Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
PLoS Comput Biol ; 17(11): e1009171, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34843456

RESUMO

Predictive approaches such as virtual screening have been used in drug discovery with the objective of reducing developmental time and costs. Current machine learning and network-based approaches have issues related to generalization, usability, or model interpretability, especially due to the complexity of target proteins' structure/function, and bias in system training datasets. Here, we propose a new method "DRUIDom" (DRUg Interacting Domain prediction) to identify bio-interactions between drug candidate compounds and targets by utilizing the domain modularity of proteins, to overcome problems associated with current approaches. DRUIDom is composed of two methodological steps. First, ligands/compounds are statistically mapped to structural domains of their target proteins, with the aim of identifying their interactions. As such, other proteins containing the same mapped domain or domain pair become new candidate targets for the corresponding compounds. Next, a million-scale dataset of small molecule compounds, including those mapped to domains in the previous step, are clustered based on their molecular similarities, and their domain associations are propagated to other compounds within the same clusters. Experimentally verified bioactivity data points, obtained from public databases, are meticulously filtered to construct datasets of active/interacting and inactive/non-interacting drug/compound-target pairs (~2.9M data points), and used as training data for calculating parameters of compound-domain mappings, which led to 27,032 high-confidence associations between 250 domains and 8,165 compounds, and a finalized output of ~5 million new compound-protein interactions. DRUIDom is experimentally validated by syntheses and bioactivity analyses of compounds predicted to target LIM-kinase proteins, which play critical roles in the regulation of cell motility, cell cycle progression, and differentiation through actin filament dynamics. We showed that LIMK-inhibitor-2 and its derivatives significantly block the cancer cell migration through inhibition of LIMK phosphorylation and the downstream protein cofilin. One of the derivative compounds (LIMKi-2d) was identified as a promising candidate due to its action on resistant Mahlavu liver cancer cells. The results demonstrated that DRUIDom can be exploited to identify drug candidate compounds for intended targets and to predict new target proteins based on the defined compound-domain relationships. Datasets, results, and the source code of DRUIDom are fully-available at: https://github.com/cansyl/DRUIDom.


Assuntos
Quinases Lim/antagonistas & inibidores , Quinases Lim/química , Fatores de Despolimerização de Actina/química , Fatores de Despolimerização de Actina/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Biologia Computacional , Simulação por Computador , Desenvolvimento de Medicamentos , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Interações Medicamentosas , Humanos , Técnicas In Vitro , Ligantes , Quinases Lim/metabolismo , Aprendizado de Máquina , Simulação de Acoplamento Molecular , Invasividade Neoplásica/prevenção & controle , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Farmacologia em Rede/estatística & dados numéricos , Fosforilação/efeitos dos fármacos , Domínios Proteicos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Interface Usuário-Computador
2.
Arch Pharm Res ; 42(6): 481-491, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31030376

RESUMO

Rho-associated coiled-coil-containing protein kinase (ROCK)/Lin11, Isl-1 and Mec-3 kinase (LIMK)/cofilin-signaling cascades are stimulated by receptor tyrosine kinases, G protein-coupled receptors, integrins and its ligands, growth factors, hormones, fibronectin, collagen, and laminin. Activated signaling cascades can cause transit from normal cells to cancer cells by modulating actin/filament dynamics. In various cancers including breast, prostate, and colorectal cancers, high expression or activity of each cascade protein is significantly associated with poor survival rate of patients as well as aggressive metastasis. Silencing ROCK, LIMK, or cofilin can abrogate their activities and inhibit cancer cell growth, invasion, and metastasis. Therefore ROCK/LIMK/cofilin signaling proteins might be good candidates to develop cancer prevention strategies or therapeutics. Currently, netarsudil, a ROCK inhibitor, is only used in clinical patients for glaucoma or ocular hypertension, but not for cancer. In this review, we will discuss comprehensive ROCK/LIMK/cofilin signaling pathway in cancers and its inhibitors for developing cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Despolimerização de Actina/antagonistas & inibidores , Fatores de Despolimerização de Actina/metabolismo , Animais , Antineoplásicos/uso terapêutico , Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Humanos , Quinases Lim/antagonistas & inibidores , Quinases Lim/metabolismo , Terapia de Alvo Molecular/métodos , Neoplasias/patologia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo
3.
Asian J Androl ; 21(5): 493-500, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30829289

RESUMO

We aimed to determine whether combination of LIM-kinase 2 inhibitor (LIMK2i) and phosphodiesterase type-5 inhibitor (PDE5i) could restore erectile function through suppressing cavernous fibrosis and improving cavernous apoptosis in a rat model of cavernous nerve crush injury (CNCI). Seventy 12-week-old Sprague-Dawley rats were equally distributed into five groups as follows: (1) sham surgery (Group S), (2) CNCI (Group I), (3) CNCI treated with daily intraperitoneal administration of 10.0 mg kg-1 LIMK2i (Group I + L), (4) daily oral administration of 20.0 mg kg-1 udenafil, PDE5i (Group I + U), and (5) combined administration of 10.0 mg kg-1 LIMK2i and 20.0 mg kg-1 udenafil (Group I + L + U). Rats in Groups I + L, I + U, and I + L + U were treated with respective regimens for 2 weeks after CNCI. At 2 weeks after surgery, erectile response was assessed using electrostimulation. Penile tissues were processed for histological studies and western blot. Group I showed lower intracavernous pressure (ICP)/mean arterial pressure (MAP), lower area under the curve (AUC)/MAP, decreased immunohistochemical staining for alpha-smooth muscle (SM) actin, higher apoptotic index, lower SM/collagen ratio, increased phospho-LIMK2-positive fibroblasts, decreased protein kinase B/endothelial nitric oxide synthase (Akt/eNOS) phosphorylation, increased LIMK2/cofilin phosphorylation, and increased protein expression of fibronectin, compared to Group S. In all three treatment groups, erectile responses, protein expression of fibronectin, and SM/collagen ratio were improved. Group I + L + U showed greater improvement in erectile response than Group I + L. SM content and apoptotic index in Groups I + U and I + L + U were improved compared to those in Group I. However, Group I + L did not show a significant improvement in SM content or apoptotic index. The number of phospho-LIMK2-positive fibroblasts was normalized in Groups I + L and I + L + U, but not in Group I + U. Akt/eNOS phosphorylation was improved in Groups I + U and I + L + U, but not in Group I + L. LIMK2/cofilin phosphorylation was improved in Groups I + L and I + L + U, but not in Group I + U. Our data indicate that combined treatment of LIMK2i and PDE5i immediate after CN injury could improve erectile function by improving cavernous apoptosis or eNOS phosphorylation and suppressing cavernous fibrosis. Rectification of Akt/eNOS and LIMK2/cofilin pathways appears to be involved in their improvement.


Assuntos
Disfunção Erétil/tratamento farmacológico , Disfunção Erétil/etiologia , Quinases Lim/antagonistas & inibidores , Traumatismos dos Nervos Periféricos/complicações , Inibidores da Fosfodiesterase 5/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Pressão Arterial , Estimulação Elétrica , Disfunção Erétil/patologia , Masculino , Compressão Nervosa , Óxido Nítrico Sintase Tipo III/metabolismo , Pênis/efeitos dos fármacos , Pênis/patologia , Traumatismos dos Nervos Periféricos/patologia , Fosforilação , Pirimidinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Sulfonamidas/uso terapêutico
4.
Asian J Androl ; 20(4): 372-378, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29516877

RESUMO

We evaluated whether LIM-kinase 2 inhibitor (LIMK2i) could improve erectile function by suppressing corporal fibrosis through the normalization of the Rho-associated coiled-coil protein kinase 1 (ROCK1)/LIMK2/Cofilin pathway in a rat model of cavernous nerve crush injury (CNCI). Sixty 11-week-old male Sprague-Dawley rats were divided equally into five groups: sham surgery (S), CNCI (I), and CNCI treated with low-dose (L), medium-dose (M), and high-dose (H) LIMK2i. The L, M, and H groups were treated with a daily intraperitoneal injection of LIMK2i (2.5, 5.0, and 10.0 mg kg-1 body weight, respectively) for 1 week after surgery. The erectile response was assessed using electrostimulation at 1 week, postoperatively. Penile tissues were processed for Masson's trichrome staining, double immunofluorescence, and Western blot assay. Erectile responses in the H group improved compared with the I group, while the M group showed only partial improvement. A significantly decreased smooth muscle/collagen ratio and an increased content of fibroblasts positive for phospho-LIMK2 were noted in the I group. The M and H groups revealed significant improvements in histological alterations and the dysregulated LIMK2/Cofilin pathway, except for LIMK2 phosphorylation in the M group. The inhibition of LIMK2 did not affect the ROCK1 protein expression. The content of fibroblasts positive for phospho-LIMK2 in the H group returned to the level found in the S group, whereas it did not in the M group. However, the L group did not exhibit such improvements. Our data suggest that the inhibition of LIMK2, particularly with administration of 10.0 mg kg-1 body weight LIMK2i, can improve corporal fibrosis and erectile function by normalizing the LIMK2/Cofilin pathway.


Assuntos
Disfunção Erétil/tratamento farmacológico , Quinases Lim/antagonistas & inibidores , Doenças do Pênis/tratamento farmacológico , Pênis/inervação , Traumatismos dos Nervos Periféricos/complicações , Animais , Cofilina 1/efeitos dos fármacos , Cofilina 1/metabolismo , Estimulação Elétrica , Disfunção Erétil/etiologia , Fibroblastos/patologia , Fibrose/tratamento farmacológico , Masculino , Doenças do Pênis/complicações , Traumatismos dos Nervos Periféricos/patologia , Fosforilação , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Quinases Associadas a rho/efeitos dos fármacos , Quinases Associadas a rho/genética
5.
Phytother Res ; 30(1): 120-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26537230

RESUMO

PAK1 (RAC/CDC42-activated kinase 1) is the major oncogenic kinase, and a number of herbal PAK1-blockers such as propolis and curcumin have been shown to be anti-oncogenic and anti-melanogenic as well as anti-alopecia (promoting hair growth). Previously, we found several distinct PAK1-inhibitors in Okinawa plants including Alpinia zerumbet (alpinia). Thus, here, we tested the effects of these herbal compounds and their derivatives on the growth of cancer or normal hair cells, and melanogenesis in cell culture of A549 lung cancer, hair follicle dermal papilla cell, and B16F10 melanoma. Among these herbal PAK1-inhibitors, cucurbitacin I from bitter melon (Goya) turned out to be the most potent to inhibit the growth of human lung cancer cells with the IC50 around 140 nM and to promote the growth of hair cells with the effective dose around 10 nM. Hispidin, a metabolite of 5,6-dehydrokawain from alpinia, inhibited the growth of cancer cells with the IC50 of 25 µM as does artepillin C, the major anti-cancer ingredient in Brazilian green propolis. Mimosine tetrapeptides (MFWY, MFYY, and MFFY) and hispidin derivatives (H1-3) also exhibited a strong anti-cancer activity with the IC50 ranging from 16 to 30 µM. Mimosine tetrapeptides and hispidin derivatives strongly suppressed the melanogenesis in melanoma cells.


Assuntos
Alpinia/química , Folículo Piloso/efeitos dos fármacos , Fenilpropionatos/farmacologia , Quinases Ativadas por p21/antagonistas & inibidores , Animais , Brasil , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Folículo Piloso/citologia , Humanos , Quinases Lim/antagonistas & inibidores , Melaninas/biossíntese , Melanoma Experimental/patologia , Camundongos , Momordica charantia/química , Pironas/farmacologia , Triterpenos/farmacologia
6.
Biochem Pharmacol ; 102: 45-63, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26707799

RESUMO

Cucurbitacins are cytotoxic triterpenoid sterols isolated from plants. One of their earliest cellular effect is the aggregation of actin associated with blockage of cell migration and division that eventually lead to apoptosis. We unravel here that cucurbitacin I actually induces the co-aggregation of actin with phospho-myosin II. This co-aggregation most probably results from the stimulation of the Rho/ROCK pathway and the direct inhibition of the LIMKinase. We further provide data that suggest that the formation of these co-aggregates is independent of a putative pro-oxidant status of cucurbitacin I. The results help to understand the impact of cucurbitacins on signal transduction and actin dynamics and open novel perspectives to use it as drug candidates for cancer research.


Assuntos
Actinas/metabolismo , Quinases Lim/antagonistas & inibidores , Quinases Lim/metabolismo , Miosina Tipo II/metabolismo , Triterpenos/farmacologia , Quinases Associadas a rho/metabolismo , Actinas/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Fosfomicina/química , Fosfomicina/metabolismo , Células HeLa , Humanos , Miosina Tipo II/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Sementes , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Triterpenos/química , Triterpenos/isolamento & purificação , Quinases Associadas a rho/química
7.
J Biomol Screen ; 17(4): 460-8, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22156225

RESUMO

Kinases are attractive drug targets because of the central roles they play in signal transduction pathways and human diseases. Their well-formed adenosine triphosphate (ATP)-binding pockets make ideal targets for small-molecule inhibitors. For drug discovery purposes, many peptide-based kinase assays have been developed that measure substrate phosphorylation using fluorescence-based readouts. However, for some kinases these assays may not be appropriate. In the case of the LIM kinases (LIMK), an inability to phosphorylate peptide substrates resulted in previous high-throughput screens (HTS) using radioactive labeling of recombinant cofilin protein as the readout. We describe the development of an HTS-compatible assay that measures relative ATP levels using luciferase-generated luminescence as a function of LIMK activity. The assay was inexpensive to perform, and proof-of-principle screening of kinase inhibitors demonstrated that compound potency against LIMK could be determined; ultimately, the assay was used for successful prosecution of automated HTS. Following HTS, the secondary assay format was changed to obtain more accurate measures of potency and mechanism of action using more complex (and expensive) assays. The luciferase assay nonetheless provides an inexpensive and reliable primary assay for HTS that allowed for the identification of LIMK inhibitors to initiate discovery programs for the eventual treatment of human diseases.


Assuntos
Trifosfato de Adenosina/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Quinases Lim/antagonistas & inibidores , Luciferases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Fatores de Despolimerização de Actina/metabolismo , Difosfato de Adenosina/metabolismo , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Humanos , Fosforilação/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA