Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chin J Integr Med ; 30(4): 299-310, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38212502

RESUMO

OBJECTIVE: To investigate the effect of isorhamnetin on the pathology of rheumatoid arthritis (RA). METHODS: Tumor necrosis factor (TNF)- α -induced fibroblast-like synoviocytes (FLS) was exposed to additional isorhamnetin (10, 20 and 40 µ mol/L). Overexpression vectors for matrix metalloproteinase-2 (MMP2) or MMP9 or SRC were transfected to explore their roles in isorhamnetin-mediated RA-FLS function. RA-FLS viability, migration, and invasion were evaluated. Moreover, a collagen-induced arthritis (CIA) rat model was established. Rats were randomly divided to sham, CIA, low-, medium-, and high-dosage groups using a random number table (n=5 in each group) and administed with normal saline or additional isorhamnetin [2, 10, and 20 mg/(kg·day)] for 4 weeks, respectively. Arthritis index was calculated and synovial tissue inflammation was determined in CIA rats. The levels of MMP2, MMP9, TNF-α, interleukin-6 (IL-6), and IL-1 ß, as well as the phosphorylation levels of SRC, extracellular regulated kinase (ERK), and cyclic adenosine monophosphate response element-binding (CREB), were detected in RA-FLS and synovial tissue. Molecular docking was also used to analyze the binding of isorhamnetin to SRC. RESULTS: In in vitro studies, isorhamnetin inhibited RA-FLS viability, migration and invasion (P<0.05). Isorhamnetin downregulated the levels of MMP2, MMP9, TNF-α, IL-6, and IL-1 ß in RA-FLS (P<0.05). The overexpression of either MMP2 or MMP9 reversed isorhamnetin-inhibited RA-FLS migration and invasion, as well as the levels of TNF-α, IL-6, and IL-1 ß (P<0.05). Furthermore, isorhamnetin bound to SRC and reduced the phosphorylation of SRC, ERK, and CREB (P<0.05). SRC overexpression reversed the inhibitory effect of isorhamnetin on RA-FLS viability, migration and invasion, as well as the negative regulation of MMP2 and MMP9 (P<0.05). In in vivo studies, isorhamnetin decreased arthritis index scores (P<0.05) and alleviated synovial inflammation. Isorhamnetin reduced the levels of MMP2, MMP9, TNF-α, IL-6, and IL-1 ß, as well as the phosphorylation of SRC, ERK, and CREB in synovial tissue (P<0.05). Notably, the inhibitory effect of isorhamnetin was more pronounced at higher concentrations (P<0.05). CONCLUSION: Isorhamnetin exhibited anti-RA effects through modulating SRC/ERK/CREB and MMP2/MMP9 signaling pathways, suggesting that isorhamnetin may be a potential therapeutic agent for RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Quercetina/análogos & derivados , Ratos , Animais , Metaloproteinase 2 da Matriz/metabolismo , Quinases da Família src/metabolismo , Quinases da Família src/farmacologia , Quinases da Família src/uso terapêutico , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Simulação de Acoplamento Molecular , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Inflamação/patologia , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Células Cultivadas , Fibroblastos , Proliferação de Células
2.
Integr Cancer Ther ; 21: 15347354221124861, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36154723

RESUMO

Owing to the crucial role of Src in cancer metastasis, interruption of Src and its signaling has been considered a promising strategy for cancer metastasis treatment. Cucurbitacin B, a dietary triterpenoid, has been shown to possess anti-proliferative and apoptosis-inducing activities in cholangiocarcinoma (CCA) cells via suppressing the activation of FAK which is a main downstream Src effector. We hypothesized that cucurbitacin B might act as a Src suppressant which conferring anti-metastasis effect against CCA cells. To investigate this, the role of Src in regulating metastasis behavior of CCA cells and the effect of cucurbitacin B on Src-mediated metastatic phenotype of these cells were determined. The results showed that activation of Src significantly enhanced the migratory and invasive abilities of CCA cells. Molecular analysis revealed that Src-facilitated metastasis behavior of CCA cells occurred by modifying expression of a wide range of metastasis-related genes in the cells. Consistent with gene expression results, activation of Src significantly induced the protein expression of 2 important metastasis-associated molecules, MMP-9 and VEGF. Cucurbitacin B markedly suppressed activation of Src and its key effector, FAK. As a consequence, the alteration of expression profiles of metastasis-associated genes induced by Src activator in CCA cells was diminished by cucurbitacin B treatment. The compound also down-regulated Src-induced expression of MMP-9 and VEGF proteins in the cells. Moreover, molecular docking analysis revealed that cucurbitacin B could interact with Src kinase domain and possibly restrain the kinase from being activated by hindering the ATP binding. In conclusion, cucurbitacin B exhibited anti-metastatic property in CCA cells via negatively influencing Src and Src-related oncogenic signaling. This compound may therefore be a potential therapeutic drug for further development as an anti-Src agent for treatment of metastatic CCA.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Triterpenos , Trifosfato de Adenosina/farmacologia , Trifosfato de Adenosina/uso terapêutico , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/patologia , Humanos , Metaloproteinase 9 da Matriz , Simulação de Acoplamento Molecular , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Quinases da Família src/farmacologia , Quinases da Família src/uso terapêutico
3.
ChemMedChem ; 2(9): 1346-60, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17530729

RESUMO

3-Phenylpyrazolo[3,4-d]pyrimidine (PhPP) derivatives substituted with an alkyl or aryl carboxylic acid at the N1-endocyclic amine, such as PhPP-CH(2)COOH (IC(50)=250 microM), and peptides Ac-CIYKYY (IC(50)=400 microM) and Ac-YIYGSFK (IC(50)=570 microM) were weak inhibitors of polyE(4)Y phosphorylation by active c-Src. A series of PhPP-peptide conjugates were synthesized using PhPP as an ATP mimic and CIYKYY or YIYGSFK as a peptide substrate to improve the inhibitory potency against active c-Src kinase. PhPP derivatives were attached to the N terminus or the side chain of amino acids in the peptide template. Two N-terminal substituted conjugates, PhPP-CH(2)CO-CIYKYY (IC(50)=0.38 microM) and PhPP-CH(2)CO-YIYGSFK (IC(50)=2.7 microM), inhibited the polyE(4)Y phosphorylation by active c-Src significantly higher than that of the parent compounds. The conjugation of PhPP with the peptides produced a synergistic inhibition effect possibly through creation of favorable interactions between the conjugate and the kinase domain as shown by molecular modeling studies.


Assuntos
Peptídeos/química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/química , Quinases da Família src/síntese química , Quinases da Família src/farmacologia , Cromatografia Líquida de Alta Pressão , Avaliação Pré-Clínica de Medicamentos , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
4.
J Neurochem ; 81(4): 758-64, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12065635

RESUMO

The channel activity of NMDA receptors is regulated by phosphorylation by protein kinases and by interaction with other proteins. Recombinant NR1/NR2A subtype NMDA receptor channels are potentiated by the protein tyrosine kinase Src, an effect which is mediated by a reduction in the high-affinity, voltage-independent Zn(2+) inhibition. However, it has been reported that Src-induced potentiation of NMDA receptor currents in hippocampus neurons is not mediated by a reduction in Zn(2+) inhibition. The post-synaptic density protein PSD-95 interacts with the C-terminus of NR2 subunits of the NMDA receptor. Here we demonstrate that PSD-95 eliminates the Src-induced potentiation of NR1/NR2A channels expressed in oocytes and reduces the sensitivity of the channels to Zn(2+). Our results reveal that the absence of Src-induced potentiation of PSD-95-coupled NR1/NR2A channels is not to due to the reduced sensitivity of these channels to Zn(2+). These results indicate that PSD-95 functionally modulates NR1/NR2A channels and explain why Src-induced potentiation of NMDA receptor currents in hippocampus neurons is not mediated by a reduction in Zn(2+) inhibition.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Zinco/antagonistas & inibidores , Quinases da Família src/metabolismo , Animais , Relação Dose-Resposta a Droga , Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/farmacologia , Glicina/farmacologia , Técnicas In Vitro , Microinjeções , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/farmacologia , Oócitos/metabolismo , Técnicas de Patch-Clamp , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , RNA Complementar/administração & dosagem , Receptores de N-Metil-D-Aspartato/genética , Xenopus laevis , Zinco/farmacologia , Quinases da Família src/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA