Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.543
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Open Vet J ; 14(1): 416-427, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633182

RESUMO

Background: Acute lung injury (ALI) is a severe condition distinguished by inflammation and impaired gas exchange in the lungs. Staphylococcus aureus, a common bacterium, can cause ALI through its virulence factors. Aloe vera is a medicinal plant that has been traditionally used to treat a variety of illnesses due to its anti-inflammatory properties. Chitosan nanoparticles are biocompatible and totally biodegradable materials that have shown potential in drug delivery systems. Aim: To explore the antibacterial activity of Aloe vera-loaded chitosan nanoparticles (AV-CS-NPs) against S. aureus in vitro and in vivo with advanced techniques. Methods: The antibacterial efficacy of AV-CS-NPs was evaluated through a broth microdilution assay. In addition, the impact of AV-CS-NPs on S. aureus-induced ALI in rats was examined by analyzing the expression of genes linked to inflammation, oxidative stress, and apoptosis. Furthermore, rat lung tissue was scanned histologically. The rats were divided into three groups: control, ALI, and treatment with AV-CS-NPs. Results: The AV-CS-NPs that were prepared exhibited clustered semispherical and spherical forms, having an average particle size of approximately 60 nm. These nanoparticles displayed a diverse structure with an uneven distribution of particle sizes. The maximum entrapment efficiency of 95.5% ± 1.25% was achieved. The obtained findings revealed that The minimum inhibitory concentration and minimum bactericidal concentration values were determined to be 5 and 10 ug/ml, respectively, indicating the potent bactericidal effect of the NPs. Also, S. aureus infected rats explored upregulation in the mRNA expression of TLR2 and TLR4 compared to healthy control groups. AV-CS-NP treatment reverses the case where there was repression in mRNA expression of TLR2 and TLR4 compared to S. aureus-treated rats. Conclusion: These NPs can serve as potential candidates for the development of alternative antimicrobial agents.


Assuntos
Lesão Pulmonar Aguda , Aloe , Quitosana , Nanopartículas , Doenças dos Roedores , Ratos , Animais , Quitosana/química , Quitosana/farmacologia , NF-kappa B/farmacologia , Staphylococcus aureus , Receptor 2 Toll-Like , Receptor 4 Toll-Like , Nanopartículas/química , Transdução de Sinais , Antibacterianos/farmacologia , Lesão Pulmonar Aguda/veterinária , Inflamação/veterinária , RNA Mensageiro/farmacologia
2.
Int J Pharm ; 656: 124096, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38583821

RESUMO

Pulmonary fibrosis (PF) is a chronic, progressive and irreversible interstitial lung disease that seriously threatens human life and health. Our previous study demonstrated the unique superiority of traditional Chinese medicine cryptotanshinone (CTS) combined with sustained pulmonary drug delivery for treating PF. In this study, we aimed to enhance the selectivity, targeting efficiency and sustained-release capability based on this delivery system. To this end, we developed and evaluated CTS-loaded modified liposomes-chitosan (CS) microspheres SM(CT-lipo) and liposome-exosome hybrid bionic vesicles-CS microspheres SM(LE). The prepared nano-in-micro particles system integrates the advantages of the carriers and complements each other. SM(CT-lipo) and SM(LE) achieved lung myofibroblast-specific targeting through CREKA peptide binding specifically to fibronectin (FN) and the homing effect of exosomes on parent cells, respectively, facilitating efficient delivery of anti-fibrosis drugs to lung lesions. Furthermore, compared with daily administration of conventional microspheres SM(NC) and positive control drug pirfenidone (PFD), inhaled administration of SM(CT-lipo) and SM(LE) every two days still attained similar efficacy, exhibiting excellent sustained drug release ability. In summary, our findings suggest that the developed SM(CT-lipo) and SM(LE) delivery strategies could achieve more accurate, efficient and safe therapy, providing novel insights into the treatment of chronic PF.


Assuntos
Quitosana , Exossomos , Fibronectinas , Lipossomos , Fibrose Pulmonar , Piridonas , Animais , Fibronectinas/administração & dosagem , Fibrose Pulmonar/tratamento farmacológico , Exossomos/química , Quitosana/química , Quitosana/administração & dosagem , Administração por Inalação , Microesferas , Liberação Controlada de Fármacos , Masculino , Preparações de Ação Retardada , Fenantrenos/administração & dosagem , Fenantrenos/química , Fenantrenos/farmacocinética , Camundongos , Sistemas de Liberação de Medicamentos/métodos , Humanos , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Ratos Sprague-Dawley , Antifibróticos/administração & dosagem , Antifibróticos/química
3.
Int J Nanomedicine ; 19: 3045-3070, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559447

RESUMO

Background: Diabetes Mellitus is a multisystem chronic pandemic, wound inflammation, and healing are still major issues for diabetic patients who may suffer from ulcers, gangrene, and other wounds from uncontrolled chronic hyperglycemia. Marshmallows or Althaea officinalis (A.O.) contain bioactive compounds such as flavonoids and phenolics that support wound healing via antioxidant, anti-inflammatory, and antibacterial properties. Our study aimed to develop a combination of eco-friendly formulations of green synthesis of ZnO-NPs by Althaea officinalis extract and further incorporate them into 2% chitosan (CS) gel. Method and Results: First, develop eco-friendly green Zinc Oxide Nanoparticles (ZnO-NPs) and incorporate them into a 2% chitosan (CS) gel. In-vitro study performed by UV-visible spectrum analysis showed a sharp peak at 390 nm, and Energy-dispersive X-ray (EDX) spectrometry showed a peak of zinc and oxygen. Besides, Fourier transforms infrared (FTIR) was used to qualitatively validate biosynthesized ZnO-NPs, and transmission electron microscope (TEM) showed spherical nanoparticles with mean sizes of 76 nm and Zeta potential +30mV. The antibacterial potential of A.O.-ZnO-NPs-Cs was examined by the diffusion agar method against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). Based on the zone of inhibition and minimal inhibitory indices (MIC). In addition, an in-silico study investigated the binding affinity of A.O. major components to the expected biological targets that may aid wound healing. Althaea Officinalis, A.O-ZnO-NPs group showed reduced downregulation of IL-6, IL-1ß, and TNF-α and increased IL-10 levels compared to the control group signaling pathway expression levels confirming the improved anti-inflammatory effect of the self-assembly method. In-vivo study and histopathological analysis revealed the superiority of the nanoparticles in reducing signs of inflammation and wound incision in rat models. Conclusion: These biocompatible green zinc oxide nanoparticles, by using Althaea Officinalis chitosan gel ensure an excellent new therapeutic approach for quickening diabetic wound healing.


Assuntos
Althaea , Quitosana , Diabetes Mellitus , Nanopartículas Metálicas , Óxido de Zinco , Humanos , Animais , Ratos , Óxido de Zinco/química , Quitosana/química , Althaea/metabolismo , Interleucina-6 , Fator de Necrose Tumoral alfa , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Cicatrização , Anti-Inflamatórios/farmacologia , Inflamação , Flores , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
4.
PLoS One ; 19(4): e0292414, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38568898

RESUMO

To mitigate the risk of radioactive isotope dissemination, the development of preventative and curative measures is of particular interest. For mass treatment, the developed solution must be easily administered, preferably orally, with effective, nontoxic decorporating properties against a wide range of radioactive isotopes. Currently, most orally administered chelation therapy products are quickly absorbed into the blood circulation, where chelation of the radioactive isotope is a race against time due to the short circulation half-life of the therapeutic. This report presents an alternative therapeutic approach by using a functionalized chitosan (chitosan@DOTAGA) with chelating properties that remains within the gastrointestinal tract and is eliminated in feces, that can protect against ingested radioactive isotopes. The polymer shows important in vitro chelation properties towards different metallic cations of importance, including (Cs(I), Ir(III), Th(IV), Tl(I), Sr(II), U(VI) and Co(II)), at different pH (from 1 to 7) representing the different environments in the gastrointestinal tract. An in vivo proof of concept is presented on a rodent model of uranium contamination following an oral administration of Chitosan@DOTAGA. The polymer partially prevents the accumulation of uranium within the kidneys (providing a protective effect) and completely prevents its uptake by the spleen.


Assuntos
Quitosana , Protetores contra Radiação , Urânio , Quitosana/química , Urânio/química , Protetores contra Radiação/farmacologia , Polímeros , Quelantes/química
5.
Int J Biol Macromol ; 266(Pt 2): 131359, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580018

RESUMO

The combination of photothermal therapy (PTT) and photodynamic therapy (PDT) has emerged as a promising strategy for cancer treatment. However, the poor photostability and photothermal conversion efficiency (PCE) of organic small-molecule photosensitizers, and the intracellular glutathione (GSH)-mediated singlet oxygen scavenging largely decline the antitumor efficacy of PTT and PDT. Herein, a versatile nanophotosensitizer (NPS) system is developed by ingenious incorporation of indocyanine green (ICG) into the PEGylated chitosan (PEG-CS)-coated polydopamine (PDA) nanoparticles via multiple π-π stacking, hydrophobic and electrostatic interactions. The PEG-CS-covered NPS showed prominent colloidal and photothermal stability as well as high PCE (ca 62.8 %). Meanwhile, the Michael addition between NPS and GSH can consume GSH, thus reducing the GSH-induced singlet oxygen scavenging. After being internalized by CT26 cells, the NPS under near-infrared laser irradiation produced massive singlet oxygen with the aid of thermo-enhanced intracellular GSH depletion to elicit mitochondrial damage and lipid peroxide formation, thus leading to ferroptosis and apoptosis. Importantly, the combined PTT and PDT delivered by NPS effectively inhibited CT26 tumor growth in vivo by light-activated intense hyperthermia and redox homeostasis disturbance. Overall, this work presents a new tactic of boosting antitumor potency of ICG-mediated phototherapy by PEG-CS-covered NPS.


Assuntos
Quitosana , Glutationa , Nanopartículas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Terapia Fototérmica , Polietilenoglicóis , Quitosana/química , Fotoquimioterapia/métodos , Animais , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Glutationa/metabolismo , Polietilenoglicóis/química , Camundongos , Nanopartículas/química , Terapia Fototérmica/métodos , Linhagem Celular Tumoral , Verde de Indocianina/química , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Oxigênio Singlete/metabolismo , Humanos , Apoptose/efeitos dos fármacos , Indóis/química , Indóis/farmacologia , Polímeros/química
6.
Int J Biol Macromol ; 263(Pt 1): 130513, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428758

RESUMO

Anthocyanins (ACNs) are natural compounds with potential applications due to their colorimetric response to pH. Due to their sensitivity to various environmental factors, nanoencapsulation with biopolymers is a successful strategy for stabilizing ACNs. In this work ACNs were extracted from grape skins and encapsulated into chitosan (CS) nanoparticles by ionic gelation using sodium tripolyphosphate (TPP) as a cross-linking agent. CS nanoparticles loaded with ACNs had particle sizes between 291 and 324 nm and polydispersity index around 0.3. The encapsulation efficiency of ACNs was approximately 60 %; and encapsulated anthocyanins (ACN-NPs) exhibited color change properties under different pH conditions. pH-sensitive labels based on polyvinyl alcohol (PVA) were prepared by the casting method. The effect of incorporating ACN-NPs on the physical, structural, and pH-sensitive properties of PVA labels was evaluated, and its application as shrimp freshness indicator was studied. The nanoencapsulation protected ACNs against heat and light treatments, preserving the original purple color. When applying the label, visible changes from red to blue until reaching yellow were observed with the change in the quality of the shrimp at the refrigeration temperature. The results suggest that PVA labels containing ACNs encapsulated in C-NPs can be used as smart packaging labels in the food industry.


Assuntos
Quitosana , Nanopartículas , Vitis , Quitosana/química , Álcool de Polivinil/química , Antocianinas/química , Nanopartículas/química , Extratos Vegetais/química , Embalagem de Alimentos/métodos , Concentração de Íons de Hidrogênio
7.
J Environ Manage ; 357: 120725, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38554454

RESUMO

Since the electroplating industry is springing up, effective control of phosphate has attracted global concerns. In this study, a novel biosorbent (MIL-88@CS-HDG) was synthesized by loading a kind of Fe-based metal organic framework called MIL-88 into chitosan hydrogel beads and applied in deep treatment of phosphate removal in electroplating wastewater. The adsorption capacities of H2PO4- on MIL-88@CS-HDG could reach 1.1 mmol/g (corresponding to 34.1 mg P/g and 106.7 mg H2PO4-/g), which was 2.65% higher than that on single MOF powders and chitosan hydrogel beads. The H2PO4- adsorption was well described by the Freundlich isotherm model. Over 90% H2PO4- could be adsorbed at contact time of 3 h. It could keep high adsorption capacity in the pH range from 2 to 7, which had a wider pH range of application compared with pure MIL-88. Only NO3- and SO42- limited the adsorption with the reduction rate of 11.42% and 23.23%, proving it tolerated most common co-existing ions. More than 92% of phosphorus could be recovered using NaOH and NaNO3. Electrostatic attraction between Fe core and phosphorus in MIL-88@CS-HDG and ion exchange played the dominant role. The recovered MIL-88@CS-HDG remained stable and applicable in the treatment process of real electroplating wastewater even after six adsorption-regeneration cycles. Based on the removal properties and superb regenerability, MIL-88@CS-HDG is potentially applicable to practical production.


Assuntos
Quitosana , Poluentes Químicos da Água , Fosfatos , Hidrogéis , Quitosana/química , Águas Residuárias , Galvanoplastia , Fósforo , Adsorção , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Cinética
8.
Int J Biol Macromol ; 265(Pt 1): 130851, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484821

RESUMO

The wound dressings' lack of antioxidant and antibacterial properties, and delayed wound healing limit their use in wound treatment and management. Recent advances in dressing materials are aimed at improving the limitations discussed above. Therefore, the aim of this study includes the preparation and characterization of oxidized hydroxyethyl cellulose (OHEC) and ferulic acid-grafted chitosan (CS-FA) hydrogel loaded with green synthesized selenium nanoparticles (Se NPs) (OHEC-CS-FA-Se NPs named as nanohydrogel) for diabetic wound healing. The structure and properties of the hydrogel was characterized by FTIR, FE-SEM, HR-TEM, EDAX, UV-Vis spectrophotometry, XRD, DLS, zeta potential and rheological studies. The findings of these experiments demonstrate that nanohydrogel possesses a variety of outstanding qualities, including an optimal gel time, good swelling characteristics, a fair water retention rate, a good degradation rate, and strong mechanical stability. Nanohydrogel has been shown to have a synergistic impact by significantly increasing antioxidant activity by scavenging ABTS and DPPH radicals. The nanohydrogel's strong biocompatibility was confirmed by cytocompatibility testing using L929 mouse fibroblast cells. In addition, the wound healing potential of nanohydrogel was tested on L929 cells by an in vitro scratch assay and the nanohydrogel showed a wound closure rate of 100 % after 12 h. In addition to this study, nanohydrogel has demonstrated significant antimicrobial properties against human and wound infection causing pathogens such as Bacillus subtilis, methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, and Pseudomonas aeruginosa. In the animal model, almost complete diabetic wound healing was achieved on day 14 after application of the nanohydrogel. The results obtained indicate that the multifunctional bioactive nature of OHEC-CS-FA-Se NPs showed exceptional antioxidant and antibacterial potential for the treatment of infected and chronic wounds.


Assuntos
Celulose Oxidada , Quitosana , Diabetes Mellitus , Staphylococcus aureus Resistente à Meticilina , Selênio , Camundongos , Animais , Humanos , Quitosana/química , Hidrogéis/química , Antioxidantes/farmacologia , Antioxidantes/química , Cicatrização , Antibacterianos/química , Diabetes Mellitus/tratamento farmacológico , Celulose
9.
Sci Rep ; 14(1): 5829, 2024 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461158

RESUMO

Plants represents a huge source of bioactive materials that have been used since the old times in the treatment of many diseases. Balanites aegyptiaca, known as desert date, has been used in treatment of fever, diabetes and bacterial infection. Desert dates contains a hard seed that resembles 50-60% of the fruit. The seed extract contains many fatty acids, amino acids and other bioactive materials that gives the extract its antioxidant and anti-inflammatory properties. The study aimed to use Balanites seed extract-loaded chitosan nanoparticles (SeEx-C NPs) for the treatment of streptozotocin (STZ)-induced diabetes in male Sprague Dawley rats. Animals were divided into two main divisions (healthy and diabetic rats). Each division contained seven groups (5 rats/group): control untreated group I, SeEx treated group II and group III (10 and 20 mg/kg b.w., respectively), C NPs treated group IV and group V (10 and 20 mg/kg b.w., respectively) and SeEx-C NPs treated group VI and group VII (10 and 20 mg/kg b.w., respectively). The therapeutical effects of SeEx-C NPs were evaluated through biochemical and immunological assessments in rats' pancreases. The results showed that SeEx-C NPs (10 and 20 mg/kg b.w.) reduced the oxidative stress and inflammation in rats' pancreases allowing the islets neogenesis. The loading of SeEx on C NPs allowed the delivery of fatty acids (oleic, lauric and myristic acid), amino acids (lysine, leucine, phenylalanine and valine) and minerals to pancreatic beta-cells in a sustainable manner. SeEx-C NPs administration successfully increased insulin secretion, allowed pancreatic islets neogenesis and reduced oxidative stress and inflammation.


Assuntos
Quitosana , Diabetes Mellitus Experimental , Hiperglicemia , Nanopartículas , Ratos , Animais , Insulina/metabolismo , Quitosana/química , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Ratos Sprague-Dawley , Estresse Oxidativo , Sementes/metabolismo , Inflamação/tratamento farmacológico , Nanopartículas/química
10.
Int J Biol Macromol ; 266(Pt 2): 131001, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547951

RESUMO

The main objective of this work is to develop biodegradable active films through the combination of the extracts with different solvents sourced from Eucalyptus citriodora leaves, with films made of chitosan (Cs) and polyvinylpyrrolidone (PVP). Chromatographic profiling investigations were carried out to examine the antibacterial characteristics of E. citriodora extracts before their direct incorporation into the polymer films. At this point, the potent antimicrobial properties of the phenol compounds and bioactive components demonstrated an antibacterial activity that was particularly noticeable at a hexane resolution. Different morphological characteristics were seen on films made from these solvent extracts, such as Cs/PVP-AE, Cs/PVP-EAE, and Cs/PVP-HE, when scanning electron microscopy was used. Numerous other outcomes of all the interactions between the extract particles and the film were shown by the pores defined by the Cs/PVP film's porous nature. The addition of the extracts, either alone or in combination, greatly enhanced the Cs/NC/PVP films' mechanical characteristics. It has also been shown that adding plant extracts greatly increased the antibacterial activity of these films. These findings reveal that Cs/PVP films loaded with extract may be utilized as more environmentally acceptable substitutes for possible food packaging application by increasing shelf life of food products.


Assuntos
Antibacterianos , Quitosana , Eucalyptus , Extratos Vegetais , Povidona , Quitosana/química , Eucalyptus/química , Antibacterianos/farmacologia , Antibacterianos/química , Povidona/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Embalagem de Alimentos , Testes de Sensibilidade Microbiana
11.
Int J Biol Macromol ; 263(Pt 1): 130286, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382795

RESUMO

This study evaluated the physicochemical and antioxidant properties of clove essential oil (0, 0.2, 0.4, 0.6, 0.8, 1.0 % v/v) nanoemulsion (CEON) loaded chitosan-based films. With the increasing concentrations of the CEON, the thickness, b* and ΔE values of the films increased significantly (P < 0.05), while L* and light transmission dropped noticeably (P < 0.05). The hydrogen bonds formed between the CEON and chitosan could be demonstrated through Fourier-transform infrared spectra, indicating their good compatibility and intermolecular interactions. Furthermore, the added CEON considerably reduced the crystallinity and resulted in a porous structure of the films, as observed through X-ray diffraction plots and scanning electron microscopy images, respectively. This eventually led to a drop in both tensile strength and moisture content of the films. Moreover, the antioxidant properties were significantly enhanced (P < 0.05) with the increase in the amount of clove essential oil (CEO) due to the encapsulation of CEO by the nanoemulsion. Films containing 0.6 % CEO had higher elongation at break, higher water contact angle, lower water solubility, lower water vapor permeability, and lower oxygen permeability than the other films; therefore, such films are promising for application in meat preservation.


Assuntos
Quitosana , Óleos Voláteis , Syzygium , Quitosana/química , Óleos Voláteis/farmacologia , Óleo de Cravo/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Syzygium/química , Espectroscopia de Infravermelho com Transformada de Fourier , Permeabilidade , Embalagem de Alimentos/métodos , Vapor
12.
Int J Biol Macromol ; 263(Pt 1): 130376, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395286

RESUMO

The aim of this study was to prepare a drug carrier that could deliver oral insulin to the intestine. A hydrogel beads composed of sodium carboxymethyl cellulose (CMC), Zingiber offtcinale polysaccharide (ZOP) and chitosan (CS) were prepared by ionic gel method as insulin carrier. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Scanning electron microscopy (SEM) and thermogravimetric (TGA) showed that the hydrogel was formed by metal ion coordination between ZOP and CMC and Fe3+, and CS was coated on the surface of the hydrogel ball in the form of non covalent bond. The results showed that the swelling process of hydrogel spheres has significant pH sensitivity. In addition, the hydrogel beads successfully coated insulin, and the drug loading rate (DL) of (ZOP/CMC-Fe3+)@CS could reach 69.43 ± 7.32 mg/g, and the entrapment efficiency (EE) could reach 66.94 ± 7.43 %. In vitro release experiments, the release rate of (CMC/ZOP-Fe3+)@CS in simulated gastric fluid (SGF) for 2 h was <20 %, and the cumulative release rate of insulin after 9 h in simulated intestinal fluid (SIF) reached over 90 %. The results showed that the hydrogel beads prepared in this work could be used as a potential carrier for delivering oral insulin.


Assuntos
Compostos Azabicíclicos , Quitosana , Piperazinas , Zingiber officinale , Hidrogéis/química , Liberação Controlada de Fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Portadores de Fármacos/química , Polissacarídeos , Insulina , Concentração de Íons de Hidrogênio , Quitosana/química
13.
Int J Biol Macromol ; 263(Pt 2): 130358, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412939

RESUMO

The present study aims to develop and characterize biodegradable packaging films from lemon peel-derived pectin and chitosan incorporated with a bioactive extract from neem leaves. The films (PCNE) contained varying concentrations of neem leaf extract and were comprehensively assessed for their physical, optical, mechanical, and antimicrobial attributes. The thickness, moisture content, water solubility, and water vapor permeability of the biodegradable packaging films increased with the increasing concentration of neem leaf extract. Comparatively, the tensile strength of the films decreased by 42.05 % compared to the control film. The Scanning Electron Microscopy (SEM) confirmed that the resultant blended pectin-chitosan films showed a uniform structure without cracks. Furthermore, the analysis targeting Staphylococcus aureus and Aspergillus niger indicated that the films had potent antimicrobial activity. Based on these results, the optimum films were selected and subsequently applied on apricot fruits to increase their shelf life at ambient temperature. The findings, after examining factors such as colour, firmness, total soluble solids, shrinkage, weight loss, and appearance, concluded that the apricots coated by PCNE-5 had the most delayed signs of spoilage and increased their shelf life by 50 %. The results showed the potential applicability of lemon peel pectin-chitosan-neem leaf extract blend films in biodegradable food packaging.


Assuntos
Anti-Infecciosos , Quitosana , Prunus armeniaca , Embalagem de Alimentos , Quitosana/química , Pectinas/química , Frutas/química , Anti-Infecciosos/química , Permeabilidade
14.
Int J Biol Macromol ; 263(Pt 2): 130391, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417746

RESUMO

The textiles for medical use and the purification of textile factory effluents have become the most crucial part of the human healthcare sector. In this study bioactive compounds produced by four distinct plant extracts were used for the synthesis of zinc oxide nanoparticles. The four different ZnO nanoparticles were comprehensively characterized by different analytical techniques. XRD analysis revealed the crystalline nature and phase purity of the ZnO nanoparticles. FTIR spectra provided information on the function of plant extracts in the stabilization or capping process. The size distribution and morphological diversity of the nanoparticles were further clarified by SEM and TEM images. The photocatalytic degradation activity of the four ZnO nanoparticles on two different dyes showed that ZnO nanoparticles prepared from A. indica were most effective for the degradation of 98 % and 91 % of Rhodamine B and Alizarin red dye respectively. The selected ZnO nanoparticles from A. indica were used to prepare ZnO-chitosan nanocomposites before coating on cotton fabrics. The hydrophobicity, UV protection factor, and antibacterial activity of ZnO-chitosan nanocomposites, when coated on cotton fabrics, were also examined. The overall results demonstrated the ZnO and ZnO-chitosan nanocomposite prepared in the present study as a promising material for environmental remediation application.


Assuntos
Quitosana , Nanocompostos , Óxido de Zinco , Humanos , Óxido de Zinco/química , Quitosana/química , Antibacterianos/farmacologia , Antibacterianos/química , Têxteis , Corantes , Nanocompostos/química , Extratos Vegetais/química
15.
Int J Biol Macromol ; 262(Pt 1): 130014, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340933

RESUMO

The incorporation of ginger oil (GO) influenced the physical, optical, and structural properties of the chitosan (CH) film including the decreases of moisture content (60.15 %), water solubility (35.37 %) and water vapor permeability (WVP) (32.79 %) and the increases of tensile strength (TS) (125 %), elongation at break (EAB) (2.74 %) and opacity (131.08 %). Antifungal capacity of the CH film was enhanced when GO was added to the film. The CH + GO film showed a less homogeneous surface that the presence of the oil droplets on the film surface. Moreover, the CH and CH + GO coatings reduced weight loss of persimmon by 14.87 %, and 21.13 %, respectively, compared to the control. Moisture content loss of the coated CH- and the coated CH + GO- persimmons was decreased by 1.94 % and 4.92 %, respectively, compared to that of the control persimmon. Furthermore, the CH and CH + GO coatings decreased in color changes, respiration rate, ethylene production, changes in pH and TSS, and remained firmness of persimmon during storage at 25 °C. In addition, X-ray CT images can be used to monitor internal changes and observe the tissue breakdown during storage period. The ΔGS value can be used as a predictor of persimmon internal qualities. Thus, the CH film containing GO can be applied as an active packaging material.


Assuntos
Quitosana , Diospyros , Filmes Comestíveis , Óleos Voláteis , Zingiber officinale , Quitosana/química , Tomografia Computadorizada por Raios X , Permeabilidade , Embalagem de Alimentos
16.
Int J Biol Macromol ; 261(Pt 2): 129900, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316329

RESUMO

The presence of potentially toxic elements and compounds poses threats to the quality and safety of fruit juices. Among these, Hg(II) is considered as one of the most poisonous heavy metals to human health. Traditional chitosan-based and selenide-based adsorbents face challenges such as poor adsorption capacity and inconvenient separation in juice applications. In this study, we prepared nano­selenium functionalized chitosan gel beads (nanoSe@CBs) and illustrated the synergistic promotions between chitosan and nanoSe in removing Hg(II) from apple juice. The preparation conditions, adsorption behaviors, and adsorption mechanism of nanoSe@CBs were systematically investigated. The results revealed that the adsorption process was primarily controlled by chemical adsorption. At the 0.1 % dosage, the adsorbent exhibited high uptake, and the maximum adsorption capacity from the Langmuir isotherm model could reach 376.5 mg/g at room temperature. The adsorbent maintained high adsorption efficiency (> 90 %) across a wide range of Hg(II) concentrations (0.01 to 10 mg/L) and was unaffected by organic acids present in apple juice. Additionally, nanoSe@CBs showed negligible effects on the quality of apple juice. Overall, nanoSe@CBs open up possibilities to be used as a safe, low-cost and highly-efficient adsorbent for the removal of Hg(II) from juices and other liquid foods.


Assuntos
Quitosana , Malus , Mercúrio , Selênio , Poluentes Químicos da Água , Humanos , Sucos de Frutas e Vegetais , Malus/química , Quitosana/química , Adsorção , Cinética , Concentração de Íons de Hidrogênio
17.
Food Chem ; 443: 138506, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38306905

RESUMO

Researchers are addressing environmental concerns related to petroleum-based plastic packaging by exploring biopolymers from natural sources, chemical synthesis, and microbial fermentation. Despite the potential of individual biopolymers, they often exhibit limitations like low water resistance and poor mechanical properties. Blending polymers emerges as a promising strategy to overcome these challenges, creating films with enhanced performance. This review focuses on recent advancements in chitosan/polyvinyl alcohol (PVA) blend food packaging films. It covers molecular structure, properties, strategies for performance improvement, and applications in food preservation. The blend's excellent compatibility and intermolecular interactions make it a promising candidate for biodegradable films. Future research should explore large-scale thermoplastic technologies and investigate the incorporation of additives like natural extracts and nanoparticles to enhance film properties. Chitosan/PVA blend films offer a sustainable alternative to petroleum-based plastic packaging, with potential applications in practical food preservation.


Assuntos
Quitosana , Petróleo , Álcool de Polivinil/química , Quitosana/química , Embalagem de Alimentos , Biopolímeros/química
18.
J Chromatogr A ; 1719: 464712, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38377662

RESUMO

A drastic increase in demand for electric vehicles and energy storage systems increases lithium (Li) need as a critical metal for the 21st century. Lithium manganese oxides stand out among inorganic adsorbents because of their high capacity, chemical stability, selectivity, and affordability for lithium recovery from aqueous media. This study investigates using hydrometallurgically synthesized lithium manganese oxide (Li1.6Mn1.6O4) in granular form coated with cross-linked chitosan for lithium recovery from water. Characterization methods such as SEM, FTIR, XRD, and BET reveal the successful synthesis of the composite adsorbent. Granular cross-linked chitosan-coated and delithiated lithium manganese oxide (CTS/HMO) adsorbent demonstrated optimal removal efficiency of 86 % at pH 12 with 4 g/L of adsorbent dosage. The Langmuir isotherm at 25 °C, which showed monolayer adsorption with a maximum capacity of 4.94 mg/g, a better fit for the adsorption behavior of CTS/HMO. Adsorption was endothermic and thermodynamically spontaneous. Lithium adsorption followed the pseudo-first-order kinetic model.


Assuntos
Óxido de Alumínio , Quitosana , Óxido de Magnésio , Poluentes Químicos da Água , Água , Manganês , Lítio , Quitosana/química , Adsorção , Óxidos/química , Cinética , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
19.
Sci Rep ; 14(1): 3430, 2024 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341481

RESUMO

Chitosan is a natural biodegradable biopolymer that has drawbacks in mechanical and antibacterial properties, limiting its usage in biological and medicinal fields. Chitosan is combined with other naturally occurring substances possessing biological antibacterial qualities in order to broaden its application. Ethanolic apricot kernel seed extract was prepared, analyzed, and incorporated into chitosan film with different concentrations (0.25, 0.5, and 0.75 wt%). Furthermore, the effect of AKSE and γ-radiation (20 Gy and 20 kGy) on the physical properties of the film was studied. The prepared films were characterized by Fourier transform infrared spectroscopy (FTIR), which revealed that AKSE did not cause any change in the molecular structure, whereas the γ-irradiation dose caused a decrease in the peak intensity of all concentrations except 0.75 wt%, which was the most resistant. In addition, their dielectric, optical, and antimicrobial properties were studied. Also, AKSE-enhanced optical qualities, allowed them to fully block light transmission at wavelengths of 450-600 nm. The dielectric properties, i.e., permittivity (ε'), dielectric loss (ε''), and electrical conductivity (σ), increased with increasing AKSE concentration and film irradiation. The antimicrobial studies revealed that the antimicrobial activity against Escherichia coli and Canodida albicans increased with AKSE incorporation.


Assuntos
Anti-Infecciosos , Quitosana , Prunus armeniaca , Quitosana/farmacologia , Quitosana/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Embalagem de Alimentos/métodos , Extratos Vegetais/farmacologia , Extratos Vegetais/química
20.
Carbohydr Polym ; 330: 121839, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368115

RESUMO

Cancer, a global health challenge of utmost severity, necessitates innovative approaches beyond conventional treatments (e.g., surgery, chemotherapy, and radiation therapy). Unfortunately, these approaches frequently fail to achieve comprehensive cancer control, characterized by inefficacy, non-specific drug distribution, and the emergence of adverse side effects. Nanoscale systems based on natural polymers like chitosan have garnered significant attention as promising platforms for cancer diagnosis and therapy owing to chitosan's inherent biocompatibility, biodegradability, nontoxicity, and ease of functionalization. Herein, recent advancements pertaining to the applications of chitosan nanoparticles in cancer imaging and drug/gene delivery are deliberated. The readers are introduced to conventional non-stimuli-responsive and stimuli-responsive chitosan-based nanoplatforms. External triggers like light, heat, and ultrasound and internal stimuli such as pH and redox gradients are highlighted. The utilization of chitosan nanomaterials as contrast agents or scaffolds for multimodal imaging techniques e.g., magnetic resonance, fluorescence, and nuclear imaging is represented. Key applications in targeted chemotherapy, combination therapy, photothermal therapy, and nucleic acid delivery using chitosan nanoformulations are explored for cancer treatment. The immunomodulatory effects of chitosan and its role in impacting the tumor microenvironment are analyzed. Finally, challenges, prospects, and future outlooks regarding the use of chitosan-based nanosystems are discussed.


Assuntos
Quitosana , Nanopartículas , Nanoestruturas , Neoplasias , Humanos , Quitosana/química , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Nanoestruturas/química , Nanopartículas/uso terapêutico , Nanopartículas/química , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA