Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Med Mycol ; 62(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38389246

RESUMO

Candida albicans is a dimorphic opportunistic pathogen in immunocompromised individuals. We have previously demonstrated that sodium houttuyfonate (SH), a derivative of medicinal herb Houttuynia cordata Thunb, was effective for antifungal purposes. However, the physical impediment of SH by C. albicans ß-glucan may weaken the antifungal activity of SH. In this study, the interactions of SH with cell wall (CW), extracellular matrix (EM), CW ß-glucan, and a commercial ß-glucan zymosan A (ZY) were inspected by XTT assay and total plate count in a standard reference C. albicans SC5314 as well as two clinical fluconazole-resistant strains Z4935 and Z5172. After treatment with SH, the content and exposure of CW ß-glucan, chitin, and mannan were detected, the fungal clearance by phagocytosis of RAW264.7 and THP-1 was examined, and the gene expressions and levels of cytokines TNF-ɑ and IL-10 were also monitored. The results showed that SH could be physically impeded by ß-glucan in CW, EM, and ZY. This impediment subsequently triggered the exposure of CW ß-glucan and chitin with mannan masked in a time-dependent manner. SH-induced ß-glucan exposure could significantly enhance the phagocytosis and inhibit the growth of C. albicans. Meanwhile, the SH-pretreated fungal cells could greatly stimulate the cytokine gene expressions and levels of TNF-ɑ and IL-10 in the macrophages. In sum, the strategy that the instant physical impediment of C. albicans CW to SH, which can induce the exposure of CW ß-glucan may be universal for C. albicans in response to physical deterrent by antifungal drugs.


Assuntos
Alcanos , Candida albicans , Sulfitos , beta-Glucanas , Humanos , Antifúngicos/uso terapêutico , beta-Glucanas/farmacologia , Interleucina-10/metabolismo , Interleucina-10/farmacologia , Fator de Necrose Tumoral alfa , Mananas , Fagocitose , Quitina/metabolismo , Parede Celular/metabolismo
2.
Carbohydr Res ; 536: 109042, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38244321

RESUMO

Two selenized chitooligosaccharide (O-Se-COS and N,O-Se-COS) with different sites modification were synthesized to alleviate liver injury in vivo. Comparing to traditional COS, both selenized COS exhibited enhanced reducibility as well as antioxidant capacity in vitro. Furthermore, O-Se-COS demonstrated superior efficacy in reducing intracellular reactive oxygen species (ROS) and mitochondrial damage compared to N,O-Se-COS as its enhanced cellular uptake by the positive/negative charge interactions. Two mechanisms were proposed to explained these results: one is to enhance the enzymatic activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), which effectively scavenge free radicals; the other is to down-regulate intracellular cytochrome P450 (CYP2E1) levels, inhibiting carbon tetrachloride (CCl4)-induced peroxidation damage. In vivo studies further demonstrated the effective alleviation of CCl4-induced liver injury by selenized COS, with therapeutic efficacy observed in the following order: O-Se-COS > N,O-Se-COS > COS. Finally, hemolysis and histological tests confirmed the biosafety of both selenized COS. Taken together, these finding demonstrated that selenium has the potential to improve the biological activity of COS, and precise selenylation was more conducive to achieving the synergistic effect where 1 + 1>2.


Assuntos
Quitosana , Fígado , Oligossacarídeos , Selênio , Antioxidantes/farmacologia , Tetracloreto de Carbono/toxicidade , Tetracloreto de Carbono/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Quitina/farmacologia , Quitina/uso terapêutico , Quitina/metabolismo , Estresse Oxidativo , Selênio/farmacologia , Selênio/metabolismo
3.
Mar Drugs ; 21(6)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37367683

RESUMO

Shell wastes pose environmental and financial burdens to the shellfish industry. Utilizing these undervalued shells for commercial chitin production could minimize their adverse impacts while maximizing economic value. Shell chitin conventionally produced through harsh chemical processes is environmentally unfriendly and infeasible for recovering compatible proteins and minerals for value-added products. However, we recently developed a microwave-intensified biorefinery that efficiently produced chitin, proteins/peptides, and minerals from lobster shells. Lobster minerals have a calcium-rich composition and biologically originated calcium is more biofunctional for use as a functional, dietary, or nutraceutical ingredient in many commercial products. This has suggested a further investigation of lobster minerals for commercial applications. In this study, the nutritional attributes, functional properties, nutraceutical effects, and cytotoxicity of lobster minerals were analyzed using in vitro simulated gastrointestinal digestion combined with growing bone (MG-63), skin (HaCaT), and macrophage (THP-1) cells. The calcium from the lobster minerals was found to be comparable to that of a commercial calcium supplement (CCS, 139 vs. 148 mg/g). In addition, beef incorporated with lobster minerals (2%, w/w) retained water better than that of casein and commercial calcium lactate (CCL, 21.1 vs. 15.1 and 13.3%), and the lobster mineral had a considerably higher oil binding capacity than its rivals (casein and CCL, 2.5 vs. 1.5 and 1.0 mL/g). Notably, the lobster mineral and its calcium were far more soluble than the CCS (98.4 vs. 18.6% for the products and 64.0 vs. 8.5% for their calcium) while the in vitro bioavailability of lobster calcium was 5.9-fold higher compared to that of the commercial product (11.95 vs. 1.99%). Furthermore, supplementing lobster minerals in media at ratios of 15%, 25%, and 35% (v/v) when growing cells did not induce any detectable changes in cell morphology and apoptosis. However, it had significant effects on cell growth and proliferation. The responses of cells after three days of culture supplemented with the lobster minerals, compared to the CCS supplementation, were significantly better with the bone cells (MG-63) and competitively quick with the skin cells (HaCaT). The cell growth reached 49.9-61.6% for the MG-63 and 42.9-53.4% for the HaCaT. Furthermore, the MG-63 and HaCaT cells proliferated considerably after seven days of incubation, reaching 100.3% for MG-63 and 115.9% for HaCaT with a lobster mineral supplementation of 15%. Macrophages (THP-1 cells) treated for 24 h with lobster minerals at concentrations of 1.24-2.89 mg/mL had no detectable changes in cell morphology while their viability was over 82.2%, far above the cytotoxicity threshold (<70%). All these results indicate that lobster minerals could be used as a source of functional or nutraceutical calcium for commercial products.


Assuntos
Cálcio , Nephropidae , Animais , Bovinos , Cálcio/metabolismo , Nephropidae/metabolismo , Caseínas/metabolismo , Disponibilidade Biológica , Solubilidade , Minerais , Quitina/metabolismo
4.
Plant Physiol Biochem ; 199: 107714, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37119550

RESUMO

Chitooligosaccharide (COS) is a low molecular weight product of chitosan degradation. Although COS induces plant resistance by activating phenylpropanoid metabolism, there are few reports on whether COS accelerates wound healing in potato tubers by promoting the deposition of phenolic acids and lignin monomers at wounds. The results showed that COS activated phenylalanine ammonialyase and cinnamate 4-hydroxylase and promoted the synthesis of cinnamic, caffeic, p-coumaric, ferulic acids, total phenolics and flavonoids. COS activated 4-coumaric acid coenzyme A ligase and cinnamyl alcohol dehydrogenase and promoted the synthesis of sinapyl, coniferyl and cinnamyl alcohols. COS also increased H2O2 levels and peroxidase activity and accelerated the deposition of suberin polyphenols and lignin on wounds. In addition, COS reduced weight loss and inhibited lesion expansion in tubers inoculated with Fusarium sulfureum. Taken together, COS accelerated wound healing in potato tubers by inducing phenylpropanoid metabolism and accelerating the deposition of suberin polyphenols and lignin at wounds.


Assuntos
Polifenóis , Solanum tuberosum , Polifenóis/metabolismo , Lignina/metabolismo , Solanum tuberosum/metabolismo , Peróxido de Hidrogênio/metabolismo , Quitina/metabolismo
5.
Protein J ; 42(2): 125-134, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36892743

RESUMO

Biological control to prevent fungal plant diseases offers an alternative approach to facilitate sustainable agriculture. Since the chitin in fungal cell walls is a target for biocontrol agents, chitinases are one of the important antifungal molecules. In this study, the aim was to investigate a new chitinase isolated from a fluvial soil bacterium and to show the antifungal activity of the characterized chitinase by comparing the three common methods. The bacterium with the highest chitinase activity was identified as Aeromonas sp. by 16 S rRNA sequence analysis. Following the determination of the optimum enzyme production time, the enzyme was partially purified, and the physicochemical parameters of the enzyme were investigated. In the antifungal studies, direct Aeromonas sp. BHC02 cells or partially purified chitinase were used. As a result, in the first method in which the Aeromonas sp. BHC02 cells were spread on the surface of petri dishes, no zone formation was observed around the test fungi spotted on the surface. However, zone formation was observed in the methods in which the antifungal activity was investigated using the partially purified chitinase enzyme. For example, in the second method, the enzyme was spread on the surface of PDA, and zone formation was observed only around Penicillum species among the test fungi spotted on the surface. In the third method, in which the necessary time was given for the formation of mycelium of the test fungi, it was observed that the growth of Fusarium solani, Alternaria alternata and Botrytis cinerea was inhibited by the partially purified chitinase. This study concludes that the results of the antifungal activities depend on the method used and all fungal chitins cannot be degraded with one strain's chitinase. Depending on the variety of chitin, some fungi can be more resistant.


Assuntos
Aeromonas , Antifúngicos , Quitinases , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Bactérias/metabolismo , Quitina/farmacologia , Quitina/metabolismo , Quitinases/farmacologia , Quitinases/química , Quitinases/genética , Extratos Vegetais , Aeromonas/efeitos dos fármacos
6.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834492

RESUMO

Chitin deacetylase (CDA) can accelerate the conversion of chitin to chitosan, influencing the mechanical properties and permeability of the cuticle structures and the peritrophic membrane (PM) in insects. Putative Group V CDAs SeCDA6/7/8/9 (SeCDAs) were identified and characterized from beet armyworm Spodoptera exigua larvae. The cDNAs of SeCDAs contained open reading frames of 1164 bp, 1137 bp, 1158 bp and 1152 bp, respectively. The deduced protein sequences showed that SeCDAs are synthesized as preproteins of 387, 378, 385 and 383 amino acid residues, respectively. It was revealed via spatiotemporal expression analysis that SeCDAs were more abundant in the anterior region of the midgut. The SeCDAs were down-regulated after treatment with 20-hydroxyecdysone (20E). After treatment with a juvenile hormone analog (JHA), the expression of SeCDA6 and SeCDA8 was down-regulated; in contrast, the expression of SeCDA7 and SeCDA9 was up-regulated. After silencing SeCDAV (the conserved sequences of Group V CDAs) via RNA interference (RNAi), the layer of intestinal wall cells in the midgut became more compact and more evenly distributed. The vesicles in the midgut were small and more fragmented or disappeared after SeCDAs were silenced. Additionally, the PM structure was scarce, and the chitin microfilament structure was loose and chaotic. It was indicated in all of the above results that Group V CDAs are essential for the growth and structuring of the intestinal wall cell layer in the midgut of S. exigua. Additionally, the midgut tissue and the PM structure and composition were affected by Group V CDAs.


Assuntos
Beta vulgaris , Animais , Spodoptera/genética , Beta vulgaris/metabolismo , Larva/metabolismo , Quitina/metabolismo , Proteínas de Insetos/genética
7.
Environ Sci Pollut Res Int ; 29(57): 86550-86561, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35895172

RESUMO

The processing of shellfishery industrial wastes is gaining much interest in recent times due to the presence of valuable components. Chitin is one of the valuable components and is insoluble in most common solvents including water. In this study, a novel gram-positive bacterial strain capable of solubilizing chitin was screened from a prawn shell dumping yard. The chitinolytic activity of the isolated strain was observed through the zone of hydrolysis plate assay. The hyper-producing isolate was identified as Bacillus velezensis through the 16S rRNA sequencing technique. The structural and morphological characterization of raw and colloidal chitin preparation was carried out using FTIR, XRD, and SEM analysis. The residual protein and mineral content, degree of polymerization, and degree of acetylation were reported for both raw and colloidal chitin preparations. There was a linear increase in the chitinase activity with an increase in the colloidal chitin concentration. The maximum activity of chitinase was observed as 38.98 U/mL for the initial colloidal chitin concentration of 1.5%. Supplement of additional carbon sources, viz., glucose and maltose, did not improve the production of chitinase and resulted in a diauxic growth pattern. The maximum chitinase activity was observed to be 33.10 and 30.28 U/mL in the colloidal chitin-containing medium with and without glucose as a secondary carbon source, respectively. Interestingly, the addition of complex nitrogen sources has increased the production of chitinase. A 1.95- and 2.14-fold increase in the enzyme activity was observed with peptone and yeast extract, respectively. The chitinase was confirmed using SDS-PAGE, native PAGE, and zymograms. The optimum pH and temperature for chitinase enzyme activity were found to be 7.0 and 44 °C, respectively.


Assuntos
Quitinases , Quitinases/metabolismo , Quitina/metabolismo , RNA Ribossômico 16S , Concentração de Íons de Hidrogênio , Carbono/metabolismo , Glucose
8.
Sci Rep ; 12(1): 8830, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614185

RESUMO

Chitin-glucan (CG), an insoluble dietary fiber, has been shown to improve cardiometabolic disorders associated with obesity in mice. Its effects in healthy subjects has recently been studied, revealing its interaction with the gut microbiota. In this double-blind, randomized, cross-over, twice 3-week exploratory study, we investigated the impacts of CG on the cardiometabolic profile and gut microbiota composition and functions in 15 subjects at cardiometabolic risk. They consumed as a supplement 4.5 g of CG daily or maltodextrin as control. Before and after interventions, fasting and postprandial metabolic parameters and exhaled gases (hydrogen [H2] and methane [CH4]) were evaluated. Gut microbiota composition (16S rRNA gene sequencing analysis), fecal concentrations of bile acids, long- and short-chain fatty acids (LCFA, SCFA), zonulin, calprotectin and lipopolysaccharide binding protein (LBP) were analyzed. Compared to control, CG supplementation increased exhaled H2 following an enriched-fiber breakfast ingestion and decreased postprandial glycemia and triglyceridemia response to a standardized test meal challenge served at lunch. Of note, the decrease in postprandial glycemia was only observed in subjects with higher exhaled H2, assessed upon lactulose breath test performed at inclusion. CG decreased a family belonging to Actinobacteria phylum and increased 3 bacterial taxa: Erysipelotrichaceae UCG.003, Ruminococcaceae UCG.005 and Eubacterium ventriosum group. Fecal metabolites, inflammatory and intestinal permeability markers did not differ between groups. In conclusion, we showed that CG supplementation modified the gut microbiota composition and improved postprandial glycemic response, an early determinant of cardiometabolic risk. Our results also suggest breath H2 production as a non-invasive parameter of interest for predicting the effectiveness of dietary fiber intervention.


Assuntos
Doenças Cardiovasculares , Microbioma Gastrointestinal , Humanos , Bactérias , Glicemia/análise , Quitina/metabolismo , Fibras na Dieta/análise , Suplementos Nutricionais , Fezes/microbiologia , Glucanos/metabolismo , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética
9.
PLoS One ; 16(11): e0260305, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34797890

RESUMO

This study was conducted to examine digestibility of insect meals for Pacific white shrimp (Litopenaeus vannamei) and their utilization as fish meal substitutes. The tested insect meals were mealworm, silkworm, black soldier fly, rice grasshopper, two-spotted cricket, dynastid beetle and white-spotted flower chafer. Apparent digestibility coefficients of the tested insect meals were 83-89% for protein, 91-98% for lipid, 84-90% for energy, 77-81% for dry matter, 28-36% for chitin, 76-96% for amino acids and 89-93% for fatty acids. The amino acid availability of insect meals was high in taurine (93-96%), arginine (91-95%) and lysine (90-95%). Availability of fatty acids were 89-93% for saturated fatty acids, 90-93% for monounsaturated fatty acids and 88-93% for polyunsaturated fatty acids. For a feeding trial, a control diet was formulated using 27% tuna byproduct meal as a fish meal source and seven other diets were prepared replacing 10% tuna byproduct meal in the control diet with each insect meal. Triplicate groups of shrimp (initial body weight: 0.17 g) were fed the diets for 65 days. The growth performance was significantly improved when the shrimp were fed black soldier fly or dynastid beetle included diet. Dietary supplementation of insect meals significantly improved non-specific immune responses and antioxidant enzyme activity in the shrimp. These results indicate that the tested insect meals have high potentials to be used as a protein source that could replace fish meal in diets for the shrimp.


Assuntos
Imunidade/imunologia , Insetos/metabolismo , Penaeidae/imunologia , Penaeidae/metabolismo , Aminoácidos/metabolismo , Animais , Antioxidantes/metabolismo , Quitina/metabolismo , Ácidos Graxos/metabolismo , Refeições , Alimentos Marinhos
10.
Int J Biol Macromol ; 192: 771-819, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34634337

RESUMO

Heck cross-coupling reaction (HCR) is one of the few transition metal catalyzed CC bond-forming reactions, which has been considered as the most effective, direct, and atom economical synthetic method using various catalytic systems. Heck reaction is widely employed in numerous syntheses including preparation of pharmaceutical and biologically active compounds, agrochemicals, natural products, fine chemicals, etc. Commonly, Pd-based catalysts have been used in HCR. In recent decades, the application of biopolymers as natural and effective supports has received attention due to their being cost effective, abundance, and non-toxicity. In fact, recent studies demonstrated that biopolymer-based catalysts had high sorption capacities, chelating activities, versatility, and stability, which make them potentially applicable as green materials (supports) in HCR. These catalytic systems present high stability and recyclability after several cycles of reaction. This review aims at providing an overview of the current progresses made towards the application of various polysaccharide and gelatin-supported metal catalysts in HCR in recent years. Natural polymers such as starch, gum, pectin, chitin, chitosan, cellulose, alginate and gelatin have been used as natural supports for metal-based catalysts in HCR. Diverse aspects of the reactions, different methods of preparation and application of polysaccharide and gelatin-based catalysts and their reusability have been reviewed.


Assuntos
Alginatos/química , Celulose/química , Quitina/química , Quitosana/química , Gelatina/química , Pectinas/química , Gomas Vegetais/química , Amido/química , Alginatos/metabolismo , Biopolímeros/química , Catálise , Celulose/metabolismo , Técnicas de Química Sintética , Quitina/metabolismo , Quitosana/metabolismo , Gelatina/metabolismo , Redes e Vias Metabólicas , Estrutura Molecular , Acoplamento Oxidativo , Pectinas/metabolismo , Gomas Vegetais/metabolismo , Polissacarídeos/química , Amido/metabolismo
11.
Molecules ; 26(18)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34576932

RESUMO

Our study aimed to characterise the action mode of N-phenacyldibromobenzimidazoles against C. albicans and C. neoformans. Firstly, we selected the non-cytotoxic most active benzimidazoles based on the structure-activity relationships showing that the group of 5,6-dibromobenzimidazole derivatives are less active against C. albicans vs. 4,6-dibromobenzimidazole analogues (5e-f and 5h). The substitution of chlorine atoms to the benzene ring of the N-phenacyl substituent extended the anti-C. albicans action (5e with 2,4-Cl2 or 5f with 3,4-Cl2). The excellent results for N-phenacyldibromobenzimidazole 5h against the C. albicans reference and clinical isolate showed IC50 = 8 µg/mL and %I = 100 ± 3, respectively. Compound 5h was fungicidal against the C. neoformans isolate. Compound 5h at 160-4 µg/mL caused irreversible damage of the fungal cell membrane and accidental cell death (ACD). We reported on chitinolytic activity of 5h, in accordance with the patterns observed for the following substrates: 4-nitrophenyl-N-acetyl-ß-d-glucosaminide and 4-nitrophenyl-ß-d-N,N',N″-triacetylchitothiose. Derivative 5h at 16 µg/mL: (1) it affected cell wall by inducing ß-d-glucanase, (2) it caused morphological distortions and (3) osmotic instability in the C. albicans biofilm-treated. Compound 5h exerted Candida-dependent inhibition of virulence factors.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Benzimidazóis/química , Animais , Antifúngicos/síntese química , Antifúngicos/toxicidade , Benzimidazóis/síntese química , Benzimidazóis/farmacologia , Benzimidazóis/toxicidade , Biofilmes/efeitos dos fármacos , Candida albicans/citologia , Candida albicans/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Quitina/metabolismo , Chlorocebus aethiops , Cryptococcus neoformans/citologia , Cryptococcus neoformans/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Testes de Sensibilidade Microbiana , Microscopia Confocal , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Células Vero
12.
Environ Toxicol Chem ; 40(8): 2112-2120, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33818824

RESUMO

Arthropods (including insects, crustaceans, and arachnids) rely on the synthesis of chitin to complete their life cycles (Merzendorfer 2011). The highly conserved chitin synthetic process and the absence of this process in vertebrates make it an exploitable target for pest management and veterinary medicines (Merzendorfer 2013; Junquera et al. 2019). Susceptible, nontarget organisms, such as insects and aquatic invertebrates, exposed to chitin synthesis inhibitors may suffer population declines, which may have a negative impact on ecosystems and associated services. Hence, it is important to properly identify, prioritize, and regulate relevant chemicals posing potential hazards to nontarget arthropods. The need for a more cost-efficient and mechanistic approach in risk assessment has been clearly evident and triggered the development of the adverse outcome pathway (AOP) framework (Ankley et al. 2010). An AOP links a molecular initiating event (MIE) through key events (KEs) to an adverse outcome. The mechanistic understanding of the underlying toxicological processes leading to a regulation-relevant adverse outcome is necessary for the utilization of new approach methodologies (NAMs) and efficient coverage of wider chemical and taxonomic domains. In the last decade, the AOP framework has gained traction and expanded within the (eco)toxicological research community. However, there exists a lack of mature invertebrate AOPs describing molting defect-associated mortality triggered by direct inhibition of relevant enzymes in the chitin biosynthetic pathway (chitin synthesis inhibitors) or interference with associated endocrine systems by environmental chemicals (endocrine disruptors). Arthropods undergo molting to grow and reproduce (Heming 2018). This process is comprised of the synthesis of a new exoskeleton, followed by the exuviation of the old exoskeleton (Reynolds 1987). The arthropod exoskeleton (cuticle) can be divided into 2 layers, the thin and nonchitinous epicuticle, which is the outermost layer of the cuticle, and the underlying chitinous procuticle. A single layer of epithelial cells is responsible for the synthesis and secretion of both cuticular layers (Neville 1975). The cuticle protects arthropods from predators and desiccation, acts as a physical barrier against pathogens, and allows for locomotion by providing support for muscular function (Vincent and Wegst 2004). Because the procuticle mainly consists of chitin microfibrils embedded in a matrix of cuticular proteins supplemented by lipids and minerals in insects (Muthukrishnan et al. 2012) and crustaceans (Cribb et al. 2009; Nagasawa 2012), chitin is a determinant factor for the appropriate composition of the cuticle and successful molting (Cohen 2001). A detailed overview of the endocrine mechanisms regulating chitin synthesis is given in Supplemental Data, Figure S1. The shedding of the old exoskeleton in insects is mediated by a sequence of distinct muscular contractions, the ecdysis motor program (EMP; Ayali 2009; Song et al. 2017a). Like the expression of chitin synthase isoform 1 (CHS-1), the expression of peptide hormones regulating the EMP is also controlled by ecdysteroids (Antoniewski et al. 1993; Gagou et al. 2002; Ayali 2009). Cuticular chitin is polymerized from uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) by the transmembrane enzyme CHS-1, which is localized in the epithelial plasma membrane in insects (Locke and Huie 1979; Binnington 1985; Merzendorfer and Zimoch 2003; Merzendorfer 2006). Because crustaceans are also dependent on the synthesis of chitin, the underlying mechanisms are believed to be similar, although less is known about different CHS isoforms and their localization (Rocha et al. 2012; Qian et al. 2014; Uddowla et al. 2014; Harðardóttir et al. 2019). Disruption of either chitin synthesis or the upstream endocrine pathways can lead to lethal molting disruption (Arakawa et al. 2008; Merzendorfer et al. 2012; Song et al. 2017a, 2017b). In the case of chitin synthesis inhibition, molting disruption can be referred to as "premature molting." If ecdysis cannot be completed because of decreased chitin synthesis, the organism may not successfully molt. Even if ecdysis can be completed on inhibition of chitin synthesis, the organism may not survive because of the poor integrity of the new cuticle. These effects are observed in arthropods following molting, which fail to survive subsequent molts (Arakawa et al. 2008; Chen et al. 2008) or animals being stuck in their exuviae (Wang et al. 2019) and ultimately dying as a result of insufficient food or oxygen intake (Camp et al. 2014; Song et al. 2017a). The term "premature molting" is used to differentiate from the term "incomplete ecdysis," which describes inhibition of ecdysis on a behavioral level, namely through reduction of the EMP (Song et al. 2017a). The present AOP describes molting-associated mortality through direct inhibition of the enzyme CHS-1. It expands the small but increasing number of invertebrate AOPs that have relevance to arthropods, the largest phylum within the animal kingdom (Bar-On et al. 2018). The development of this AOP will be useful in further research and regulatory initiatives related to assessment of CHS inhibitors and identification of critical knowledge gaps and may suggest new strategies for ecotoxicity testing efforts. Environ Toxicol Chem 2021;40:2112-2120. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Rotas de Resultados Adversos , Artrópodes , Animais , Artrópodes/metabolismo , Quitina/metabolismo , Quitina Sintase , Crustáceos/metabolismo , Ecossistema , Insetos/metabolismo , Muda , Isoformas de Proteínas
14.
J Microbiol Biotechnol ; 30(12): 1827-1834, 2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33148941

RESUMO

Candida albicans is a major fungal pathogen in humans. In our previous study, we reported that an ethanol extract from Aucklandia lappa weakens C. albicans cell wall by inhibiting synthesis or assembly of both (1,3)-ß-D-glucan polymers and chitin. In the current study, we found that the extract is involved in permeabilization of C. albicans cell membranes. While uptake of ethidium bromide (EtBr) was 3.0% in control cells, it increased to 7.4% for 30 min in the presence of the A. lappa ethanol extract at its minimal inhibitory concentration (MIC), 0.78 mg/ml, compared to uptake by heat-killed cells. Besides, leakage of DNA and proteins was observed in A. lappa-treated C. albicans cells. The increased uptake of EtBr and leakage of cellular materials suggest that A. lappa ethanol extract induced functional changes in C. albicans cell membranes. Incorporation of diphenylhexatriene (DPH) into membranes in the A. lappa-treated C. albicans cells at its MIC decreased to 84.8%, after 60 min of incubation, compared with that of the controls, indicate that there was a change in membrane dynamics. Moreover, the anticandidal effect of the A. lappa ethanol extract was enhanced at a growth temperature of 40°C compared to that at 35°C. The above data suggest that the antifungal activity of the A. lappa ethanol extract against C. albicans is associated with synergistic action of membrane permeabilization due to changes in membrane dynamics and cell wall damage caused by reduced formation of (1,3)-ß-D-glucan and chitin.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Saussurea/química , Candidíase , Membrana Celular/efeitos dos fármacos , Membrana Celular/microbiologia , Parede Celular/efeitos dos fármacos , Quitina/metabolismo , Glucanos/metabolismo , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Temperatura
15.
Gut Microbes ; 12(1): 1810530, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32893709

RESUMO

Dietary fibers are considered beneficial nutrients for health. Current data suggest that their interaction with the gut microbiota largely contributes to their physiological effects. In this context, chitin-glucan (CG) improves metabolic disorders associated with obesity in mice, but its effect on gut microbiota has never been evaluated in humans. This study explores the effect of a 3-week intervention with CG supplementation in healthy individuals on gut microbiota composition and bacterial metabolites. CG was given to healthy volunteers (n = 15) for three weeks as a supplement (4.5 g/day). Food diary, visual analog and Bristol stool form scales and a "quality of life" survey were analyzed. Among gut microbiota-derived metabolites, bile acids (BA), long- and short-chain fatty acids (LCFA, SCFA) profiling were assessed in stool samples. The gut microbiota (primary outcome) was analyzed by Illumina sequencing. A 3-week supplementation with CG is well tolerated in healthy humans. CG induces specific changes in the gut microbiota composition, with Eubacterium, Dorea and Roseburia genera showing the strongest regulation. In addition, CG increased bacterial metabolites in feces including butyric, iso-valeric, caproic and vaccenic acids. No major changes were observed for the fecal BA profile following CG intervention. In summary, our work reveals new potential bacterial genera and gut microbiota-derived metabolites characterizing the interaction between an insoluble dietary fiber -CG- and the gut microbiota.


Assuntos
Quitina/metabolismo , Microbioma Gastrointestinal , Glucanos/metabolismo , Mucosa Intestinal/metabolismo , Adolescente , Adulto , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Ácidos e Sais Biliares/química , Ácidos e Sais Biliares/metabolismo , Biomarcadores/química , Biomarcadores/metabolismo , Suplementos Nutricionais/análise , Ácidos Graxos Voláteis/química , Ácidos Graxos Voláteis/metabolismo , Fezes/química , Fezes/microbiologia , Feminino , Humanos , Mucosa Intestinal/microbiologia , Masculino , Adulto Jovem
16.
Fish Shellfish Immunol ; 106: 563-573, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32738515

RESUMO

The immunomodulatory effects of oligochitosan have been demonstrated in several fish. However, the underlying mechanisms are not well characterized. The profound interplay between gut microbes and aquaculture has received much scientific attention but understanding the alternations of microbes populating in gut of tilapia (Oreochromis niloticus) fed with oligochitosan remains enigmatic. In this study, the effects of oligochitosan on the growth, immune responses and gut microbes of tilapia were investigated. The feeding trial was conducted in triplicates with the control diet supplemented with oligochitosan at different concentrations (0, 100, 200, 400 or 800 mg/kg). Following a six-week feeding trial, body weights of the fish supplemented with 200 mg/kg and 400 mg/kg oligochitosan were significantly higher than that of the control group. To address the immune responses stimulated by oligochitosan, by the quantitative real time PCR (qRT-PCR), the mRNA expression levels of CSF, IL-1ß, IgM, TLR2 and TLR3 genes from head kidney were all significantly up-regulated in the 400 mg/kg group compared to the control. To characterize the gut microbes, bacterial samples were collected from the foregut, midgut, and hindgut, respectively and were subjected to high-throughput sequencing of 16S rDNA. The results showed that significantly lower abundance of Fusobacterium was detected in the hindgut of 400 mg/kg group compared to the control. Additionally, beta-diversity revealed that both gut habitat and oligochitosan had effects on the gut bacterial assembly. To further elucidate the mechanism underlying the effects of oligochitosan on bacterial assembly, the results showed that difference dosages of dietary oligochitosan could alter the specific metabolic pathways and functions of the discriminatory bacterial taxa, resulting in the different bacterial assemblies. To test the antibacterial ability of tilapia fed with oligochitosan, when the tilapias were challenged with Aeromonas hydrophila, the mortality of groups fed with dietary oligochitosan was significantly lower than that of the control. Taken together, appropriate dietary oligochitosan could improve growth, immune responses and alter the bacterial flora in the intestine of tilapia, so as to play a role in fighting against the bacterial infection.


Assuntos
Quitina/análogos & derivados , Ciclídeos/imunologia , Resistência à Doença , Doenças dos Peixes/imunologia , Microbioma Gastrointestinal , Imunidade Inata , Aeromonas hydrophila/fisiologia , Ração Animal/análise , Animais , Quitina/administração & dosagem , Quitina/metabolismo , Quitosana , Ciclídeos/crescimento & desenvolvimento , Ciclídeos/microbiologia , Dieta/veterinária , Suplementos Nutricionais/análise , Resistência à Doença/efeitos dos fármacos , Relação Dose-Resposta a Droga , Microbioma Gastrointestinal/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Imunidade Inata/efeitos dos fármacos , Oligossacarídeos , Distribuição Aleatória
17.
Sci Rep ; 10(1): 11898, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32681120

RESUMO

Marine pollution is a significant issue in recent decades, with the increase in industries and their waste harming the environment and ecosystems. Notably, the rise in shellfish industries contributes to tons of shellfish waste composed of up to 58% chitin. Chitin, the second most ample polymer next to cellulose, is insoluble and resistant to degradation. It requires chemical-based treatment or enzymatic hydrolysis to cleave the chitin polymers. The chemical-based treatment can lead to environmental pollution, so to solve this problem, enzymatic hydrolysis is the best option. Moreover, the resulting biopolymer by-products can be used to boost the fish immune system and also as drug delivery agents. Many marine microbial strains have chitinase producing ability. Nevertheless, we still lack an economical and highly stable chitinase enzyme for use in the industrial sector. So we isolate a novel marine bacterial strain Achromobacter xylosoxidans from the shrimp waste disposal site using chitin minimal medium. Placket-Burman and central composite design statistical models for culture condition optimisation predicted a 464.2 U/ml of chitinase production. The culture conditions were optimised for maximum chitinase production recording up to 467 U/ml. This chitinase from the A. xylosoxidans was 100% active at an optimum temperature of 45 °C (withstand up to 55 °C) and pH 8 with 80% stability. The HPLC analysis of chitinase degraded shellfish waste reveals a major amino acid profile composition-arginine, lysine, aspartic acid, alanine, threonine and low levels of isoleucine and methionine. These chitinase degraded products and by-products can be used as supplements in the aquaculture industry.


Assuntos
Achromobacter denitrificans/enzimologia , Achromobacter denitrificans/isolamento & purificação , Quitina/metabolismo , Quitinases/biossíntese , Crustáceos/microbiologia , Eliminação de Resíduos , Aminoácidos/análise , Animais , Quitina/química , Quitinases/isolamento & purificação , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Filogenia , Temperatura
18.
J Microbiol Biotechnol ; 30(7): 967-973, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32347080

RESUMO

The fungal cell wall is a major target of antifungals. In this study, we report the antifungal activity of an ethanol extract from Aucklandia lappa against Candida albicans. We found that the extract caused cell wall injury by decreasing chitin synthesis or assembly and (1,3)-ß-D-glucan synthesis. A sorbitol protection assay demonstrated that the minimum inhibitory concentration (MIC) of the A. lappa extract against C. albicans cells increased eight-fold from 0.78 to 6.24 mg/ml in 72 h. Cell aggregates, which indicate damage to the cell wall or membrane, were commonly observed in the A. lappatreated C. albicans cells through microscopic analysis. In addition, the relative fluorescence intensities of the C. albicans cells incubated with the A. lappa extract for 3, 5, and 6 h were 92.1, 84.6, and 79.8%, respectively, compared to the controls, estimated by Calcofluor White binding assay. This result indicates that chitin content was reduced by the A. lappa treatment. Furthermore, synthesis of (1,3)-ß-D-glucan polymers was inhibited to 84.3, 79.7, and 70.2% of that of the control treatment following incubation of C. albicans microsomes with the A. lappa extract at a final concentration equal to its MIC, 2× MIC, and 4× MIC, respectively. These findings suggest that the A. lappa ethanol extract may aid the development of a new antifungal to successfully control Candida-associated disease.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Quitina/metabolismo , Extratos Vegetais/farmacologia , Saussurea/química , beta-Glucanas/metabolismo , Candida albicans/metabolismo , Parede Celular/química , Testes de Sensibilidade Microbiana , Proteoglicanas
19.
Protein Expr Purif ; 170: 105574, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31978534

RESUMO

BACKGROUND: Lectins are known to possess interesting biological properties such as anti microbial, nematicidal, anti tumor and anti viral activities. Lantana camara from verbenaceae family is a medicinal plant known for possessing anti oxidant and anticancer activities. Since anticancer activity is reported in plant lectins, leaves of Lantana camara was used to check the presence of lectin. METHODS AND RESULTS: Here we report the purification, characterization and biological properties of a lectin from Lantana camara (LCL) leaves. LCL was purified by ion exchange chromatography on CM-cellulose column followed by affinity chromatography on mucin coupled Sepharose 4B column and gel filtration chromatography on Superdex G75 column. LCL is a glycoprotein with 10% of the carbohydrate and is blood group non specific. SDS-PAGE analysis of affinity purified LCL showed two proteins with apparent molecular weight of 14.49 kDa and 17.4 kDa which were subsequently separated by Gel filtration chromatography on Superdex G75 column. Hapten inhibition studies of LCL revealed its highest affinity for Chitin, Milibiose, α-D-Methyl galactopyranoside and glycoproteins like mucin, asialomucin. LCL showed strong binding to human colon adenocarcinoma HT29 cells with MFI of 242 which was effectively blocked by 68.1 and 62.5% by both mucin and milibiose. LCL showed dose and time dependent growth inhibitory effects on HT29 cells with IC50 of 3.75  µg/ml at 48 h. LCL has potent antibacterial and anti fungal activity. CONCLUSION: LCL can be explored for its clinical potential.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Lantana/química , Lectinas de Plantas/farmacologia , Antibacterianos/isolamento & purificação , Antifúngicos/isolamento & purificação , Antineoplásicos/isolamento & purificação , Quitina/química , Quitina/metabolismo , Cromatografia de Afinidade , Cromatografia em Gel , Cromatografia por Troca Iônica , Eletroforese em Gel de Poliacrilamida , Fungos/efeitos dos fármacos , Fungos/crescimento & desenvolvimento , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/crescimento & desenvolvimento , Células HT29 , Humanos , Melibiose/química , Melibiose/metabolismo , Metilgalactosídeos/química , Metilgalactosídeos/metabolismo , Testes de Sensibilidade Microbiana , Mucinas/química , Mucinas/metabolismo , Extratos Vegetais/química , Folhas de Planta/química , Lectinas de Plantas/isolamento & purificação , Plantas Medicinais , Ligação Proteica
20.
Appl Biochem Biotechnol ; 191(2): 666-678, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31845196

RESUMO

The effects of switching morphology and replacing supplementary nutrients with fungal extract (5 and 10 g/L) on the production of major metabolites and chitosan by Mucor rouxii were investigated. This approach was supposed to promote sustainability of the fermentation process and improve its economic feasibility. Different fungal morphologies, i.e., purely filamentous (PF), purely yeast-like (PY), mostly filamentous (MF), and mostly yeast-like (MY), were evaluated. The highest ethanol yields were obtained from the media supplemented with 10 g/L fungal extract for all morphologies, while adding nutrient salts did not make any improvements in these yields, except a slight decrease in the fermentation time. Except for PF morphology, the replacement of yeast extract favored the biomass production yields. Moreover, the alkali insoluble material (AIM) yields were higher as a result of the replacement for most cases. Furthermore, the replacement resulted in increased glucosamine and decreased N-acetyl-glucosamine content of AIM for almost all the morphologies. AIM yields of at least 0.25 g/g-glucose and maximum chitin/chitosan yield of 0.78 g/g-AIM were obtained from the solids remaining after autolysis process, which were higher than that obtained from the raw biomass. The maximum yield of 0.135 g/g-AIM purified chitosan with intact molecular weight was obtained from the biomass with PF morphology supplemented with 10 g/L fungal extract plus nutrients.


Assuntos
Quitosana/metabolismo , Mucorales/metabolismo , Leveduras/metabolismo , Autólise , Biomassa , Quitina/metabolismo , Etanol/metabolismo , Fermentação , Glucosamina/biossíntese , Glucose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA