Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 751
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(12): 18579-18592, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38351353

RESUMO

Ginkgo biloba leaf extract (GBE) can effectively treat bloom-forming freshwater algae. However, there is limited information about the underlying suppression mechanism of the marine bloom-forming Prorocentrum donghaiense-the most dominant algal bloom species in the East China Sea. We investigated the effect of GBE on P. donghaiense in terms of its response to photosynthesis at the molecular/omic level. In total, 93,743 unigenes were annotated using six functional databases. Furthermore, 67,203 differentially expressed genes (DEGs) were identified in algae treated with 1.8 g∙L-1 GBE. Among these DEGs, we identified the genes involved in photosynthesis. PsbA, PsbB and PsbD in photosystem II, PsaA in photosystem I, and PetB and PetD in the cytochrome b6/f complex were downregulated. Other related genes, such as PsaC, PsaE, and PsaF in photosystem I; PetA in the cytochrome b6/f complex; and atpA, atpD, atpH, atpG, and atpE in the F-type H+-ATPase were upregulated. These results suggest that the structure and activity of the complexes were destroyed by GBE, thereby inhibiting the electron flow between the primary and secondary quinone electron acceptors, primary quinone electron acceptor, and oxygen-evolving complex in the PSII complex, and interrupting the electron flow between PSII and PSI, ultimately leading to a decline in algal cell photosynthesis. These findings provide a basis for understanding the molecular mechanisms underlying P. donghaiense exposure to GBE and a theoretical basis for the prevention and control of harmful algal blooms.


Assuntos
Dinoflagellida , Ginkgo biloba , Citocromos b , Complexo de Proteína do Fotossistema I , Proliferação Nociva de Algas , Fotossíntese , Perfilação da Expressão Gênica , Extratos Vegetais/farmacologia , Quinonas/farmacologia
2.
J Ethnopharmacol ; 325: 117893, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38336184

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Erzhu Jiedu Recipe (EZJDR) is a formula of traditional Chinese medicine (TCM) for treating hepatitis B virus-related hepatocellular carcinoma (HBV-HCC). However, its effective components and the mechanism of action remain unclear. AIM OF THE STUDY: To explain how the active compounds of EZJDR suppress the growth of hepatoma cells. METHODS: UHPLC-Q-Exactive Orbitrap HRMS was used to identify the chemical constituents of EZJDR and their distribution in the serum and liver of mice. Together with experimental investigations, network pharmacology unraveled the molecular mechanism of components of EZJDR underlying the inhibited Hep3B cells. RESULTS: A total of 138 compounds which can be divided into 18 kinds of components (such as sesquiterpenoids, diterpenoids, anthraquinones, flavonoids and so on) were found in the aqueous extract of EZJDR. Of these components, the tricyclic-diterpenoids exhibited a highest exposure in the serum (74.5%) and liver (94.7%) of mice. The network pharmacology revealed that multiple components of EZJDR interacted with key node genes involved in apoptosis, proliferation, migration and metabolism through various signaling pathways, including ligand binding and protein phosphorylation. In vitro experiments demonstrated that 6 tricyclic-diterpenoids, 2 anthraquinones and 1 flavonoid inhibited the viability of Hep3B cells, with IC50 values ranging from 3.81 µM to 37.72 µM. Dihydrotanshinone I had the most potent bioactivity, arresting the S phase of cell cycle and inducing apoptosis. This compound changed the expression of proteins, including Bad, Bax, Bcl-2, Bal-x, caspase3 and catalase, which were associated with mitochondria-mediated apoptotic pathways. Moreover, dihydrotanshinone I increased the levels of p21 proteins, but decreased the phosphorylated p53, suggesting accumulation of p53 protein prevented cell cycle progression of Hep3B cells with damaged DNA. CONCLUSIONS: These results suggested that multiple components of EZJDR-diterpenoid, anthraquinone and flavonoid-could be the effective material for the treatment of HBV-HCC. This research provided valuable insights into the molecular mechanism of action underlying the therapeutic effects of EZJDR.


Assuntos
Carcinoma Hepatocelular , Diterpenos , Medicamentos de Ervas Chinesas , Furanos , Neoplasias Hepáticas , Fenantrenos , Quinonas , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Proteína Supressora de Tumor p53 , Cromatografia Líquida de Alta Pressão , Farmacologia em Rede , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Antraquinonas/uso terapêutico , Diterpenos/uso terapêutico
3.
Drug Des Devel Ther ; 18: 475-491, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38405578

RESUMO

Purpose: The underlying causes of pulmonary arterial hypertension (PAH) often remain obscure. Addressing PAH with effective treatments presents a formidable challenge. Studies have shown that Hydroxysafflor yellow A (HSYA) has a potential role in PAH, While the mechanism underlies its protective role is still unclear. The study was conducted to investigate the potential mechanisms of the protective effects of HSYA. Methods: Using databases such as PharmMapper and GeneCards, we identified active components of HSYA and associated PAH targets, pinpointed intersecting genes, and constructed a protein-protein interaction (PPI) network. Core targets were singled out using Cytoscape for the development of a model illustrating drug-component-target-disease interactions. Intersection targets underwent analysis for Gene Ontology (GO) functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Selected components were then modeled for target interaction using Autodock and Pymol. In vivo validation in a monocrotaline-induced PAH (MCT-PAH) animal model was utilized to substantiate the predictions made by network pharmacology. Results: We associated HSYA with 113 targets, and PAH with 1737 targets, identifying 34 mutual targets for treatment by HSYA. HSYA predominantly affects 9 core targets. Molecular docking unveiled hydrogen bond interactions between HSYA and several PAH-related proteins such as ANXA5, EGFR, SRC, PPARG, PGR, and ESR1. Conclusion: Utilizing network pharmacology and molecular docking approaches, we investigated potential targets and relevant human disease pathways implicating HSYA in PAH therapy, such as the chemical carcinogenesis receptor activation pathway and the cancer pathway. Our findings were corroborated by the efficacious use of HSYA in an MCT-induced rat PAH model, confirming its therapeutic potential.


Assuntos
Chalcona , Chalcona/análogos & derivados , Medicamentos de Ervas Chinesas , Hipertensão Arterial Pulmonar , Quinonas , Humanos , Animais , Ratos , Hipertensão Arterial Pulmonar/induzido quimicamente , Hipertensão Arterial Pulmonar/tratamento farmacológico , Remodelação Vascular , Simulação de Acoplamento Molecular , Chalcona/farmacologia
4.
Chin J Nat Med ; 22(1): 75-88, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38278561

RESUMO

NAD(P)H: quinone oxidoreductase 1 (NQO1) is a flavin protease highly expressed in various cancer cells. NQO1 catalyzes a futile redox cycle in substrates, leading to substantial reactive oxygen species (ROS) production. This ROS generation results in extensive DNA damage and elevated poly (ADP-ribose) polymerase 1 (PARP1)-mediated consumption of nicotinamide adenine dinucleotide (NAD+), ultimately causing cell death. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD+ salvage synthesis pathway, emerges as a critical target in cancer therapy. The concurrent inhibition of NQO1 and NAMPT triggers hyperactivation of PARP1 and intensive NAD+ depletion. In this study, we designed, synthesized, and assessed a novel series of proqodine A derivatives targeting both NQO1 and NAMPT. Among these, compound T8 demonstrated potent antitumor properties. Specifically, T8 selectively inhibited the proliferation of MCF-7 cells and induced apoptosis through mechanisms dependent on both NQO1 and NAMPT. This discovery offers a promising new molecular entity for advancing anticancer research.


Assuntos
NAD , Nicotinamida Fosforribosiltransferase , Humanos , NAD/metabolismo , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo , Citocinas/metabolismo , Quinonas , Oxirredutases
5.
Nat Prod Res ; 38(4): 685-689, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36890791

RESUMO

Chemical investigation of the extracts obtained from the red thallus tips from Cetraria laevigata resulted in the isolation of five known quinoid pigments identified by FT-IR, UV, NMR, MS methods and by comparison with literature data (skyrin (1), 3-ethyl-2,7-dihydroxynaphthazarin (2), graciliformin (3), cuculoquinone (4) and islandoquinone (5)). An antioxidant capacity of compounds 1-5 were evaluated and compared with quercetin using a lipid peroxidation inhibitory assay and superoxide radical (SOR), nitric oxide radical (NOR), 1,1-diphenyl-2-picrylhydrazine (DPPH), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) scavenging assays. Compounds 2, 4 and 5 were far more active: they demonstrated the antioxidant capacity in various test assays with the IC50 values 5-409 µM comparable to the flavonoid quercetin. While, the isolated quinones (1-5) exhibited weak cytotoxicity in human cancer cell line A549 assessed by MTT assay.


Assuntos
Antineoplásicos , Antioxidantes , Parmeliaceae , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Quercetina , Quinonas/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antineoplásicos/farmacologia
6.
Chin J Integr Med ; 30(3): 213-221, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37688744

RESUMO

OBJECTIVE: To investigate the effect and possible mechanism of hydroxysafflor yellow A (HSYA) on human immortalized keratinocyte cell proliferation and migration. METHODS: HaCaT cells were treated with HSYA. Cell proliferation was detected by the cell counting kit-8 assay, and cell migration was measured using wound healing assay and Transwell migration assay. The mRNA and protein expression levels of heparin-binding epidermal growth factor (EGF)-like growth factor (HBEGF), EGF receptor (EGFR), phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), mammalian target of rapamycin (mTOR), and hypoxia-inducible factor-1α (HIF-1α) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. Circ_0084443-overexpressing HaCaT cells and empty plasmid HaCaT cells were constructed using the lentiviral stable transfection and treated with HSYA. The expression of circ_0084443 was detected by qRT-PCR. RESULTS: HSYA (800 µmol/L) significantly promoted HaCaT cell proliferation and migration (P<0.05 or P<0.01). It also increased the mRNA and protein expression levels of HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α, and increased the phosphorylation levels of PI3K and AKT (P<0.05 or P<0.01). Furthermore, HSYA promoted HaCaT cell proliferation and migration via the HBEGF/EGFR and PI3K/AKT/mTOR signaling pathways (P<0.01). Circ_0084443 attenuated the mRNA expression levels of HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α (P<0.05). HSYA inhibited the circ_0084443 expression, further antagonized the inhibition of circ_0084443 on HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α, and promoted the proliferation of circ_0084443-overexpressing HaCaT cells (P<0.05 or P<0.01). However, HSYA could not influence the inhibitory effect of circ_0084443 on HaCaT cell migration (P>0.05). CONCLUSION: HSYA played an accelerative role in HaCaT cell proliferation and migration, which may be attributable to activating HBEGF/EGFR and PI3K/AKT signaling pathways, and had a particular inhibitory effect on the keratinocyte negative regulator circ_0084443.


Assuntos
Chalcona/análogos & derivados , Fosfatidilinositol 3-Quinase , Proteínas Proto-Oncogênicas c-akt , Quinonas , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptores ErbB/genética , Serina-Treonina Quinases TOR/metabolismo , Proliferação de Células , RNA Mensageiro/genética , Movimento Celular , Linhagem Celular Tumoral
7.
Drug Metab Dispos ; 52(3): 188-197, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38123940

RESUMO

Dihydrotanshinone I (DHTI) is a pharmacologically active component occurring in the roots of the herbal medicine Salvia miltiorrhiza Bunge. This study investigated DHTI-induced inhibition of CYP1A1, CYP1A2, and CYP1B1 with the aim to determine the potential effects of DHTI on the bioactivation of estradiol (E2), possibly related to preventive/therapeutic strategy for E2-associated breast cancer. Ethoxyresorufin as a specific substrate for CYP1s was incubated with human recombinant CYP1A1, CYP1A2, or CYP1B1 in the presence of DHTI at various concentrations. Enzymatic inhibition and kinetic behaviors were examined by monitoring the formation of the corresponding product. Molecular docking was further conducted to define the interactions between DHTI and the three CYP1s. The same method and procedure were employed to examine the DHTI-induced alteration of E2 metabolism. DHTI showed significant inhibition of ethoxyresorufin O-deethylation activity catalyzed by CYP1A1, CYP1A2 and CYP1B1 in a concentration-dependent manner (IC50 = 0.56, 0.44, and 0.11 µM, respectively). Kinetic analysis showed that DHTI acted as a competitive type of inhibitor of CYP1A1 and CYP1B1, whereas it noncompetitively inhibited CYP1A2. The observed enzyme inhibition was independent of NADPH and time. Molecular docking analysis revealed hydrogen bonding interactions between DHTI and Asp-326 of CYP1B1. Moreover, DHTI displayed preferential activity to inhibit 4-hydroxylation of E2 (a genotoxic pathway) mediated by CYP1B1. Exposure to DHTI could reduce the risk of genotoxicity induced by E2. SIGNIFICANCE STATEMENT: CYP1A1, CYP1A2, and CYP1B1 enzymes are involved in the conversion of estradiol (E2) into 2-hydroxyestradiol (2-OHE2) and 4-hydroxyestradiol (4-OHE2) through oxidation. 2-OHE2 is negatively correlated with breast cancer risk, and 4-OHE2 may be a significant initiator and promoter of breast cancer. The present study revealed that dihydrotanshinone I (DHTI) competitively inhibits CYP1A1/CYP1B1 and noncompetitively inhibits CYP1A2. DHTI exhibits a preference for inhibiting the genotoxicity associated with E2 4-hydroxylation pathway mediated by CYP1B1, potentially reducing the risk of 4-OHE2-induced genotoxicity.


Assuntos
Neoplasias da Mama , Citocromo P-450 CYP1A2 , Furanos , Fenantrenos , Quinonas , Humanos , Feminino , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Simulação de Acoplamento Molecular , Cinética , Citocromo P-450 CYP1B1/metabolismo , Estradiol/farmacologia , Estradiol/metabolismo
8.
Sensors (Basel) ; 23(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38067985

RESUMO

Biotin, or vitamin B7, is essential for metabolic reactions. It must be obtained from external sources such as food and biotin/vitamin supplements because it is not biosynthesized by mammals. Therefore, there is a need to monitor its levels in supplements. However, biotin detection methods, which include chromatographic, immune, enzymatic, and microbial assays, are tedious, time-consuming, and expensive. Thus, we synthesized a product called biotin-naphthoquinone, which produces chemiluminescence upon its redox cycle reaction with dithiothreitol and luminol; then it was used as a chemiluminescence sensor for biotin-avidin interaction. When a quinone biotinylated compound binds avidin, the chemiluminescence decreases noticeably due to the proximity between quinone and avidin, and when free biotin is added in a competitive assay, the chemiluminescence returns. The chemiluminescence is regained as the free biotin displaces biotinylated quinone in its complex with avidin, freeing biotin-naphthoquinone. Many experiments, including the use of a biotin-free quinone, proved the competitive nature of the assay. The competitive assay method used in this study was linear in the range of 1.0-100 µM with a detection limit of 0.58 µM. The competitive chemiluminescence assay could detect biotin in vitamin B7 tablets with good recovery of 91.3 to 110% and respectable precision (RSD < 8.7%).


Assuntos
Avidina , Naftoquinonas , Animais , Biotina , Luminescência , Quinonas , Vitaminas/análise , Mamíferos/metabolismo
9.
Chin J Nat Med ; 21(12): 938-949, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38143107

RESUMO

Danshen, the dried roots and rhizomes of Salvia miltiorrhiza Bunge (S. miltiorrhiza), is widely used in the treatment of cardiovascular and cerebrovascular diseases. Tanshinones, the bioactive compounds from Danshen, exhibit a wide spectrum of pharmacological properties, suggesting their potential for future therapeutic applications. Tanshinone biosynthesis is a complex process involving at least six P450 enzymes that have been identified and characterized, most of which belong to the CYP76 and CYP71 families. In this study, CYP81C16, a member of the CYP71 clan, was identified in S. miltiorrhiza. An in vitro assay revealed that it could catalyze the hydroxylation of four para-quinone-type tanshinones, namely neocryptotanshinone, deoxyneocryptotanshinone, and danshenxinkuns A and B. SmCYP81C16 emerged as a potential broad-spectrum oxidase targeting the C-18 position of para-quinone-type tanshinones with an impressive relative conversion rate exceeding 90%. Kinetic evaluations andin vivo assays underscored its highest affinity towards neocryptotanshinone among the tested substrates. The overexpression of SmCYP81C16 promoted the accumulation of (iso)tanshinone in hairy root lines. The characterization of SmCYP81C16 in this study accentuates its potential as a pivotal tool in the biotechnological production of tanshinones, either through microbial or plant metabolic engineering.


Assuntos
Salvia miltiorrhiza , Humanos , Salvia miltiorrhiza/metabolismo , Vias Biossintéticas , Quinonas/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
10.
Molecules ; 28(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38138580

RESUMO

Doxorubicin (DOX), an anthracycline-based chemotherapeutic agent, is widely used to treat various types of cancer; however, prolonged treatment induces cardiomyotoxicity. Although studies have been performed to overcome DOX-induced cardiotoxicity (DICT), no effective method is currently available. This study investigated the effects and potential mechanisms of Poncirus trifoliata aqueous extract (PTA) in DICT. Changes in cell survival were assessed in H9c2 rat cardiomyocytes and MDA-MB-231 human breast cancer cells. The C57BL/6 mice were treated with DOX to induce DICT in vivo, and alterations in electrophysiological characteristics, serum biomarkers, and histological features were examined. The PTA treatment inhibited DOX-induced decrease in H9c2 cell viability but did not affect the MDA-MB-231 cell viability. Additionally, the PTA restored the abnormal heart rate, R-R interval, QT interval, and ST segment and inhibited the decrease in serum cardiac and hepatic toxicity indicators in the DICT model. Moreover, the PTA administration protected against myocardial fibrosis and apoptosis in the heart tissue of mice with DICT. PTA treatment restored DOX-induced decrease in the expression of NAD(P)H dehydrogenase quinone acceptor oxidoreductase 1 in a PTA concentration-dependent manner. In conclusion, the PTA inhibitory effect on DICT is attributable to its antioxidant properties, suggesting the potential of PTA as a phytotherapeutic agent for DICT.


Assuntos
Miócitos Cardíacos , Poncirus , Ratos , Camundongos , Humanos , Animais , NAD/metabolismo , Poncirus/metabolismo , Regulação para Cima , Estresse Oxidativo , Camundongos Endogâmicos C57BL , Doxorrubicina/toxicidade , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Oxirredutases/metabolismo , Quinonas/farmacologia
11.
J Agric Food Chem ; 71(41): 15319-15330, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37812808

RESUMO

Thearubigins (TRs) are chemically ill-defined black tea pigments composed of numerous catechin oxidation products. TRs contain oligomeric components; however, the oligomerization mechanisms are poorly understood. The comparison of the 13C nuclear magnetic resonance (NMR) spectra of TRs with different molecular sizes suggested the participation of A-ring methine carbons in the oligomerization. Crushing fresh tea leaves with phloroglucinol, a mimic of the catechin A-rings, yielded the phloroglucinol adducts of the B-ring quinones of pyrogallol-type catechins and dehydrotheasinensins, indicating that intermolecular oxidative couplings between pyrogallol-type B-rings and A-rings are involved in the oligomerization. This is supported by the comparison of the 13C NMR spectra of the oligomers generated from the dehydrotheasinensins and epicatechin. Furthermore, the presence of the quinones or related structures in the catechin oligomers is shown by condensation with 1,2-phenylenediamine. The pyrogallol-type catechins account for approximately 70% of tea catechins; therefore, the B-A ring couplings of the pyrogallol-type catechins are important in the catechin oligomerization involved in TR production.


Assuntos
Camellia sinensis , Catequina , Chá/química , Catequina/química , Pirogalol/química , Camellia sinensis/química , Floroglucinol , Quinonas
12.
Nutrients ; 15(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37571350

RESUMO

Ferroptosis is closely associated with the pathophysiology of myocardial ischemia. Hydroxysafflor yellow A (HSYA), the main active ingredient in the Chinese herbal medicine safflower, exerts significant protective effects against myocardial ischemia/reperfusion injury (MI/RI). The aim of this study was to investigate the protective effects of HSYA against MI/RI and identify the putative underlying mechanisms. An in vivo model of acute MI/RI was established in C57 mice. Subsequently, the effects of HSYA on myocardial tissue injury were evaluated by histology. Lipid peroxidation and myocardial injury marker contents in myocardial tissue and serum and iron contents in myocardial tissue were determined using biochemical assays. Mitochondrial damage was assessed using transmission electron microscopy. H9C2 cardiomyocytes were induced in vitro by oxygen-glucose deprivation/reoxygenation, and ferroptosis inducer erastin was administered to detect ferroptosis-related indicators, oxidative-stress-related indicators, and expressions of ferroptosis-related proteins and HIF-1α. In MI/RI model mice, HSYA reduced myocardial histopathological damage, ameliorated mitochondrial damage in myocardial cells, and decreased total cellular iron and ferrous ion contents in myocardial tissue. HSYA increased the protein levels of SLC7A11, HIF-1α, and GPX4 and mitigated erastin- or HIF-1α siRNA-induced damage in H9C2 cells. In summary, HSYA alleviated MI/RI by activating the HIF-1α/SLC7A11/GPX4 signaling pathway, thereby inhibiting ferroptosis.


Assuntos
Ferroptose , Traumatismo por Reperfusão Miocárdica , Traumatismo por Reperfusão , Camundongos , Animais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Transdução de Sinais , Quinonas/farmacologia , Quinonas/uso terapêutico , Traumatismo por Reperfusão/patologia
13.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37445927

RESUMO

The relationship between oxidative stress and inflammation is well known, and exogenous antioxidants, primarily phytochemical natural products, may assist the body's endogenous defense systems in preventing diseases due to excessive inflammation. In this study, we evaluated the antioxidant properties of ethnomedicines from Peru that exhibit anti-inflammatory activity by measuring the superoxide scavenging activity of ethanol extracts of Maytenus octogona aerial parts using hydrodynamic voltammetry at a rotating ring-disk electrode (RRDE). The chemical compositions of these extracts are known and the interactions of three methide-quinone compounds found in Maytenus octogona with caspase-1 were analyzed using computational docking studies. Caspase-1 is a critical enzyme triggered during the activation of the inflammasome and its actions are associated with excessive release of cytokines. The most important amino acid involved in active site caspase-1 inhibition is Arg341 and, through docking calculations, we see that this amino acid is stabilized by interactions with the three potential methide-quinone Maytenus octogona inhibitors, hydroxytingenone, tingenone, and pristimerin. These findings were also confirmed after more rigorous molecular dynamics calculations. It is worth noting that, in these three compounds, the methide-quinone carbonyl oxygen is the preferred hydrogen bond acceptor site, although tingenone's other carbonyl group also shows a similar binding energy preference. The results of these calculations and cyclovoltammetry studies support the effectiveness and use of anti-inflammatory ethnopharmacological ethanol extract of Maytenus octogona (L'Héritier) DC.


Assuntos
Maytenus , Superóxidos , Maytenus/química , Caspase 1 , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antioxidantes/farmacologia , Quinonas , Anti-Inflamatórios/farmacologia , Inflamação , Etanol
14.
Molecules ; 28(13)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37446632

RESUMO

Plant flavonoids have attracted increasing attention as new antimicrobial agents or adjuvants. In our previous work, it was confirmed that the cell membrane is the major site of plant flavonoids acting on the Gram-positive bacteria, which likely involves the inhibition of the respiratory chain. Inspired by the similar structural and antioxidant characters of plant flavonoids to hydro-menaquinone (MKH2), we deduced that the quinone pool is probably a key target of plant flavonoids inhibiting Gram-positive bacteria. To verify this, twelve plant flavonoids with six structural subtypes were preliminarily selected, and their minimum inhibitory concentrations (MICs) against Gram-positive bacteria were predicted from the antimicrobial quantitative relationship of plant flavonoids to Gram-positive bacteria. The results showed they have different antimicrobial activities. After their MICs against Staphylococcus aureus were determined using the broth microdilution method, nine compounds with MICs ranging from 2 to 4096 µg/mL or more than 1024 µg/mL were eventually selected, and then their MICs against S. aureus were determined interfered with different concentrations of menaquinone-4 (MK-4) and the MKs extracted from S. aureus. The results showed that the greater the antibacterial activities of plant flavonoids were, the more greatly their antibacterial activities decreased along with the increase in the interfering concentrations of MK-4 (from 2 to 256 µg/mL) and the MK extract (from 4 to 512 µg/mL), while those with the MICs equal to or more than 512 µg/mL decreased a little or remained unchanged. In particular, under the interference of MK-4 (256 µg/mL) and the MK extract (512 µg/mL), the MICs of α-mangostin, a compound with the greatest inhibitory activity to S. aureus out of these twelve plant flavonoids, increased by 16 times and 8 to 16 times, respectively. Based on the above, it was proposed that the quinone pool is a key target of plant flavonoids inhibiting Gram-positive bacteria, and which likely involves multiple mechanisms including some enzyme and non-enzyme inhibitions.


Assuntos
Anti-Infecciosos , Flavonoides , Flavonoides/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Staphylococcus aureus , Bactérias Gram-Positivas , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Quinonas/farmacologia , Bactérias Gram-Negativas
15.
Pharm Biol ; 61(1): 1054-1064, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37416997

RESUMO

CONTEXT: Hydroxysafflor yellow A (HSYA) is the main bioactive ingredient of safflower (Carthamus tinctorius L., [Asteraceae]) for traumatic brain injury (TBI) treatment. OBJECTIVE: To explore the therapeutic effects and underlying mechanisms of HSYA on post-TBI neurogenesis and axon regeneration. MATERIALS AND METHODS: Male Sprague-Dawley rats were randomly assigned into Sham, controlled cortex impact (CCI), and HSYA groups. Firstly, the modified Neurologic Severity Score (mNSS), foot fault test, hematoxylin-eosin staining, Nissl's staining, and immunofluorescence of Tau1 and doublecortin (DCX) were used to evaluate the effects of HSYA on TBI at the 14th day. Next, the effectors of HSYA on post-TBI neurogenesis and axon regeneration were screened out by pathology-specialized network pharmacology and untargeted metabolomics. Then, the core effectors were validated by immunofluorescence. RESULTS: HSYA alleviated mNSS, foot fault rate, inflammatory cell infiltration, and Nissl's body loss. Moreover, HSYA increased not only hippocampal DCX but also cortical Tau1 and DCX following TBI. Metabolomics demonstrated that HSYA significantly regulated hippocampal and cortical metabolites enriched in 'arginine metabolism' and 'phenylalanine, tyrosine and tryptophan metabolism' including l-phenylalanine, ornithine, l-(+)-citrulline and argininosuccinic acid. Network pharmacology suggested that neurotrophic factor (BDNF) and signal transducer and activator of transcription 3 (STAT3) were the core nodes in the HSYA-TBI-neurogenesis and axon regeneration network. In addition, BDNF and growth-associated protein 43 (GAP43) were significantly elevated following HSYA treatment in the cortex and hippocampus. DISCUSSION AND CONCLUSIONS: HSYA may promote TBI recovery by facilitating neurogenesis and axon regeneration through regulating cortical and hippocampal metabolism, BDNF and STAT3/GAP43 axis.


Assuntos
Lesões Encefálicas Traumáticas , Chalcona , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Fator Neurotrófico Derivado do Encéfalo , Axônios , Regeneração Nervosa , Lesões Encefálicas Traumáticas/tratamento farmacológico , Quinonas/farmacologia , Chalcona/farmacologia , Metabolômica
16.
J Org Chem ; 88(11): 7096-7103, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37178146

RESUMO

Three quinone-terpenoid alkaloids, alashanines A-C (1-3), possessing an unprecedented 6/6/6 tricyclic conjugated backbone and quinone-quinoline-fused characteristic, were isolated from the peeled stems of Syringa pinnatifolia. Their structures were elucidated by analysis of extensive spectroscopic data and quantum chemical calculations. A hypothesis of biosynthesis pathways for 1-3 was proposed on the basis of the potential precursor iridoid and benzoquinone. Compound 1 exhibited antibacterial activities against Bacillus subtilis and cytotoxicity against HepG2 and MCF-7 human cancer cell lines. The results of the cytotoxic mechanism revealed that compound 1 induced apoptosis of HepG2 cells through activation of ERK.


Assuntos
Alcaloides , Antineoplásicos , Syringa , Humanos , Syringa/química , Terpenos , Estrutura Molecular , Extratos Vegetais , Alcaloides/farmacologia , Benzoquinonas , Quinonas
17.
Chin J Integr Med ; 29(8): 683-690, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37071326

RESUMO

OBJECTIVE: To explore the proliferation inhibitory effect of quinones from Blaps rynchopetera defense secretion on colorectal tumor cell lines. METHODS: Human colorectal cancer cell HT-29, human colorectal adenocarcinoma cell Caco-2 and normal human colon epithelial cell CCD841 were chosen for the evaluation of inhibitory activity of the main quinones of B. rynchopetera defense secretion, including methyl p-benzoquinone (MBQ), ethyl p-benzoquinone (EBQ), and methyl hydroquinone (MHQ), through methyl thiazolyl tetrazolium assay. The tumor-related factors, cell cycles, related gene expressions and protein levels were detected by enzyme-linked immunosorbent assy, flow cytometry, RT-polymerase chain reaction and Western blot, respectively. RESULTS: MBQ, EBQ, and MHQ could significantly inhibit the proliferation of Caco-2, with half maximal inhibitory concentration (IC50) values of 7.04 ± 0.88, 10.92 ± 0.32, 9.35 ± 0.83, HT-29, with IC50 values of 14.90 ± 2.71, 20.50 ± 6.37, 13.90 ± 1.30, and CCD841, with IC50 values of 11.40 ± 0.68, 7.02 ± 0.44 and 7.83 ± 0.05 µg/mL, respectively. Tested quinones can reduce the expression of tumor-related factors tumor necrosis factor α, interleukin (IL)-10, and IL-6 in HT-29 cells, selectively promote apoptosis, and regulate the cell cycle which can reduce the proportion of cells in the G1 phase and increase the proportion of the S phase. Meanwhile, tested quinones could up-regulate mRNA and protein expression of GSK-3ß and APC, while down-regulate that of ß-catenin, Frizzled1, c-Myc, and CyclinD1 in the Wnt/ß-catenin pathway of HT-29 cells. CONCLUSION: Quinones from B. rynchopetera defense secretion could inhibit the proliferation of colorectal tumor cells and reduce the expression of related factors, which would be functioned by regulating cell cycle, selectively promoting apoptosis, and affecting Wnt/ß-catenin pathway-related mRNA and protein expressions.


Assuntos
Neoplasias Colorretais , beta Catenina , Humanos , beta Catenina/metabolismo , Células CACO-2 , Quinonas/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Linhagem Celular Tumoral , Apoptose , Benzoquinonas/farmacologia , RNA Mensageiro , Via de Sinalização Wnt
18.
Fitoterapia ; 167: 105474, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36940920

RESUMO

Seven new diterpenoids quinones (1-6), together with five known ones (7-11), were isolated from the roots of Salvia miltiorrhiza Bunge. Their structures were elucidated by using 1D and 2D NMR data, while the relative and absolute configurations were confirmed by interpretations of the NOESY correlations and comparison of the experimental and calculated ECD spectra. In the evaluation of bioactivities, salviamilthiza C (3), significantly increased cell viability and decreased the expression of IL-1ß in LPS-induced BEAS-2B cells.


Assuntos
Diterpenos , Salvia miltiorrhiza , Salvia , Salvia miltiorrhiza/química , Quinonas/farmacologia , Estrutura Molecular , Diterpenos/farmacologia , Diterpenos/química , Pulmão , Raízes de Plantas/química , Salvia/química
19.
Altern Ther Health Med ; 29(4): 146-151, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36933246

RESUMO

Context: KOA characterized by recurrent joint pain and progressive joint dysfunction. Is the present clinical common chronic progressive degenerative osteoarthropathy, how long the disease is difficult to cure and easy to relapse. Exploring new therapeutic approaches and mechanisms is important for the treatment of KOA. One of the main applications for sodium hyaluronate (SH) in the medical field is treatment of osteoarthritis. However, the effects of SH alone in the treatment of KOA are limited. Hydroxysafflor yellow A (HSYA) may have therapeutic effects for KOA. Objective: The study intended to investigate the therapeutic effects and possible mechanisms of action HSYA+SH for cartilage tissue of rabbits with KOA and to provide a theoretical basis for the treatment of KOA. Design: The research team performed an animal study. Setting: The study that took place at Liaoning Jijia Biotechnology, Shenyang, Liaoning, China. Animals: The animals were 30 healthy, adult, New Zealand white rabbits, weighing 2-3 kg. Intervention: The research team randomly divided the rabbits into three groups, with 10 rabbits in each group: (1) a control group, for which the research team didn't induce KOA and provided no treatment; (2) the HSYA+SH group, the intervention group, for which the research team induced KOA and injected the rabbits with the HSYA+SH treatment; and (3) the KOA group, for which the research team induced KOA and injected the rabbits with saline. Outcome Measures: The research team: (1) observed the morphological changes in the cartilage tissue using hematoxylin-eosin (HE) staining; (2) measured levels of serum inflammatory factors, including tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1ß), interferon gamma (IFN-γ), IL-6, and IL-17 using an enzyme-linked immunosorbent assay (ELISA); (3) measured cartilage-cell apoptosis using "terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling" (TUNEL); and (4) used Western Blot to detect the expression of proteins related to the "neurogenic locus notch homolog protein 1" (Notch1) signaling pathway. Results: Compared with the control group, morphological changes had occurred to the cartilage tissue in the KOA group. Compared with the control group, that group's level of apoptosis was higher, the levels of serum inflammatory factors were significantly higher (P < .05), and the protein expression related to the Notch1 signaling pathway was also significantly higher (P < .05). The morphology of the cartilage tissue in the HSYA+SH was better than that of the KOA group but not as good as that of the control group. Compared with the KOA group, the HSYA+SH group's level of apoptosis was lower, the levels of serum inflammatory factors were significantly lower (P < .05), and the protein expression related to the Notch1 signaling pathway was also significantly lower (P < .05). Conclusions: HSYA+SH can reduce the cellular apoptosis in the cartilage tissue of rabbits with KOA, downregulate the levels of inflammatory factors, and protect against KOA-induced cartilage tissue injury, and the mechanism may be related to the regulation of the Notch1 signaling pathway.


Assuntos
Osteoartrite do Joelho , Coelhos , Animais , Osteoartrite do Joelho/tratamento farmacológico , Ácido Hialurônico/uso terapêutico , Quinonas/farmacologia , Quinonas/uso terapêutico , Inflamação/tratamento farmacológico
20.
Artigo em Inglês | MEDLINE | ID: mdl-36565667

RESUMO

Nearly half of the world's population is at risk of being infected by Plasmodium falciparum, the pathogen of malaria. Increasing resistance to common antimalarial drugs has encouraged investigations to find compounds with different scaffolds. Extracts of Artocarpus altilis leaves have previously been reported to exhibit in vitro antimalarial activity against P. falciparum and in vivo activity against P. berghei. Despite these initial promising results, the active compound from A. altilis is yet to be identified. Here, we have identified 2-geranyl-2', 4', 3, 4-tetrahydroxy-dihydrochalcone (1) from A. altilis leaves as the active constituent of its antimalarial activity. Since natural chalcones have been reported to inhibit food vacuole and mitochondrial electron transport chain (ETC), the morphological changes in food vacuole and biochemical inhibition of ETC enzymes of (1) were investigated. In the presence of (1), intraerythrocytic asexual development was impaired, and according to the TEM analysis, this clearly affected the ultrastructure of food vacuoles. Amongst the ETC enzymes, (1) inhibited the mitochondrial malate: quinone oxidoreductase (PfMQO), and no inhibition could be observed on dihydroorotate dehydrogenase (DHODH) as well as bc1 complex activities. Our study suggests that (1) has a dual mechanism of action affecting the food vacuole and inhibition of PfMQO-related pathways in mitochondria.


Assuntos
Antimaláricos , Artocarpus , Chalconas , Malária Falciparum , Humanos , Plasmodium falciparum , Chalconas/farmacologia , Chalconas/uso terapêutico , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artocarpus/química , Artocarpus/metabolismo , Malatos/metabolismo , Malatos/farmacologia , Malatos/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Malária Falciparum/tratamento farmacológico , Mitocôndrias/metabolismo , Quinonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA