Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 283
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 48(12): 3294-3307, 2023 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-37382014

RESUMO

A strategy combining collision cross section(CCS) prediction and quantitative structure-retention relationship(QSRR) model for quinoline and isoquinoline alkaloids was established based on UHPLC-IM-Q-TOF-MS and applied to Phellodendri Chinensis Cortex and Phellodendri Amurensis Cortex. The strategy included the following three steps.(1) The molecular features were extracted by the "find features" algorithm.(2) The potential quinoline and isoquinoline alkaloids were screened by filtering the original characteristic ions extracted from Phellodendri Chinensis Cortex and Phellodendri Amurensis Cortex by the established CCS vs m/z prediction interval.(3) According to the retention time of candidate compounds predicted by QSRR model, the chemical constituents were identified in combination with the characteristic fragment ions and pyrolysis law of secondary mass spectrometry. With the strategy, a total of 80 compounds were predicted, and 15 were identified accurately. The strategy is effective for the identification of small analogs of traditional Chinese medicine.


Assuntos
Alcaloides , Medicamentos de Ervas Chinesas , Phellodendron , Medicamentos de Ervas Chinesas/química , Espectrometria de Massa com Cromatografia Líquida , Phellodendron/química , Quinolinas/química , Quinolinas/isolamento & purificação , Alcaloides/química , Alcaloides/isolamento & purificação , Isoquinolinas/química , Isoquinolinas/isolamento & purificação
2.
J Org Chem ; 87(19): 12710-12720, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36083616

RESUMO

This study describes the reaction of 2-amino arylalkynyl ketones with organoselenolates to form (Z)-vinyl selenides, which lead to 4-organoselenyl quinolines via an intramolecular condensation. Using the optimized reaction conditions, the generality of this cyclization was studied with various arylalkynyl ketones and diorganyl diselenides. The study of the reaction mechanisms led to the isolation and identification of a vinyl selenide, which was the key intermediate for this cyclization. To expand the structural diversity and to demonstrate the applicability of the 4-organoselenyl quinolines prepared, we studied their application as substrates in the cleavage of the carbon-selenium bond using n-butyllithium followed by the capture of the lithium intermediate by electrophiles and Suzuki and Sonogashira cross-coupling reactions.


Assuntos
Quinolinas , Selênio , Alcinos/química , Carbono , Catálise , Ciclização , Cetonas/química , Lítio , Estrutura Molecular , Quinolinas/química , Estereoisomerismo
3.
Molecules ; 27(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35164019

RESUMO

Breast cancer is a major cause of death in women worldwide. In this study, 60 female rats were classified into 6 groups; negative control, α-aminophosphonates, arylidine derivatives of 3-acetyl-1-aminoquinolin-2(1H)-one, DMBA, DMBA & α-aminophosphonates, and DMBA & arylidine derivatives of 3-acetyl-1-aminoquinolin-2(1H)-one. New α-aminophosphonates and arylidine derivatives of 3-acetyl-1-aminoquinolin-2(1H)-one were synthesized and elucidated by different spectroscopic and elemental analysis. Histopathological examination showed marked proliferation of cancer cells in the DMBA group. Treatment with α-aminophosphonates mainly decreased tumor mass. Bcl2 expression increased in DMBA-administered rats and then declined in the treated groups, mostly with α-aminophosphonates. The level of CA15-3 markedly declined in DMBA groups treated with α-aminophosphonates and arylidine derivatives of 3-acetyl-1-aminoquinolin-2(1H)-one. Gene expression of GST-P, PCNA, PDK, and PIK3CA decreased in the DMBA group treated with α-aminophosphonates and arylidine derivatives of 3-acetyl-1-aminoquinolin-2(1H)-one, whereas PIK3R1 and BAX increased in the DMBA group treated with α-aminophosphonates and arylidine derivatives of 3-acetyl-1-aminoquinolin-2(1H)-one. The molecular docking postulated that the investigated compounds can inhibt the Thymidylate synthase TM due to high hydrophobicity charachter.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Mamárias Experimentais/tratamento farmacológico , Timidilato Sintase/antagonistas & inibidores , 9,10-Dimetil-1,2-benzantraceno , Animais , Antineoplásicos/farmacologia , Células CACO-2 , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos , Feminino , Peixes , Humanos , Neoplasias Mamárias Experimentais/induzido quimicamente , Neoplasias Mamárias Experimentais/patologia , Modelos Moleculares , Simulação de Acoplamento Molecular , Terapia de Alvo Molecular/métodos , Organofosfonatos/síntese química , Organofosfonatos/química , Organofosfonatos/farmacologia , Organofosfonatos/uso terapêutico , Extratos Vegetais , Quinolinas/síntese química , Quinolinas/química , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Ratos , Timidilato Sintase/química
4.
Int J Mol Sci ; 22(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34681769

RESUMO

The role of activated platelets in acute and chronic cardiovascular diseases (CVDs) is well established. Therefore, antiplatelet drugs significantly reduce the risk of severe CVDs. Evodia rutaecarpa (Wu-Chu-Yu) is a well-known Chinese medicine, and rutaecarpine (Rut) is a main bioactive component with substantial beneficial properties including vasodilation. To address a research gap, we investigated the inhibitory mechanisms of Rut in washed human platelets and experimental mice. At low concentrations (1-5 µM), Rut strongly inhibited collagen-induced platelet aggregation, whereas it exerted only a slight or no effect on platelets stimulated with other agonists (e.g., thrombin). Rut markedly inhibited P-selectin expression; adenosine triphosphate release; [Ca2+]i mobilization; hydroxyl radical formation; and phospholipase C (PLC)γ2/protein kinase C (PKC), mitogen-activated protein kinase, and phosphoinositide 3-kinase (PI3K)/Akt/glycogen synthase kinase-3ß (GSK3ß) phosphorylation stimulated by collagen. SQ22536 (an adenylate cyclase inhibitor) or ODQ (a guanylate cyclase inhibitor) did not reverse Rut-mediated antiplatelet aggregation. Rut was not directly responding to vasodilator-stimulated phosphoprotein phosphorylation. Rut significantly increased the occlusion time of fluorescence irradiated thrombotic platelet plug formation. The findings demonstrated that Rut exerts a strong effect against platelet activation through the PLCγ2/PKC and PI3K/Akt/GSK3ß pathways. Thus, Rut can be a potential therapeutic agent for thromboembolic disorders.


Assuntos
Alcaloides Indólicos/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Quinazolinas/farmacologia , Trombose/prevenção & controle , Alcaloides/química , Alcaloides/farmacologia , Animais , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Evodia/química , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Alcaloides Indólicos/isolamento & purificação , Alcaloides Indólicos/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos ICR , Proteínas dos Microfilamentos/metabolismo , Nucleotídeos Cíclicos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinazolinas/isolamento & purificação , Quinazolinas/uso terapêutico , Quinolinas/química , Quinolinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Trombose/metabolismo , Trombose/patologia
5.
Sci Rep ; 11(1): 6397, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737545

RESUMO

A new and more aggressive strain of coronavirus, known as SARS-CoV-2, which is highly contagious, has rapidly spread across the planet within a short period of time. Due to its high transmission rate and the significant time-space between infection and manifestation of symptoms, the WHO recently declared this a pandemic. Because of the exponentially growing number of new cases of both infections and deaths, development of new therapeutic options to help fight this pandemic is urgently needed. The target molecules of this study were the nitro derivatives of quinoline and quinoline N-oxide. Computational design at the DFT level, docking studies, and molecular dynamics methods as a well-reasoned strategy will aid in elucidating the fundamental physicochemical properties and molecular functions of a diversity of compounds, directly accelerating the process of discovering new drugs. In this study, we discovered isomers based on the nitro derivatives of quinoline and quinoline N-oxide, which are biologically active compounds and may be low-cost alternatives for the treatment of infections induced by SARS-CoV-2.


Assuntos
Quinolinas/química , SARS-CoV-2/química , Simulação por Computador , Teoria da Densidade Funcional , Avaliação Pré-Clínica de Medicamentos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Quinolinas/uso terapêutico , Tratamento Farmacológico da COVID-19
6.
Org Lett ; 23(3): 858-862, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33481613

RESUMO

Three tetrahydroquinoline alkaloids, lycibarbarines A-C (1-3), possessing a unique tetracyclic tetrahydroquinoline-oxazine-ketohexoside fused motif, were isolated from the fruits of Lycium barbarum. Their structures were determined by spectroscopic analysis and quantum-chemical calculations. Compounds 1 and 3 exhibited neuroprotective activity when evaluated for corticosterone-induced injury by reducing the apoptosis of PC12 cells through the inhibition of caspase-3 and caspase-9.


Assuntos
Alcaloides/química , Caspase 3/química , Medicamentos de Ervas Chinesas/farmacologia , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/química , Quinolinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Frutas/química , Lycium/química , Lycium/efeitos dos fármacos , Estrutura Molecular , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Células PC12 , Quinolinas/química , Quinolinas/isolamento & purificação , Ratos
7.
Med Chem ; 17(6): 667-676, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32242787

RESUMO

BACKGROUND: Quinoline derivatives have been attracted much attention in drug discovery, and synthetic derivatives of these scaffolds present a range of pharmacological activities. Therefore, organoselenium compounds are valuable scaffolds in organic synthesis because of their pharmacological activities and their use as versatile building blocks for regio-, chemo-and stereoselective reactions. Thus, the synthesis of selenium-containing quinolines has great significance, and their applicability range from simple antioxidant agents, to selective DNA-binding and photocleaving agents. OBJECTIVE: In the present study, we describe the synthesis and antioxidant activity in vitro of new 7- chloro-N(arylselanyl)quinolin-4-amines 5 by the reaction of 4,7-dichloroquinoline 4 with (arylselanyl)- amines 3. METHODS: For the synthesis of 7-chloro-N(arylselanyl)quinolin-4-amines 5, we performed the reaction of (arylselanyl)-amines 3 with 4,7-dichloroquinoline 4 in the presence of Et3N at 120 °C in a sealed tube. The antioxidant activities of the compounds 5 were evaluated by the following in vitro assays: 2,2- diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, 2,2-azinobis-3- ethylbenzothiazoline-6-sulfonic acid (ABTS), ferric ion reducing antioxidant power (FRAP), nitric oxide (NO) scavenging and superoxide dismutase-like activity (SOD-Like). RESULTS: 7-Chloro-N(arylselanyl)quinolin-4-amines 5a-d have been synthesized in yields ranging from 68% to 82% by the reaction of 4,7-dichloroquinoline 4 with arylselanyl-amines 3a-d using Et3N as a base, at 120 °C, in a sealed tube for 24 hours and tolerates different substituents, such as -OMe and -Cl, in the arylselanyl moiety. The obtained compounds 5a-d presented significant results concerning the antioxidant potential, which had an effect in the tests of inhibition of radical's DPPH, ABTS+ and NO, as well as in the analysis that evaluates the capacity (FRAP) and in the superoxide dismutase-like activity assay (SOD-Like). It is worth mentioning that 7-chloro- N(arylselanyl)quinolin-4-amine 5b presented excellent results, demonstrating a better antioxidant capacity when compared to the others. CONCLUSION: According to the obtained results, 7-chloro-N(arylselanyl)quinolin-4-amines 5 were synthesized in good yields by the reaction of 4,7-dichloroquinoline with arylselanyl-amines and tolerated different substituents in the arylselanyl moiety. The tested compounds presented significant antioxidant potential in the tests of inhibition of DPPH, ABTS+, and NO radicals, as well as in the FRAP and superoxide dismutase-like activity assays (SOD-Like).


Assuntos
Antioxidantes/síntese química , Antioxidantes/farmacologia , Quinolinas/síntese química , Quinolinas/farmacologia , Selênio/química , Aminas/química , Antioxidantes/química , Benzotiazóis/química , Técnicas de Química Sintética , Óxido Nítrico/química , Quinolinas/química , Ácidos Sulfônicos/química
8.
Bioorg Med Chem ; 29: 115837, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33223463

RESUMO

A series of C-2 derivatized 8-sulfonamidoquinolines were evaluated for their antibacterial activity against the common mastitis causative pathogens Streptococcus uberis, Staphylococcus aureus and Escherichia coli, both in the presence and absence of supplementary zinc (50 µM ZnSO4). The vast majority of compounds tested were demonstrated to be significantly more active against S. uberis when in the presence of supplementary zinc (MICs as low as 0.125 µg/mL were observed in the presence of 50 µM ZnSO4). Compounds 5, 34-36, 39, 58, 79, 82, 94 and 95 were shown to display the greatest antibacterial activity against S. aureus (MIC ≤ 8 µg/mL; both in the presence and absence of supplementary zinc), while compounds 56, 58 and 66 were demonstrated to also exhibit activity against E. coli (MIC ≤ 16 µg/mL; under all conditions). Compounds 56, 58 and 66 were subsequently confirmed to be bactericidal against all three mastitis pathogens studied, with MBCs (≥3log10 CFU/mL reduction) of ≤ 32 µg/mL (in both the presence and absence of 50 µM ZnSO4). To validate the sanitizing activity of compounds 56, 58 and 66, a quantitative suspension disinfection (sanitizer) test was performed. Sanitizing activity (>5log10 CFU/mL reduction in 5 min) was observed against both S. uberis and E. coli at compound concentrations as low as 1 mg/mL (compounds 56, 58 and 66), and against S. aureus at 1 mg/mL (compound 58); thereby validating the potential of compounds 56, 58 and 66 to function as topical sanitizers designed explicitly for use in non-human applications.


Assuntos
Amidas/farmacologia , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Quinolinas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Streptococcus/efeitos dos fármacos , Amidas/síntese química , Amidas/química , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Quinolinas/síntese química , Quinolinas/química , Relação Estrutura-Atividade
9.
Eur J Med Chem ; 209: 112945, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33153766

RESUMO

Antimicrobial resistance has become a major threat to public health worldwide, as pathogenic microorganisms are finding ways to evade all known antimicrobials. Therefore, the demand for new and effective antimicrobial agents is also increasing. Natural products have always played an important role in drug discovery, either by themselves or as inspiration for synthetic compounds. The marine environment is a rich source of bioactive metabolites, and among them, tryptophan-derived alkaloids stand out for their abundance and by displaying a variety of biological activities, with antimicrobial properties being among the most significant. This review aims to reveal the potential of marine alkaloids derived from tryptophan as antimicrobial agents. Relevant examples of these compounds and their synthetic analogues reported in the last decades are presented and discussed in detail, with their mechanism of action and synthetic approaches whenever relevant. Several tryptophan-derived marine alkaloids have shown potent and promising antimicrobial activities, whether against bacteria, fungi, or virus. Synthetic approaches to many of the compounds have been developed and recent methodologies are proving to be efficient. Even though most of the studies regarding the antimicrobial activity are still preliminary, this class of compounds has proven to be worth of further investigation and may provide useful lead compounds for the development of antimicrobial agents. Overall, marine alkaloids derived from tryptophan are revealed as a valuable class of antimicrobials and molecular modifications in order to reduce the toxicity of these compounds and additional studies regarding their mechanism of action are interesting topics to explore in the future.


Assuntos
Alcaloides/química , Anti-Infecciosos/química , Organismos Aquáticos/química , Produtos Biológicos/química , Misturas Complexas/química , Triptofano/química , Alcaloides/farmacologia , Animais , Anti-Infecciosos/farmacologia , Produtos Biológicos/farmacologia , Carbolinas/química , Misturas Complexas/farmacologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Indóis/química , Quinolinas/química , Relação Estrutura-Atividade
10.
Chem Biol Drug Des ; 97(2): 315-324, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32816410

RESUMO

Methionine aminopeptidase 1 (MetAP1) is a target for drug discovery against many adversaries and a potential antileishmanial target for its role in N-terminal methionine processing. As an effort towards new inhibitor discovery against methionine aminopeptidase 1 from Leishmania donovani (LdMetAP1), we have synthesized a series of quinoline-based hybrids, that is (Z)-5-((Z)-benzylidine)-2-(quinolin-3-ylimino)thiazolidin-4-ones (QYT-4a-i) whose in vitro screening led to the discovery of a novel inhibitor molecule (QYT-4h) against LdMetAP1. The compound QYT-4h showed nearly 20-fold less potency for human MetAP1 and had drug-like features. Time-course kinetic assays suggested QYT-4h acting through a competitive mode by binding to the metal-activated catalytic site. Notably, QYT-4h was most potent against the physiologically relevant Mn(II) and Fe(II) supplemented forms of LdMetAP1 and less potent against Co(II) supplemented form. Surface plasmon resonance and fluorescence spectroscopy demonstrated high affinity of QYT-4h for LdMetAP1. Through molecular modelling and docking studies, we found QYT-4h binding at the LdMetAP1 catalytic pocket occupying both the catalytic and substrate binding sites mostly with hydrogen bonding and hydrophobic interactions which provide structural basis for its promising potency. These results demonstrate the feasibility of employing small-molecule inhibitors for selective targeting of LdMetAP1 which may find use to effectively eliminate leishmaniasis.


Assuntos
Aminopeptidases/antagonistas & inibidores , Leishmania donovani/enzimologia , Proteínas de Protozoários/antagonistas & inibidores , Quinolinas/química , Aminopeptidases/metabolismo , Sítios de Ligação , Domínio Catalítico , Cobre/química , Avaliação Pré-Clínica de Medicamentos , Íons , Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas de Protozoários/metabolismo , Quinolinas/metabolismo , Espectrometria de Fluorescência , Especificidade por Substrato , Ressonância de Plasmônio de Superfície
11.
Bioorg Chem ; 105: 104455, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33197847

RESUMO

Acute kidney injury (AKI) is associated with a strong inflammatory response, and inhibiting the response effectively prevents or ameliorates AKI. A series of novel arylpropionic esters were designed, synthesized and evaluated their biological activity in LPS-stimulated RAW264.7 cells. Novel arylpropionic esters bearing multi-functional groups showed significant anti-inflammatory activity, in which, compound 13b exhibited the most potent activity through dose-dependent inhibiting the production of nitric oxide (NO, IC50 = 3.52 µM), TNF-α and IL-6 (84.1% and 33.6%, respectively), as well as suppressing the expression of iNOS, COX-2 and TLR4 proteins. In C57BL/6 mice with cisplatin-induced AKI, compound 13b improved kidney function, inhibited inflammatory development, and reduced pathological damage of kidney tissues. In brief, this arylpropionic ester scaffold may be developed as anti-inflammatory agents.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Anti-Inflamatórios/síntese química , Ésteres/química , Propionatos/síntese química , Animais , Anti-Inflamatórios/farmacologia , Cisplatino/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Propionatos/farmacologia , Quinolinas/química , Células RAW 264.7 , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
12.
Biomed Res Int ; 2020: 5324560, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33029513

RESUMO

The ongoing global pandemic caused by the human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected millions of people and claimed hundreds of thousands of lives. The absence of approved therapeutics to combat this disease threatens the health of all persons on earth and could cause catastrophic damage to society. New drugs are therefore urgently required to bring relief to people everywhere. In addition to repurposing existing drugs, natural products provide an interesting alternative due to their widespread use in all cultures of the world. In this study, alkaloids from Cryptolepis sanguinolenta have been investigated for their ability to inhibit two of the main proteins in SARS-CoV-2, the main protease and the RNA-dependent RNA polymerase, using in silico methods. Molecular docking was used to assess binding potential of the alkaloids to the viral proteins whereas molecular dynamics was used to evaluate stability of the binding event. The results of the study indicate that all 13 alkaloids bind strongly to the main protease and RNA-dependent RNA polymerase with binding energies ranging from -6.7 to -10.6 kcal/mol. In particular, cryptomisrine, cryptospirolepine, cryptoquindoline, and biscryptolepine exhibited very strong inhibitory potential towards both proteins. Results from the molecular dynamics study revealed that a stable protein-ligand complex is formed upon binding. Alkaloids from Cryptolepis sanguinolenta therefore represent a promising class of compounds that could serve as lead compounds in the search for a cure for the corona virus disease.


Assuntos
Alcaloides/farmacologia , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Cryptolepis/química , Pneumonia Viral/tratamento farmacológico , Proteínas Virais/antagonistas & inibidores , Alcaloides/química , Antivirais/química , Antivirais/farmacologia , Betacoronavirus/enzimologia , COVID-19 , Simulação por Computador , Proteases 3C de Coronavírus , Infecções por Coronavirus/virologia , RNA-Polimerase RNA-Dependente de Coronavírus , Cisteína Endopeptidases , Avaliação Pré-Clínica de Medicamentos , Humanos , Alcaloides Indólicos/química , Alcaloides Indólicos/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Pandemias , Pneumonia Viral/virologia , Relação Quantitativa Estrutura-Atividade , Quinolinas/química , Quinolinas/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , SARS-CoV-2 , Proteínas não Estruturais Virais/antagonistas & inibidores
13.
J Med Chem ; 63(20): 11639-11662, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32969660

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a rare and devastating chronic lung disease of unknown etiology. Despite the approved treatment options nintedanib and pirfenidone, the medical need for a safe and well-tolerated antifibrotic treatment of IPF remains high. The human prostaglandin F receptor (hFP-R) is widely expressed in the lung tissue and constitutes an attractive target for the treatment of fibrotic lung diseases. Herein, we present our research toward novel quinoline-based hFP-R antagonists, including synthesis and detailed structure-activity relationship (SAR). Starting from a high-throughput screening (HTS) hit of our corporate compound library, multiple parameter improvements-including increase of the relative oral bioavailability Frel from 3 to ≥100%-led to a highly potent and selective hFP-R antagonist with complete oral absorption from suspension. BAY-6672 (46) represents-to the best of our knowledge-the first reported FP-R antagonist to demonstrate in vivo efficacy in a preclinical animal model of lung fibrosis, thus paving the way for a new treatment option in IPF.


Assuntos
Fibrose Pulmonar Idiopática/tratamento farmacológico , Pulmão/efeitos dos fármacos , Quinolinas/síntese química , Receptores de Prostaglandina/antagonistas & inibidores , Administração Oral , Animais , Modelos Animais de Doenças , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Estrutura Molecular , Quinolinas/química , Quinolinas/uso terapêutico , Ratos , Ratos Wistar , Relação Estrutura-Atividade
14.
J Nat Prod ; 83(10): 2931-2939, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-32946697

RESUMO

Five new quinoline alkaloids, paliasanines A-E (1-5), and 17 known compounds (6-22) were isolated from a methanol extract of Melochia umbellata var. deglabrata leaves. Their chemical structures were elucidated by analysis of HRMS and 1D and 2D NMR spectroscopic data. Compounds 1-5 are the first naturally occurring 3,4-methylenedioxyquinolines incorporating an oxabicyclo[3.2.1]octane unit. Compounds 6 and 7 displayed selective cytotoxicity (IC50 5.9-8.4 µM) against A549 and MCF-7 cell lines, while compounds 1-5 were not active. Compounds 1-3 did not exhibit an anti-HIV effect in MT4 cells, although the related quinolone derivative waltherione A exhibited significant activity. These preliminary results indicate that the 3-methoxy-4-quinolone skeleton might be preferred for both antiproliferative and anti-HIV activities.


Assuntos
Alcaloides/química , Antineoplásicos Fitogênicos/química , Malvaceae , Extratos Vegetais/química , Quinolinas/química
15.
Braz J Microbiol ; 51(4): 1691-1701, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32737869

RESUMO

Fungal infections have emerged as a current serious global public health problem. The main problem involving these infections is the expansion of multidrug resistance. Therefore, the prospection of new compounds with efficacy antifungal becomes necessary. Thus, this study evaluated the antifungal profile and toxicological parameters of quinolines derivatives against Candida spp. and dermatophyte strains. As a result, a selective anti-dermatophytic action was demonstrated by compound 5 (geometric means (GM = 19.14 µg ml-1)). However, compounds 2 (GM = 50 µg ml-1) and 3 (GM = 47.19 µg ml-1) have presented only anti-Candida action. Compounds 3 and 5 did not present cytotoxic action. Compound 5 did not produce dermal and mucosal toxicity. In addition, this compound showed the absence of genotoxic potential, suggesting safety for topical and systemic use. Quinolines demonstrated a potent anti-dermatophytic and anti-yeast action. Moreover, compound 5 presented an excellent toxicological profile, acting as a strong candidate for the development of a new effective and safe compound against dermatophytosis of difficult treatment.


Assuntos
Antifúngicos/farmacologia , Arthrodermataceae/efeitos dos fármacos , Candida/efeitos dos fármacos , Quinolinas/farmacologia , Animais , Antifúngicos/química , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Testes de Sensibilidade Microbiana , Quinolinas/química , Células Vero
16.
Behav Brain Res ; 393: 112797, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32649976

RESUMO

Recently, we demonstrated the promising anxiolytic action of 7-chloro-4-(phenylselanyl) quinoline (4-PSQ) in mice. For this reason, the objective of this study was to expand our previous findings by investigating the contribution of serotoninergic and GABAergic systems to the anxiolytic action of this compound. Pretreatment with different serotoninergic antagonists (pindolol, WAY100635 and ketanserin) blocked the anxiolytic effect caused by 4-PSQ (50 mg/kg, per oral) in the elevated plus maze (EPM) test. The contribution of the GABAergic system was investigated by pretreatment with pentylenetetrazole (a GABAA receptor antagonist) (PTZ). 4-PSQ diminished the PTZ-induced anxiety, and did not modify the locomotor, exploratory and motor activities of mice. Later, this group of animals was euthanized and the blood was removed to determine the levels of corticosterone, and cerebral cortex and hippocampus to determine the mRNA expression levels of cAMP response element binding protein (CREB), brain derived neurotrophic factor (BDNF) and nuclear factor kappa B (NF-κB), as well as the Na+, K+ ATPase activity and reactive species (RS) levels. 4-PSQ was able to significantly reverse the increase in RS and corticosterone levels, as well as the decrease of CREB and BDNF expression in the cerebral structures and increase of NF-κB expression in the hippocampus. Finally, 4-PSQ restored the Na+, K+ ATPase activity in the cerebral structures evaluated. Here, we showed that the modulation of serotonergic and GABAergic systems, factors related to neurogenesis, oxidative status and Na+, K+ ATPase activity contributes to the anxiolytic effect of 4-PSQ and reinforces the therapeutical potential of this compound for the treatment of anxiety.


Assuntos
Ansiolíticos/administração & dosagem , Ansiedade/fisiopatologia , Quinolinas/administração & dosagem , Receptores de GABA-A/fisiologia , Selênio/administração & dosagem , Serotonina/fisiologia , Animais , Ansiedade/prevenção & controle , Antagonistas de Receptores de GABA-A/administração & dosagem , Masculino , Camundongos , Pindolol/administração & dosagem , Quinolinas/química , Receptores de GABA-A/administração & dosagem , Selênio/química , Antagonistas da Serotonina/administração & dosagem
17.
Food Chem ; 331: 127264, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-32619906

RESUMO

This work aimed to develop a method permitting an informed choice of antioxidants to reduce carcinogenic heterocyclic aromatic amine (HAA) formation during proteinaceous food cooking. Therefore, a three-step approach was developed. First, the most promising antioxidants were selected using molecular modeling approaches. For this, analog design was used to highlight the most suitable antioxidants based on their diversification potential using bioisosteric replacement. Then, structure activity relationship studies allowed drawing the relevant properties for inhibiting HAA formation and explained partly the inhibitory activity. Secondly, the approved antioxidants were tested in ground beef patties to assess their inhibitory properties against HAA formation. Resveratrol was found to be the most efficient as it totally inhibited MeIQ and reduced MeIQx and PhIP formation by 40 and 70%, respectively. Finally, natural ingredients rich in these antioxidants were evaluated. Oregano was found to totally inhibit MeIQ formation and to reduce by half MeIQx and PhIP formation.


Assuntos
Antioxidantes/química , Culinária/métodos , Compostos Heterocíclicos/química , Carne Vermelha , Relação Estrutura-Atividade , Aminas/química , Animais , Bovinos , Modelos Moleculares , Origanum/química , Extratos Vegetais , Quinolinas/química , Quinoxalinas/química , Resveratrol/química , Chá , Vinho
18.
Bioorg Chem ; 101: 103991, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32559581

RESUMO

CREB-binding protein (CBP) is a large multi-domain protein containing a HAT domain catalyzing transacetylation and a bromodomain responsible for acetylated lysine recognition. CBPs could act as transcription co-activators to regulate gene expression and have been shown to play a significant role in the development and progression of many cancers. Herein, through in silico screening two hit compounds with tetrahydroquinolin methyl carbamate scaffold were discovered, among which DC-CPin7 showed an in vitro inhibitory activity with the TR-FRET IC50 value of 2.5 ± 0.3 µM. We obtained a high-resolution co-crystal structure of the CBP bromodomain in complex with DC-CPin7 to guide following structure-based rational drug design, which yielded over ten DC-CPin7 derivatives with much higher potency, among which DC-CPin711 showed approximately 40-fold potency compared with hit compound DC-CPin7 with an in vitro TR-FRET IC50 value of 63.3 ± 4.0 nM. Notably, DC-CPin711 showed over 150-fold selectivity against BRD4 bromodomains. Moreover, DC-CPin711 showed micromolar level of anti-leukemia proliferation through G1 phase cell cycle arrest and cell apoptosis. In summary, through a combination of computational and crystal-based structure optimization, DC-CPin711 showed potent in vitro inhibitory activities to CBP bromodomain with a decent selectivity towards BRD4 bromodomains and good cellular activity to leukemia cells, which could further be applied to related biological and translational studies as well as serve as a lead compound for future development of potent and selective CBP bromodomain inhibitors.


Assuntos
Proteína de Ligação a CREB/antagonistas & inibidores , Domínios Proteicos/efeitos dos fármacos , Quinolinas/química , Quinolinas/farmacologia , Proteína de Ligação a CREB/química , Cristalografia por Raios X , Desenho de Fármacos , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Humanos , Leucemia/patologia , Quinolinas/síntese química , Relação Estrutura-Atividade
20.
Bioorg Med Chem Lett ; 30(12): 127207, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32354566

RESUMO

A previous publication from our laboratory reported the identification of a new class of 2-(1H-imidazo-2-yl)piperazines as potent T. brucei growth inhibitors as potential treatment for Human African Trypanosomiasis (HAT). This work describes the structure-activity relationship (SAR) around the hit compound 1, which led to the identification of the optimized compound 18, a single digit nanomolar inhibitor (EC50 7 nM), not cytotoxic and with optimal in vivo profile that made it a suitable candidate for efficacy studies in a mouse model mimicking the second stage of disease.


Assuntos
Inibidores do Crescimento/química , Piperazinas/química , Tripanossomicidas/química , Trypanosoma brucei brucei/efeitos dos fármacos , Tripanossomíase Africana/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Inibidores do Crescimento/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Isomerismo , Morfolinas/química , Piperazinas/farmacologia , Quinolinas/química , Relação Estrutura-Atividade , Tripanossomicidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA