecular , Prazosina/farmacologia , Quinazolinas/farmacologia , Quinoxalinas/farmacologia , Receptores CXCR/química , Receptores CXCR4/química , beta-Arrestinas/metabolismo
5.
J Vis Exp ; (133)2018 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-29578516

RESUMO

Pharmacological targeting of G protein-coupled receptors (GPCRs) is of great importance to human health, as dysfunctional GPCR-mediated signaling contributes to the progression of many diseases. The ligand/receptor pair CXC chemokine ligand 12 (CXCL12)/CXC chemokine receptor 4 (CXCR4) has raised significant clinical interest, for instance as a potential target for the treatment of cancer and inflammatory diseases. Small molecules as well as therapeutic antibodies that specifically target CXCR4 and inhibit the receptor's function are therefore considered to be valuable pharmacological tools. Here, a flow cytometry-based cellular assay that allows identification of compounds (e.g., small molecules) that abrogate CXCL12 binding to CXCR4, is described. Essentially, the assay relies on the competition for receptor binding between a fixed amount of fluorescently labeled CXCL12, the natural chemokine agonist for CXCR4, and unlabeled compounds. Hence, the undesirable use of radioactively labeled probes is avoided in this assay. In addition, living cells are used as the source of receptor (CXCR4) instead of cell membrane preparations. This allows easy adaptation of the assay to a plate format, which increases the throughput. This assay has been shown to be a valuable generic drug discovery assay to identify CXCR4-targeting compounds. The protocol can likely be adapted to other GPCRs, at least if fluorescently labeled ligands are available or can be generated. Prior knowledge concerning the intracellular signaling pathways that are induced upon activation of these GPCRs, is not required.


Assuntos
Quimiocina CXCL12/antagonistas & inibidores , Quimiocina CXCL12/metabolismo , Citometria de Fluxo/métodos , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Ligação Competitiva , Avaliação Pré-Clínica de Medicamentos/métodos , Corantes Fluorescentes , Humanos , Células Jurkat , Ligantes , Ligação Proteica
6.
Biomed Pharmacother ; 101: 599-607, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29518606

RESUMO

The C-X-C motif chemokine 12/C-X-C chemokine receptor type 4 (CXCL12/ CXCR4) biological axis plays an important role in the pathogenesis of liver fibrosis. Curcumin is known to have an anti-fibrosis effect, but the specific mechanism needs to be elucidated. There is currently no evidence illustrating a connection between curcumin and the CXCL12/CXCR4 axis in liver fibrosis. Here, we investigated the contribution of curcumin on CXCL12/ CXCR4 biological axis in liver fibrosis. Our results showed that curcumin remarkably improved hepatic function and liver fibrosis, and the effects are similar as silymarin. The alleviation of liver fibrosis with curcumin treatment was associated with a reduction of CXCL12, CXCR4, α-SMA and RhoA. In addition, curcumin markedly inhibited the proliferation and migration of HSC-T6 cells. This study indicates that curcumin could protect against hepatic stellate cells activation and migration by inhibiting the CXCL12/CXCR4 biological axis in liver fibrosis.


Assuntos
Movimento Celular/efeitos dos fármacos , Quimiocina CXCL12/antagonistas & inibidores , Curcumina/uso terapêutico , Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática/prevenção & controle , Receptores CXCR4/antagonistas & inibidores , Animais , Linhagem Celular , Movimento Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Quimiocina CXCL12/metabolismo , Curcumina/farmacologia , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Receptores CXCR4/metabolismo
7.
Integr Cancer Ther ; 16(2): 244-251, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27160279

RESUMO

Cysteine X cysteine (CXC) chemokine receptor 4 (CXCR4) and C-X-C motif chemokine 12 (CXCL12) were originally identified as chemoattractants between immune cells and sites of inflammation. Since studies have validated an increased level of CXCL12 and its receptor in patients with colorectal cancers, CXCL12/CXCR4 axis has been considered as a valuable marker of cancer metastasis. Therefore, identification of CXCR4 inhibitors has great potential to abrogate tumor metastasis. Onbaekwon (OBW) is a complex herbal formula that is derived from the literature of traditional Korean medicine Dongeuibogam. In this study, we demonstrated that OBW suppressed CXCR4 expression in various cancer cell types in a concentration- and time-dependent manner. Both proteasomal and lysosomal inhibitors had no effect to prevent the OBW-induced suppression of CXCR4, suggesting that the inhibitory effect of OBW was not due to proteolytic degradation but occurred at the transcriptional level. Electrophoretic mobility shift assay further confirmed that OBW could block endogenous activation of nuclear factor kappa B, a key transcription factor that regulates the expression of CXCR4 in colon cancer cells. Consistent with the aforementioned molecular basis, OBW abolished cell invasion induced by CXCL12 in colon cancer cells. Together, our results suggest that OBW, as a novel inhibitor of CXCR4, could be a promising therapeutic agent contributing to cancer treatment.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Movimento Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Invasividade Neoplásica/patologia , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Receptores CXCR4/antagonistas & inibidores , Linhagem Celular Tumoral , Quimiocina CXCL12/antagonistas & inibidores , Colo/efeitos dos fármacos , Colo/metabolismo , Neoplasias do Colo/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Células Hep G2 , Humanos , Medicina Tradicional Coreana/métodos , NF-kappa B/metabolismo
8.
Exp Hematol ; 42(10): 883-96, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25034231

RESUMO

Bone disease, characterized by the presence of lytic lesions and osteoporosis is the hallmark of multiple myeloma (MM). Stromal cell-derived factor 1α (SDF-1α) and its receptor, CXC chemokine receptor 4 (CXCR4), has been implicated as a regulator of bone resorption, suggesting that agents that can suppress SDF1α/CXCR4 signaling might inhibit osteoclastogenesis, a process closely linked to bone resorption. We, therefore, investigated whether gambogic acid (GA), a xanthone, could inhibit CXCR4 signaling and suppress osteoclastogenesis induced by MM cells. Through docking studies we predicted that GA directly interacts with CXCR4. This xanthone down-regulates the expression of CXCR4 on MM cells in a dose- and time-dependent manner. The down-regulation of CXCR4 was not due to proteolytic degradation, but rather GA suppresses CXCR4 mRNA expression by inhibiting nuclear factor-kappa B (NF-κB) DNA binding. This was further confirmed by quantitative chromatin immunoprecipitation assay, as GA inhibits p65 binding at the CXCR4 promoter. GA suppressed SDF-1α-induced chemotaxis of MM cells and downstream signaling of CXCR4 by inhibiting phosphorylation of Akt, p38, and Erk1/2 in MM cells. GA abrogated the RANKL-induced differentiation of macrophages to osteoclasts in a dose- and time-dependent manner. In addition, we found that MM cells induced differentiation of macrophages to osteoclasts, and that GA suppressed this process. Importantly, suppression of osteoclastogenesis by GA was mediated through IL-6 inhibition. Overall, our results show that GA is a novel inhibitor of CXCR4 expression and has a strong potential to suppress osteoclastogenesis mediated by MM cells.


Assuntos
Garcinia mangostana , Mieloma Múltiplo/patologia , Proteínas de Neoplasias/antagonistas & inibidores , Osteoclastos/efeitos dos fármacos , Receptores CXCR4/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Xantonas/farmacologia , Animais , Linhagem Celular Tumoral , Quimiocina CXCL12/antagonistas & inibidores , Quimiocina CXCL12/farmacologia , Quimiotaxia/efeitos dos fármacos , Imunoprecipitação da Cromatina , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos , Mieloma Múltiplo/complicações , Mielopoese/efeitos dos fármacos , Mielopoese/fisiologia , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Proteínas de Neoplasias/fisiologia , Osteoclastos/patologia , Osteólise/etiologia , Osteólise/prevenção & controle , Fosforilação , Fitoterapia , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Tirosina Quinases/metabolismo , Receptores CXCR4/biossíntese , Receptores CXCR4/genética , Receptores CXCR4/fisiologia , Proteínas Recombinantes/farmacologia
9.
Br J Haematol ; 166(2): 177-88, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24697238

RESUMO

B cell receptor (BCR) signalling plays a critical role in the progression of several B-cell malignancies, but its role in hairy cell leukaemia (HCL) is ambiguous. Bruton tyrosine kinase (BTK), a key player in BCR signalling, as well as B cell migration and adhesion, can be targeted with ibrutinib, a selective, irreversible BTK inhibitor. We analysed BTK expression and function in HCL and analysed the effects of ibrutinib on HCL cells. We demonstrated uniform BTK protein expression in HCL cells. Ibrutinib significantly inhibited HCL proliferation and cell cycle progression. Accordingly, ibrutinib also reduced HCL cell survival after BCR triggering with anti-immunoglobulins and abrogated the activation of kinases downstream of the BCR (PI3K and MAPK). Ibrutinib also inhibited BCR-dependent secretion of the chemokines CCL3 and CCL4 by HCL cells. Interestingly, ibrutinib inhibited also CXCL12-induced signalling, a key pathway for bone marrow homing. Collectively, our data support the clinical development of ibrutinib in patients with HCL.


Assuntos
Antineoplásicos/farmacologia , Leucemia de Células Pilosas/patologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinas/farmacologia , Receptores de Antígenos de Linfócitos B/metabolismo , Adenina/análogos & derivados , Adulto , Tirosina Quinase da Agamaglobulinemia , Idoso , Antineoplásicos/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quimiocina CCL3/metabolismo , Quimiocina CCL4/metabolismo , Quimiocina CXCL12/antagonistas & inibidores , Quimiocina CXCL12/fisiologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Humanos , Leucemia de Células Pilosas/genética , Leucemia de Células Pilosas/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação , Proteínas de Neoplasias/metabolismo , Fosforilação/efeitos dos fármacos , Piperidinas , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Pirazóis/administração & dosagem , Pirimidinas/administração & dosagem , Receptores de Antígenos de Linfócitos B/fisiologia , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas
10.
Blood ; 123(7): 1032-9, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24277076

RESUMO

The CXC chemokine ligand (CXCL12, or stromal cell-derived factor-1 as previously known) plays a critical role for homing and retention of chronic lymphocytic leukemia (CLL) cells in tissues such as the bone marrow (BM). In tissues, stromal cells constitutively secrete and present CXCL12 via cell-surface-bound glycosaminoglycans (GAGs), thereby attracting CLL cells and protecting them from cytotoxic drugs, a mechanism that may account for residual disease after conventional CLL therapy. NOX-A12, an RNA oligonucleotide in L-configuration (Spiegelmer) that binds and neutralizes CXCL12, was developed for interference with CXCL12 in the tumor microenvironment and for cell mobilization. Here, we examined effects of NOX-A12 on CLL cell migration and drug sensitivity. We found that NOX-A12 effectively inhibited CXCL12-induced chemotaxis of CLL cells. In contrast, NOX-A12 increased CLL migration underneath a confluent layer of BM stromal cells (BMSCs) due to interference with the CXCL12 gradient established by BMSCs. In particular, NOX-A12 competes with GAGs such as heparin for CXCL12 binding, leading to the release of CXCL12 from stromal cell-surface-bound GAGs, and thereby to neutralization of the chemokine. Furthermore, NOX-A12 sensitizes CLL cells toward bendamustine and fludarabine in BMSC cocultures. These data demonstrate that NOX-A12 effectively interferes with CLL cell migration and BMSC-mediated drug resistance, and establishes a rationale for clinical development of NOX-A12 in combination with conventional agents in CLL.


Assuntos
Antineoplásicos/farmacologia , Aptâmeros de Nucleotídeos/farmacologia , Movimento Celular/efeitos dos fármacos , Quimiocina CXCL12/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia Linfocítica Crônica de Células B/patologia , Células Cultivadas , Quimiocina CXCL12/farmacologia , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Humanos , Células Jurkat , Linfócitos/efeitos dos fármacos , Linfócitos/fisiologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Proteínas Recombinantes/farmacologia , Migração Transcelular de Célula/efeitos dos fármacos
11.
Clin Cancer Res ; 19(16): 4433-45, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23812669

RESUMO

PURPOSE: Our goal was to develop a potent humanized antibody against mouse/human CXCL12. This report summarized its in vitro and in vivo activities. EXPERIMENTAL DESIGN: Cell surface binding and cell migration assays were used to select neutralizing hamster antibodies, followed by testing in several animal models. Monoclonal antibody (mAb) 30D8 was selected for humanization based on its in vitro and in vivo activities. RESULTS: 30D8, a hamster antibody against mouse and human CXCL12α, CXCL12ß, and CXCL12γ, was shown to dose-dependently block CXCL12α binding to CXCR4 and CXCR7, and CXCL12α-induced Jurkat cell migration in vitro. Inhibition of primary tumor growth and/or metastasis was observed in several models. 30D8 alone significantly ameliorated arthritis in a mouse collagen-induced arthritis model (CIA). Combination with a TNF-α antagonist was additive. In addition, 30D8 inhibited 50% of laser-induced choroidal neovascularization (CNV) in mice. Humanized 30D8 (hu30D8) showed similar in vitro and in vivo activities as the parental hamster antibody. A crystal structure of the hu30D8 Fab/CXCL12α complex in combination with mutational analysis revealed a "hot spot" around residues Asn(44)/Asn(45) of CXCL12α and part of the RFFESH region required for CXCL12α binding to CXCR4 and CXCR7. Finally, hu30D8 exhibited fast clearance in cynomolgus monkeys but not in rats. CONCLUSION: CXCL12 is an attractive target for treatment of cancer and inflammation-related diseases; hu30D8 is suitable for testing this hypothesis in humans.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Quimiocina CXCL12/antagonistas & inibidores , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/química , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Linhagem Celular Tumoral , Quimiocina CXCL12/química , Quimiocina CXCL12/metabolismo , Cricetinae , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Mapeamento de Epitopos , Feminino , Humanos , Camundongos , Modelos Moleculares , Metástase Neoplásica , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Conformação Proteica , Carga Tumoral/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Biol Chem ; 288(17): 11865-76, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23449983

RESUMO

The chemokine receptor CXCR4 and its chemokine CXCL12 are involved in normal tissue patterning but also in tumor cell growth and survival as well as in the recruitment of immune and inflammatory cells, as successfully demonstrated using agents that block either CXCL12 or CXCR4. In order to achieve selectivity in drug action on the CXCR4/CXCL12 pair, in particular in the airways, drugs should be delivered as selectively as possible in the treated tissue and should not diffuse in the systemic circulation, where it may reach undesired organs. To this end, we used a previously unexploited Knoevenagel reaction to create a short lived drug, or soft drug, based on the CXCL12-neutralizing small molecule, chalcone 4, which blocks binding of CXCL12 to CXCR4. We show that the compound, carbonitrile-chalcone 4, blocks the recruitment of eosinophils to the airways in ovalbumin-sensitized and challenged mice in vivo when administered directly to the airways by the intranasal route, but not when administered systemically by the intraperitoneal route. We show that the lack of effect at a distant site is due to the rapid degradation of the molecule to inactive fragments. This approach allows selective action of the CXCL12 neutraligands although the target protein is widely distributed in the organism.


Assuntos
Antiasmáticos/farmacologia , Asma/tratamento farmacológico , Chalconas/farmacologia , Quimiocina CXCL12/antagonistas & inibidores , Animais , Antiasmáticos/química , Asma/metabolismo , Asma/patologia , Chalconas/química , Quimiocina CXCL12/metabolismo , Avaliação Pré-Clínica de Medicamentos , Eosinófilos/metabolismo , Eosinófilos/patologia , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Receptores CXCR4/metabolismo
13.
Br J Haematol ; 161(1): 104-16, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23384035

RESUMO

Despite considerable advances, multiple myeloma (MM) remains incurable and the development of novel therapies targeting the interplay between plasma cells (PCs) and their bone marrow (BM) microenvironment remains essential. We investigated the effect of various agents in vitro on the proliferation, phenotype, morphology, actin polymerization and migration of MM cells and, in vivo, the tumour growth of L363-bearing non-obese diabetic severe combined immunodeficient mice with a deficient interleukin-2 receptor gamma chain (NSG). In vitro, we observed a dose-dependent cytotoxicity with bortezomib and sorafenib. Using RPMI8226 cells co-expressing histone 2B-mCherry and cytochrome c-GFP, bortezomib- and sorafenib-induced apoptosis was confirmed, and both agents combined showed synergism. Sorafenib induced CD138-downregulation and abolished CXCL12-induced actin polymerization. L363 cells expressed CCR4 and CCR5 and migrated to their common ligand CCL5. Chemotaxis to BM stroma cells was notable and significantly reduced by sorafenib. Downregulation of phospho-ERK appeared relevant for the inhibition of actin polymerization and chemotaxis. Sorafenib alone, and combined with bortezomib, showed substantial antitumour activity in L363-bearing NSG. Correspondingly, sorafenib induced clinical responses in MM-/AL-amyloidosis patients. We conclude that, in addition to the cytotoxic and anti-angiogenic effects of sorafenib, blocking of MM cell migration and homing represent promising mechanisms to interrupt the interplay between PCs and their supportive microenvironment.


Assuntos
Actinas/metabolismo , Antineoplásicos/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Niacinamida/análogos & derivados , Compostos de Fenilureia/uso terapêutico , Sindecana-1/biossíntese , Idoso , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Ácidos Borônicos/uso terapêutico , Bortezomib , Quimiocina CXCL12/antagonistas & inibidores , Quimiocina CXCL12/farmacologia , Quimiotaxia/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Proteínas de Neoplasias/biossíntese , Niacinamida/administração & dosagem , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Compostos de Fenilureia/administração & dosagem , Compostos de Fenilureia/farmacologia , Fosforilação/efeitos dos fármacos , Polimerização/efeitos dos fármacos , Pirazinas/uso terapêutico , Sorafenibe , Células Tumorais Cultivadas , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Int J Cancer ; 128(3): 715-25, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20725999

RESUMO

Hyperthermic intraperitoneal chemotherapy (HIPEC) has shown promise in treatment of ovarian carcinosis. Despite its efficiency for the treatment of peritoneal carcinosis from digestive tract neoplasia, it has failed to demonstrate significant benefit in ovarian cancers. It is therefore essential to understand the mechanism underlying resistance to HIPEC in ovarian cancers. Mesenchymal stem cells (MSC) play an important role in the development of ovarian cancer metastasis and resistance to treatments. A recent study suggests that MSCs may be cytotoxic for cancer cells upon heat shock. In contrast, we describe the protective role of MSC against hyperthermia. Using cytokine arrays we determined that the tumor associated MSC (TAMC) secrete pro-tumoral cytokines. We studied the effect of hyperthermia in co-culture setting of TAMC or BM-MCS associated with ovarian cancer cell lines (SKOV3 and CaOV3) with polyvariate flow cytometry. We demonstrate that hyperthermia does not challenge survival of TAMC or bone marrow derived MSC (BM-MSC). Both TAMC and BM-MSC displayed strong protective effect inducing thermotolerance in ovarian cancer cells (OCC). Transwell experiments demonstrated the role of secreted factors. We showed that CXCL12 was inducing thermotolerance and that inhibition of CXCL12/CXCR4 interaction restored cytotoxicity of hyperthermia in co-culture experiments. Contrary to the previous published study we demonstrated that TAMC and BM-MSC co-cultured with OCC induced thermotolerance in a CXCL12 dependant manner. Targeting the interaction between stromal and cancer cells through CXCL12 inhibition might restore hyperthermia sensitivity in ovarian cancers, and thus improve HIPEC efficiency.


Assuntos
Células-Tronco Mesenquimais/fisiologia , Neoplasias Ovarianas/patologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular , Quimiocina CXCL12/antagonistas & inibidores , Técnicas de Cocultura , Feminino , Citometria de Fluxo , Genes Reporter , Proteínas de Fluorescência Verde/genética , Temperatura Alta , Humanos , Hipertermia Induzida , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/mortalidade , Receptores CXCR4/antagonistas & inibidores , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA