Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 255: 112760, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32173427

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Chinese herbal medicine Qing-Dai (also known as Indigo naturalis) extracted from indigo-bearing plants including Baphicacanthus cusia (Ness) Bremek was previously reported to exhibit anti-psoriatic effects in topical treatment. TH17 was later established as a key player in the pathogenesis of psoriasis. We investigated the anti-TH17 effect of Indigo naturalis and its active compounds. The aim of this study is to evaluate the toxicity of Indigo naturalis (IN) and its derivatives on five cell types involved in psoriasis, and to study the anti-inflammatory mechanism for the toxicity. MATERIALS AND METHODS: Following the fingerprint and quantity analysis of indirubin, indigo, and tryptanthrin in IN extract, we used MTS kits to measure the anti-proliferative effect of IN and three active compounds on five different cell types identified in psoriatic lesions. Quantitative RT-PCR analysis was used to measure the expression of various genes identified in the activated keratinocytes and TH17 polarized gene expression in RORγt-expressing T cells. RESULTS: We showed that IN differentially inhibited the proliferation of keratinocytes and endothelial cells but not monocytes, fibroblasts nor Jurkat T cells. Among three active compounds identified in IN, tryptanthrin was the most potent compound to reduce their proliferation. In addition to differentially reducing IL6 and IL8 expression, both IN and tryptanthrin also potently decreased the expression of anti-microbial S100A9 peptide, CCL20 chemokine, IL1B and TNFA cytokines, independent of NF-κB-p65-activation. Their attenuating effect was also detected on the expression of signature cytokines or chemokines induced during RORγT-induced TH17 polarization. CONCLUSIONS: We were the first to confirm a direct anti-TH17 effect of both IN herbal extract and tryptanthrin.


Assuntos
Citocinas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Imunossupressores/farmacologia , Mediadores da Inflamação/metabolismo , Psoríase/prevenção & controle , Quinazolinas/farmacologia , Pele/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Humanos , Quinase I-kappa B/deficiência , Quinase I-kappa B/genética , Células Jurkat , Queratinócitos/efeitos dos fármacos , Queratinócitos/imunologia , Queratinócitos/metabolismo , Camundongos Knockout , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Fenótipo , Psoríase/genética , Psoríase/imunologia , Psoríase/metabolismo , Pele/imunologia , Pele/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Células U937
2.
Nature ; 497(7448): 211-6, 2013 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-23636330

RESUMO

Ageing is a result of gradual and overall functional deteriorations across the body; however, it is unknown whether an individual tissue primarily works to mediate the ageing progress and control lifespan. Here we show that the hypothalamus is important for the development of whole-body ageing in mice, and that the underlying basis involves hypothalamic immunity mediated by IκB kinase-ß (IKK-ß), nuclear factor κB (NF-κB) and related microglia-neuron immune crosstalk. Several interventional models were developed showing that ageing retardation and lifespan extension are achieved in mice by preventing ageing-related hypothalamic or brain IKK-ß and NF-κB activation. Mechanistic studies further revealed that IKK-ß and NF-κB inhibit gonadotropin-releasing hormone (GnRH) to mediate ageing-related hypothalamic GnRH decline, and GnRH treatment amends ageing-impaired neurogenesis and decelerates ageing. In conclusion, the hypothalamus has a programmatic role in ageing development via immune-neuroendocrine integration, and immune inhibition or GnRH restoration in the hypothalamus/brain represent two potential strategies for optimizing lifespan and combating ageing-related health problems.


Assuntos
Envelhecimento/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/fisiologia , Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Envelhecimento/efeitos dos fármacos , Envelhecimento/genética , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Cognição/efeitos dos fármacos , Feminino , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Hormônio Liberador de Gonadotropina/farmacologia , Hipotálamo/citologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/enzimologia , Quinase I-kappa B/deficiência , Quinase I-kappa B/genética , Longevidade/efeitos dos fármacos , Longevidade/genética , Longevidade/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/enzimologia , Microglia/fisiologia , Neurogênese , Reprodução/fisiologia
3.
Gut ; 59(5): 655-65, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20427400

RESUMO

OBJECTIVE: The death rate of mature hepatocytes is chronically increased in various liver diseases, triggering responses that prevent liver atrophy, but often cause fibrosis. Mice with targeted disruption of inhibitor kappa B kinase (Ikk) in hepatocytes (HEP mice) provide a model to investigate this process because inhibiting Ikk-nuclear factor-kappaB (NF-kappaB) signalling in hepatocytes increases their apoptosis. METHODS: Cell proliferation, apoptosis, progenitors, fibrosis and production of Hedgehog (Hh) ligands (progenitor and myofibroblast growth factors) were compared in HEP and control mice before and after feeding methionine choline-deficient ethionine-supplemented (MCDE) diets. Ikkbeta was deleted from primary hepatocytes to determine the effects on Hh ligand production; Hh signalling was inhibited directly in progenitors to determine the effects on viability. Liver sections from patients were examined to assess relationships between hepatocyte production of Hh ligands, accumulation of myofibroblastic cells and liver fibrosis. RESULTS: Disrupting the Ikk-NF-kappaB pathway in hepatocytes inhibited their proliferation but induced their production of Hh ligands. The latter provided viability signals for progenitors and myofibroblasts, enhancing accumulation of these cell types and causing fibrogenesis. Findings in the mouse models were recapitulated in diseased human livers. CONCLUSION: Dying mature hepatocytes produce Hh ligands which promote the compensatory outgrowth of progenitors and myofibroblasts. These results help to explain why diseases that chronically increase hepatocyte death promote cirrhosis.


Assuntos
Hepatócitos/patologia , Hepatopatias/patologia , Células-Tronco/patologia , Animais , Apoptose , Núcleo Celular/metabolismo , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Proteínas Hedgehog/metabolismo , Hepatócitos/metabolismo , Humanos , Quinase I-kappa B/antagonistas & inibidores , Quinase I-kappa B/deficiência , Quinase I-kappa B/genética , Antígeno Ki-67/metabolismo , Ligantes , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática Experimental/metabolismo , Cirrose Hepática Experimental/patologia , Hepatopatias/metabolismo , Camundongos , Camundongos Knockout , Transdução de Sinais/fisiologia , Células-Tronco/metabolismo , Fator de Transcrição RelA/metabolismo
4.
Ann Rheum Dis ; 68(2): 257-63, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18653628

RESUMO

OBJECTIVES: The I kappaB kinase (IKK)-related kinase IKKepsilon regulates type I interferon expression and responses as well as proinflammatory mediator production. We examined the role of IKKepsilon in arthritis and its ability to enhance the therapeutic response to systemic interferon (IFN) beta therapy in passive murine K/BxN arthritis. METHODS: IKKepsilon(-/-), IFN alpha(approximately)beta R(-/-) and wild type mice were given K/BxN serum and treated with polyinosinic polycytidylic acid (poly(I:C)), IFN beta, or normal saline. Clinical response and histological scores were assessed. Gene expression in the paws was measured by quantitative PCR. Serum interleukin 1a receptor agonist (IL1Ra) and IL10 were measured by ELISA and multiplex bead array. RESULTS: Arthritis was almost completely blocked in wild type mice if arthritogenic K/BxN serum and the Toll-like receptor (TLR)3 ligand, poly(I:C), were coadministered at the onset of the model, but not in established disease. Mice deficient in IFN alpha(approximately)beta R had an accelerated course of arthritis, and did not respond to poly(I:C). IKKepsilon null mice had a modest decrease in clinical arthritis compared with heterozygous mice. Low doses of IFN beta that were ineffective in wild type mice significantly decreased clinical arthritis in IKKepsilon null mice. Articular chemokine gene expression was reduced in the IKKepsilon(-/-) mice with arthritis and secreted IL1Ra (sIL1Ra) mRNA was significantly increased. Serum levels of IL1Ra were increased in low dose IFN beta-treated IKKepsilon(-/-) mice. CONCLUSIONS: Subtherapeutic doses of IFN beta enhance the anti-inflammatory effects of IKKepsilon deficiency, possibly by increasing production of IL1Ra and unmasking the antichemokine effects. Combination therapy with low dose IFN beta and an IKKepsilon inhibitor might improve efficacy of either agent alone and offers a novel approach to RA.


Assuntos
Antirreumáticos/uso terapêutico , Artrite Experimental/tratamento farmacológico , Quinase I-kappa B/fisiologia , Interferon beta/uso terapêutico , Animais , Artrite Experimental/enzimologia , Artrite Experimental/patologia , Modelos Animais de Doenças , Progressão da Doença , Avaliação Pré-Clínica de Medicamentos/métodos , Quinase I-kappa B/deficiência , Indutores de Interferon/uso terapêutico , Proteína Antagonista do Receptor de Interleucina 1/biossíntese , Proteína Antagonista do Receptor de Interleucina 1/genética , Proteína Antagonista do Receptor de Interleucina 1/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Poli I-C/uso terapêutico , Proteínas Recombinantes/uso terapêutico , Índice de Gravidade de Doença , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA