Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Anticancer Res ; 43(3): 1017-1023, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36854529

RESUMO

BACKGROUND/AIM: Rhenium(I)-diselenoether (Re-diSe) is a compound combining a rhenium tricarbonyl(I) core with a diselenide ligand. A high dose of 60 mg/kg had a pro-tumor effect in a previous study, in non-immune deficient 4T1 tumor-bearing mice, while doses of 1 and 10 mg/kg did not affect tumor growth, after repeated oral administrations. This study aimed to examine the tumor effects of a lower dose of 0.1 mg/kg with the same experimental design and to assay plasma Re and Se concentrations. MATERIALS AND METHODS: Syngenic BALB/cByJ (JAX) mice were orthotopically inoculated with 4T1 mammary breast cancer cells. Re-diSe was daily administered orally for 23 days at doses of 0.1, 1, and 10 mg/kg, whereas controls received no treatment. Tumor and mice weights were measured at the end of the experiment. Plasma Re and Se concentrations were assayed by an inductively coupled plasma sector field mass spectrometry instrument (ICP-sf-MS). RESULTS: The weight of the tumors did not vary in treated versus non-treated mice. The limit of detection (LOD) of Re was 0.34 nmol/l. Plasma Re concentrations were 14±20 nmol/l at doses of 0.1 mg/kg, and increased at higher doses, up to 792±167 nmol/l at doses of 10 mg/kg. Plasma Se concentrations were significantly increased in mice treated with the dose of 0.1 mg/kg (4,262±1,511 nmol/l) versus controls (1,262±888 nmol/l), but not from 0.1 to 1 mg/kg, nor from 1 to 10 mg/kg. CONCLUSION: The 0.1 mg/kg dose of Re-diSe resulted in detectable plasma Re concentrations and significantly increased plasma Se concentrations. In the future, doses as low as 0.1 mg/kg of Re-diSe will be tested, exploring its potential immune interest as a metronomic schedule of treatment, but in mouse models that readily develop extensive metastatic disease.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Rênio , Selênio , Camundongos , Animais , Humanos , Feminino , Administração Oral , Bioensaio , Neoplasias da Mama/tratamento farmacológico
2.
J Inorg Biochem ; 240: 112092, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36549168

RESUMO

This study explores the effect of a thione/selone ligand on the cell toxicity (in vitro) and light activity of diimine Re(CO)3+ complexes. Six rhenium(I) complexes with general formula fac-[Re(CO)3(N,N')X]+ were prepared, where X = 2-mercapto-1-methylimidazole (methimazole; MMI), and 1-methylimidazole-2-selone (MSeI); N,N' = 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen) and 2,9-dimethyl-1,10-phenanthroline (dmphen). Their triflate salts were characterized using single-crystal X-ray diffraction, 1H, 13C and 2D NMR, UV-vis and vibrational spectroscopy. Their cytotoxic properties were tested, showing significant cytotoxicity (IC50 = 8.0-55 µM) towards the human breast cancer cell line MDA-MB-231. The half-inhibitory concentration (IC50) for fac-[Re(CO)3(dmphen)(MMI)]+, the most toxic complex in this series (8.0 ± 0.2 µM), was comparable to that of the corresponding aqua complex fac-[Re(CO)3(dmphen)(H2O)]+ with IC50 = 6.0 ± 0.1 µM. The fac-[Re(CO)3(bpy)(MMI/MSeI)]+ complexes were somewhat less toxic towards the human embryonic kidney cell line HEK-293 T after 48 h of exposure. The stability of the complexes upon irradiation was monitored using UV-vis spectroscopy, with no CO released when exposed to UV-A light (λ = 365 nm).


Assuntos
Antineoplásicos , Rênio , Selênio , Humanos , Rênio/química , Metimazol , Células HEK293 , Antineoplásicos/farmacologia
3.
Acc Chem Res ; 55(5): 783-793, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35171568

RESUMO

Low-valent transition metalates─anionic, electronic-rich organometallic complexes─comprise a class of highly reactive chemical reagents that find integral applications in organic synthesis, small-molecule activation, transient species stabilization, and M-E bond formation, among others. The inherent reactivity of such electron-rich metal centers has necessitated the widespread use of strong backbonding ligands, particularly carbonyls, to aid in the isolation and handling of metalate reagents, albeit sometimes at the expense of partially masking their full reactivity. However, recent synthetic explorations into transition-metalate complexes devoid of archetypic back-bonding ligands have led to the discovery of highly reactive metalates capable of performing a variety of novel chemical transformations.Building on our group's long-standing interest in reactive organometallic species, a series of rational progressions in early-to-middle transition-metal chemistry ultimately led to our isolation of a rhenium(I) ß-diketiminate cyclopentadienide metalate that displays exceptional reactivity. We have found this Re(I) metalate to be capable of small-molecule activation; notably, the complex reversibly binds dinitrogen in solution and can be utilized to trap N2 for the synthesis of functionalized diazenido species. By employing isolobal analogues to N2 (CO and RNC), we were able to thoroughly monitor the mechanism of activation and conclude that the metalate's sodium counterion plays an integral role in promoting dinitrogen activation through a novel side-on interaction. The Re(I) metalate is also used in forming a variety of M-E bonds, including a series of uncommon rhenium-tetrylene (Si, Ge, and Sn) complexes that display varying degrees of multiple bonding. These metal tetrylenes act to highlight deviations in chemical properties within the group 14 elements. Our metalate's utility also applies to metal-metal bond formation, as demonstrated through the synthesis of a heterotetrametallic rhenium-zinc dimer. In this reaction, the Re(I) metalate performs a dual role as a reductant and metalloligand to stabilize a transient Zn22+ core fragment. Finally, the metalate displays unique reactivity with uranium(III) to yield the first transition metal-actinide inverse-sandwich bonds, in this case with three rhenium fragments bound through their Cp moieties surrounding the uranium center. Notably, throughout these endeavors we demonstrate that the metalate displays reactivity at multiple locations, including directly at the rhenium metal center, at a Cp carbon, through a Cp-sandwich mode, or through reversibly bound dinitrogen.Overall, the rhenium(I) metalate described herein demonstrates utility in diverse applications: small-molecule activation, the stabilization of reduced and/or unstable species, and the formation of unconventional M-E/M-M bonds or heterometallic complexes. Moving forward, we suggest that the continued discovery of noncarbonyl, electron-rich transition-metal anions featuring new or unconventional ligands should produce additional reactive organometallic species capable of stabilizing unique structural motifs and performing novel and unusual chemical transformations.


Assuntos
Rênio , Elementos de Transição , Ânions , Carbono/química , Ligantes , Rênio/química , Elementos de Transição/química
4.
Cancer Biother Radiopharm ; 37(1): 63-70, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34101501

RESUMO

Background: Rhenium-188(188Re)-lipiodol is a clinically effective, economically viable radiopharmaceutical for Selective Internal Radiation Therapy of liver cancer. Present study evaluates the performance of three freeze-dried kits with respect to the radiochemistry, quality control, and overall "ease of preparation" aspects in a hospital radiopharmacy. Materials and Methods: Freeze-dried kits of acetylated 4-hexadecyl-4,7-diaza-1,10-decanedithiol (AHDD), super six sulfur (SSS), and diethyl dithiocarbamate (DEDC), obtained commercially or received as gift, were used for the preparation of 188Re-lipiodol using freshly eluted 188Re-sodium perrhenate from commercial Tungsten-188/188Re generator following recommended procedures. Results: The overall yield of 188Re-lipiodol prepared using AHDD Kit, SSS Kit, and DEDC Kit was 74.82% ± 3.3%, 87.55% ± 4.8%, and 76.38% ± 4.6%, respectively. Observed radiochemical purity (RCP) of 188Re-lipiodol prepared using these kits was 88.65% ± 2.8%, 92.92% ± 3.0%, and 91.38% ± 3.0%, respectively. Using a modified version of the DEDC Kits, overall yield of 87.17% ± 2.7% and RCP of 95.43% ± 2.3% could be achieved. Conclusions: While all three freeze-dried kits can be used for the preparation of 188Re-lipiodol in >70% overall yield, the modified version of DEDC Kits has some advantages in terms of preparation time and volume of Rhenium-188 activity that can be added to the kit vial. The latter feature of the DEDC Kit is particularly useful for patient dose preparation with 188Re activity of low radioactive concentration.


Assuntos
Óleo Etiodado , Rênio , Hospitais , Humanos , Radioquímica/métodos , Radioisótopos , Compostos Radiofarmacêuticos/uso terapêutico , Rênio/uso terapêutico
5.
Int J Mol Sci ; 22(8)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33918011

RESUMO

Nanoliposomes are one of the leading potential nano drug delivery systems capable of targeting chemotherapeutics to tumor sites because of their passive nano-targeting capability through the enhanced permeability and retention (EPR) effect for cancer patients. Recent advances in nano-delivery systems have inspired the development of a wide range of nanotargeted materials and strategies for applications in preclinical and clinical usage in the cancer field. Nanotargeted 188Re-liposome is a unique internal passive radiotheranostic agent for nuclear imaging and radiotherapeutic applications in various types of cancer. This article reviews and summarizes our multi-institute, multidiscipline, and multi-functional studied results and achievements in the research and development of nanotargeted 188Re-liposome from preclinical cells and animal models to translational clinical investigations, including radionuclide nanoliposome formulation, targeted nuclear imaging, biodistribution, pharmacokinetics, radiation dosimetry, radiation tumor killing effects in animal models, nanotargeted radionuclide and radio/chemo-combination therapeutic effects, and acute toxicity in various tumor animal models. The systemic preclinical and clinical studied results suggest 188Re-liposome is feasible and promising for in vivo passive nanotargeted radionuclide theranostics in future cancer care applications.


Assuntos
Lipossomos , Nanopartículas , Radioisótopos , Compostos Radiofarmacêuticos , Rênio , Pesquisa Translacional Biomédica , Animais , Estudos Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Humanos , Lipossomos/química , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Neoplasias/mortalidade , Neoplasias/terapia , Avaliação de Resultados em Cuidados de Saúde , Radiometria , Compostos Radiofarmacêuticos/química , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Nanomedicina Teranóstica/métodos , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único , Pesquisa Translacional Biomédica/métodos
6.
Angew Chem Int Ed Engl ; 59(42): 18755-18762, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32634290

RESUMO

The development and malignancy of cancer cells are closely related to the changes of the epigenome. In this work, a mitochondria-targeted rhenium(I) complex (DFX-Re3), integrating the clinical iron chelating agent deferasirox (DFX), has been designed. By relocating iron to the mitochondria and changing the key metabolic species related to epigenetic modifications, DFX-Re3 can elevate the methylation levels of histone, DNA, and RNA. As a consequence, DFX-Re3 affects the events related to apoptosis, RNA polymerases, and T-cell receptor signaling pathways. Finally, it is shown that DFX-Re3 induces immunogenic apoptotic cell death and exhibits potent antitumor activity in vivo. This study provides a new approach for the design of novel epigenetic drugs that can recode the cancer epigenome by intervening in mitochondrial metabolism and iron homeostasis.


Assuntos
Complexos de Coordenação/química , Ferro/metabolismo , Mitocôndrias/metabolismo , Rênio/química , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Deferasirox/química , Avaliação Pré-Clínica de Medicamentos , Epigenômica , Histonas/metabolismo , Humanos , Quelantes de Ferro/química , Metilação/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , RNA Polimerase II/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
Anticancer Res ; 40(4): 1915-1920, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32234880

RESUMO

BACKGROUND/AIM: New anticancer drugs are usually tested on cancer cells in culture in a standard medium. We stimulated immune polynuclear cells by lipopolysaccharides to obtain an enriched medium (EM) containing inflammatory cytokines more closely reflecting the tumor microenvironment and tested a rhenium-diselenium (Re-diSe) drug in this new model. Concentrations of cytokines were compared with a control medium (CM). MATERIALS AND METHODS: Human-derived breast cancer cells were grown in culture either in CM or EM with or without Re-diSe. Assays of tumor necrosis factor alpha (TNFα), interleukin 6 (IL6), intereukin 1 beta (IL1ß), transforming growth factor-beta (TGFß), insulin growth factor 1 (IGF1) and vascular epidermal growth factor A (VEGFA) were performed by enzyme-linked immunosorbent assays. The production of reactive oxygen species (ROS) was determined by 2,7-dichlorofluorescein test. The cell growth was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tests. RESULTS: Concentrations of TNFα, IL6 and Il1ß were observed to be significantly higher in EM than in CM. There was no difference for TGFß, IGF1 and VEGFA. The cells were sensitive to Re-diSe, with reduced concentrations of TGFß, IGF1, VEGFA and ROS, but the half-maximal inhibitory concentration was significantly higher in EM than in CM. CONCLUSION: The efficacy of the Re-diSe drug was confirmed in this model of aggressive cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Rênio/farmacologia , Selênio/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Fator de Crescimento Insulin-Like I/genética , Interleucina-1beta/genética , Interleucina-6/genética , Lipopolissacarídeos/farmacologia , Cultura Primária de Células , Espécies Reativas de Oxigênio , Fator de Crescimento Transformador beta/genética , Microambiente Tumoral/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/genética
8.
Chembiochem ; 21(15): 2111-2115, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32196894

RESUMO

The success of metal-based anticancer therapeutics in the treatment of cancer is best exemplified by cisplatin. Currently used in 32/78 cancer regimens, metal-based drugs have a clear role in cancer therapy. Despite this, metal-based anticancer therapeutics are not without drawbacks, with issues such as toxic side effects and the development of resistance mechanisms. This has led to investigations of other metal-based drug candidates such as auranofin, a gold-based drug candidate as well as ruthenium-based candidates, NAMI-A, NKP-1339 and TLD-1433. All are currently undergoing clinical trials. Another class of complexes under study are rhenium-based; such complexes have undergone extensive in vitro testing but only nine have been reported to display antitumour in vivo activity, which is a necessary step before entering clinical trials. This review will document, chronologically, the rhenium-based drug candidates that have undergone in vivo testing and the outlook for such complexes.


Assuntos
Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Rênio/química , Animais , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Humanos
9.
Curr Pharm Des ; 25(31): 3306-3322, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31475892

RESUMO

BACKGROUND: Many rhenium (Re) complexes with potential anticancer properties have been synthesized in the recent years with the aim to overcome the clinical limitations of platinum agents. Re(I) tricarbonyl complexes are the most common but Re compounds with higher oxidation states have also been investigated, as well as hetero-metallic complexes and Re-loaded self-assembling devices. Many of these compounds display promising cytotoxic and phototoxic properties against malignant cells but all Re compounds are still at the stage of preclinical studies. METHODS: The present review focused on the rhenium based cancer drugs that were in preclinical and clinical trials were examined critically. The detailed targeted interactions and experimental evidences of Re compounds reported by the patentable and non-patentable research findings used to write this review. RESULTS: In the present review, we described the most recent and promising rhenium compounds focusing on their potential mechanism of action including, phototoxicity, DNA binding, mitochondrial effects, oxidative stress regulation or enzyme inhibition. Many ligands have been described that modulating the lipophilicity, the luminescent properties, the cellular uptake, the biodistribution, and the cytotoxicity, the pharmacological and toxicological profile. CONCLUSION: Re-based anticancer drugs can also be used in targeted therapies by coupling to a variety of biologically relevant targeting molecules. On the other hand, combination with conventional cytotoxic molecules, such as doxorubicin, allowed to take into profit the targeting properties of Re for example toward mitochondria. Through the example of the diseleno-Re complex, we showed that the main target could be the oxidative status, with a down-stream regulation of signaling pathways, and further on selective cell death of cancer cells versus normal cells.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Rênio/farmacologia , Morte Celular , Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Humanos , Luminescência , Estresse Oxidativo , Transdução de Sinais , Distribuição Tecidual
10.
ACS Appl Mater Interfaces ; 11(37): 33650-33658, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31448891

RESUMO

Spectral computed tomography (CT) imaging as a novel imaging technique shows promising prospects in the accurate diagnosis of various diseases. However, clinically iodinated contrast agents suffer from poor signal-to-noise ratio, and emerging heavy-metal-based CT contrast agents arouse great biosafety concern. Herein, we show the fabrication of rhenium sulfide (ReS2) nanoparticles, a clinic radiotherapy sensitizer, as a biosafe spectral CT contrast agent for the gastrointestinal tract imaging and tumor theranostics in vivo by teaching old drugs new tricks. The ReS2 nanoparticles were fabricated in a one-pot facile method at room temperature, and exhibited sub-10 nm size, favorable monodispersity, admirable aqueous solubility, and strong X-ray attenuation capability. More importantly, the proposed nanoparticles possess an outstanding spectral CT imaging ability and undoubted biosafety as a clinic therapeutic agent. Besides, the ReS2 nanoparticles possess appealing photothermal performance due to their intense near-infrared absorption. The proposed nano-agent not only guarantees obvious contrast enhancement in gastrointestinal tract spectral CT imaging in vivo, but also allows effective CT imaging-guided tumor photothermal therapy. The proposed "teaching old drugs new tricks" strategy shortens the time and cuts the cost required for clinical application of nano-agents based on existing clinical toxicology testing and trial results, and lays down a low-cost, time-saving, and energy-saving method for the development of multifunctional nano-agents toward clinical applications.


Assuntos
Meios de Contraste , Trato Gastrointestinal/diagnóstico por imagem , Hipertermia Induzida , Nanopartículas , Neoplasias , Fototerapia , Rênio , Sulfetos , Nanomedicina Teranóstica , Tomografia Computadorizada por Raios X , Animais , Linhagem Celular Tumoral , Meios de Contraste/química , Meios de Contraste/farmacocinética , Meios de Contraste/farmacologia , Camundongos , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Rênio/química , Rênio/farmacocinética , Rênio/farmacologia , Sulfetos/química , Sulfetos/farmacocinética , Sulfetos/farmacologia
11.
ACS Appl Mater Interfaces ; 11(29): 25691-25701, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31264401

RESUMO

The greatest bottleneck for photothermal antibacterial therapy could be the difficulty in heating the infection site directly and specifically to evade the unwanted damage for surrounding healthy tissues. In recent years, infectious microenvironments (IMEs) have been increasingly recognized as a crucial contributor to bacterial infections. Here, based on the unique IMEs and rhenium trioxide (ReO3) nanocubes (NCs), a new specific photothermal antibacterial strategy is reported. These NCs synthesized by a rapid and straightforward space-confined on-substrate approach have good biocompatibility and exhibit efficient photothermal antibacterial ability. Especially when they are utilized in antibiofilm, the expression levels of biofilm-related genes (icaA, fnbA, atlE, and sarA for Staphylococcus aureus) can be effectively inhibited to block bacterial adhesion and formation of biofilm. Importantly, the ReO3 NCs can transform into hydrogen rhenium bronze (HxReO3) in an aqueous environment, making them relatively stable within the low pH of IMEs for photothermal therapy, while rapidly degradable within the surrounding healthy tissues to decrease photothermal damage. Note that under phosphate-buffered saline (PBS) at pH 7.4 without assistant conditions, these ReO3 NCs have the highest degradation rate among all known degradable inorganic photothermal nanoagents. This special and IME-sensitive selective degradability of the ReO3 NCs not only facilitates safe, efficient, and specific elimination of implant-related infections, but also enables effective body clearance after therapy. Solely containing the element (Re) whose atomic number is higher than clinic-applied iodine in all reported degradable inorganic photothermal nanoagents under the PBS (pH 7.4) without any assistant condition, the ReO3 NCs with high X-ray attenuation ability could be further applied to X-ray computed tomography imaging-guided therapy against implant-related infections. The present work described here is the first to adopt degradable inorganic photothermal nanoagents to achieve specific antibacterial therapy and inspires other therapies on this concept.


Assuntos
Antibacterianos , Hipertermia Induzida , Implantes Experimentais/microbiologia , Nanoestruturas/química , Fototerapia , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/fisiologia , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Óxidos/química , Rênio/química
12.
J Am Chem Soc ; 141(13): 5144-5148, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30892880

RESUMO

Salt metathesis between the anionic rhenium(I) compound, Na[Re(η5-Cp)(BDI)] (BDI = N, N'-bis(2,6-diisopropylphenyl)-3,5-dimethyl-ß-diketiminate), and the uranium(III) salt, UI3(1,4-dioxane)1.5, generated the triple inverse sandwich complex, U[(µ-η5:η5-Cp)Re(BDI)]3, which was isolated and structurally characterized as the Lewis base adducts, (L)U[(µ-η5:η5-Cp)Re(BDI)]3 (1·L, L = THF, 1,4-dioxane, DMAP). The assignment as one uranium(III) and three rhenium(I) centers was supported by X-ray crystallography, NMR and EPR spectroscopies, and computational studies. An unusual shortening of the rhenium-Cp bond distances in 1·L relative to Na[Re(η5-Cp)(BDI)] was observed in the solid-state and reproduced in calculated structures of 1·THF and the anionic fragment, [Re(η5-Cp)(BDI)]-. Calculations suggest that the electropositive uranium center pulls electron density away from the electron-rich rhenium centers, reducing electron-electron repulsions in the rhenium-Cp moieties and thereby strengthening those interactions, while also making uranium-Cp bonding more favorable.


Assuntos
Compostos Organometálicos/síntese química , Rênio/química , Urânio/química , Cristalografia por Raios X , Modelos Moleculares , Conformação Molecular , Compostos Organometálicos/química
13.
Appl Radiat Isot ; 137: 147-153, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29625347

RESUMO

Rhenium-188-N-(DEDC)2/lipiodol (abbreviated as 188ReN-DEDC, where DEDC = monoanionic diethyldithiocarbamate) is a clinically proven radiopharmaceutical for the therapy of unresectable hepatocellular carcinoma (HCC) through trans arterial radioembolization (TARE). A two-vial freeze-dried kit for the preparation of [188ReN(DEDC)2] complex using sodium perrhenate (Na188ReO4) obtained from a commercial Tungsten-188/Rhenium-188 generator had been reported earlier. This method required addition of stipulated volume of glacial acetic acid into vial 1 by the user for efficient preparation of [188ReN]2+ intermediate. An error in this step can result in low radiochemical yield of [188ReN]2+ intermediate as well as sub-optimal pH of the reaction mixture for the second step, leading to poor radiochemical purity of 188ReN-DEDC complex. In the present work, a solution to this problem was found by including an oxalate buffer of pH = 3 in vial 1, eliminating the need for the addition of glacial acetic acid by the user. This modification not only made the kits more user-friendly, it resulted in significant improvement in the kinetics of formation of [188ReN]2+ intermediate, wherein > 95% radiochemical purity could be achieved within 5 min incubation at ambient temperature. Moreover, the novel route for the preparation of [188ReN]2+ intermediate may be applied to any radiopharmaceutical based on 188ReN-core.


Assuntos
Carcinoma Hepatocelular/radioterapia , Neoplasias Hepáticas/radioterapia , Radioisótopos/isolamento & purificação , Radioisótopos/uso terapêutico , Compostos Radiofarmacêuticos/isolamento & purificação , Compostos Radiofarmacêuticos/uso terapêutico , Rênio/isolamento & purificação , Rênio/uso terapêutico , Ditiocarb/isolamento & purificação , Ditiocarb/uso terapêutico , Estabilidade de Medicamentos , Óleo Etiodado/isolamento & purificação , Óleo Etiodado/uso terapêutico , Liofilização/métodos , Humanos
14.
Biometals ; 31(4): 517-525, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29574625

RESUMO

Tumorigenic cell lines are more susceptible to [Re6Se8I6]3- cluster-induced death than normal cells, becoming a novel candidate for cancer treatment. Still, the feasibility of using this type of molecules in human patients remains unclear and further pharmacokinetics analysis is needed. Using coupled plasma optical emission spectroscopy, we determined the Re-cluster tissue content in injected mice, as a biodistribution measurement. Our results show that the Re-cluster successfully reaches different tissues, accumulating mainly in heart and liver. In order to dissect the mechanism underlying cluster biodistribution, we used three different experimental approaches. First, we evaluate the degree of lipophilicity by determining the octanol/water partition coefficient. The cluster mostly remained in the octanol fraction, with a coefficient of 1.86 ± 0.02, which indicates it could potentially cross cell membranes. Then, we measured the biological membrane penetration through a parallel artificial membrane permeability assays (PAMPA) assay. The Re-cluster crosses the artificial membrane, with a coefficient of 122 nm/s that is considered highly permeable. To evaluate a potential application of the Re-cluster in central nervous system (CNS) tumors, we analyzed the cluster's brain penetration by exposing cultured blood-brain-barrier (BBB) cells to increasing concentrations of the cluster. The Re-cluster effectively penetrates the BBB, reaching nearly 30% of the brain side after 24 h. Thus, our results indicate that the Re-cluster penetrates biological membranes reaching different target organs-most probably due to its lipophilic properties-becoming a promising anti-cancer drug with high potential for CNS cancer's diagnosis and treatment.


Assuntos
Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Complexos de Coordenação/farmacologia , Rênio/farmacologia , Transporte Biológico/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Neoplasias do Sistema Nervoso Central/metabolismo , Neoplasias do Sistema Nervoso Central/patologia , Humanos , Selênio/farmacologia , Distribuição Tecidual/efeitos dos fármacos
15.
Small ; 14(14): e1703789, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29468828

RESUMO

Near-infrared light-mediated theranostic agents with superior tissue penetration and minimal invasion have captivated researchers in cancer research in the past decade. Herein, a probe sonication-assisted liquid exfoliation approach for scalable and continual synthesis of colloidal rhenium disulfide nanosheets, which is further explored as theranostic agents for cancer diagnosis and therapy, is reported. Due to high-Z element of Re (Z = 75) and significant photoacoustic effect, the obtained PVP-capped ReS2 nanosheets are evaluated as bimodality contrast agents for computed tomography and photoacoustic imaging. In addition, utilizing the strong near-infrared absorption and ultrahigh photothermal conversion efficiency (79.2%), ReS2 nanosheets could also serve as therapeutic agents for photothermal ablation of tumors with a tumor elimination rate up to 100%. Importantly, ReS2 nanosheets show no obvious toxicity based on the cytotoxicity assay, serum biochemistry, and histological analysis. This work highlights the potentials of ReS2 nanosheets as a single-component theranostic nanoplatform for bioimaging and antitumor therapy.


Assuntos
Fototerapia/métodos , Rênio/química , Nanomedicina Teranóstica/métodos , Técnicas Fotoacústicas/métodos , Tomografia Computadorizada por Raios X
16.
Biomaterials ; 159: 68-81, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29316453

RESUMO

The applications of inorganic theranostic agents in clinical trials are generally limited to their innate non-biodegradability and potential long-term biotoxicity. To address this problem, herein via a straightforward and tailored space-confined on-substrate route, we obtained rhenium trioxide (ReO3) nanocubes (NCs) that display a good biocompatibility and biosafety. Importantly, their aqueous dispersion has high localized surface plasmon resonance (LSPR) absorbance in near-infrared (NIR) region different from previous report, which possibly associates with the charge transfer and structural distortion in hydrogen rhenium bronze (HxReO3), as well as ReO3's cubic shape. Such a high LSPR absorbance in the NIR region endows them with photoacoustic (PA)/infrared (IR) thermal imaging, and high photothermal conversion efficiency (∼57.0%) for efficient ablation of cancer cells. Also, ReO3 NCs show X-ray computed tomography (CT) imaging derived from the high-Z element Re. More attractively, those ReO3 NCs, with pH-dependent oxidized degradation behaviors, are revealed to be relatively stable in hypoxic and weakly acidic microenvironment of tumor for imaging and treatment whilst degradable in normal physiological environments of organs to enable effective clearance. In spite of their degradability, ReO3 NCs still possess tumor targeting capabilities. We thus develop a simple but powerful, safe and biodegradable inorganic theranostic platform to achieve PA/CT/IR imaging-guided cancer photothermal therapy (PTT) for improved therapeutic efficacy and decreased toxic side effects.


Assuntos
Nanoestruturas/química , Rênio/química , Ressonância de Plasmônio de Superfície/métodos , Nanomedicina Teranóstica/métodos , Animais , Células HeLa , Hemólise , Humanos , Hipertermia Induzida , Camundongos Endogâmicos BALB C
17.
Small ; 12(29): 3967-75, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27345460

RESUMO

Radioisotope therapy (RIT), in which radioactive agents are administered or implanted into the body to irradiate tumors from the inside, is a clinically adopted cancer treatment method but still needs improvement to enhance its performances. Herein, it is found that polyethylene glycol (PEG) modified tungsten disulfide (WS2 ) nanoflakes can be easily labeled by (188) Re, a widely used radioisotope for RIT, upon simple mixing. Like other high-Z elements acting as radiosensitizers, tungsten in the obtained (188) Re-WS2 -PEG would be able to absorb ionization radiation generated from (188) Re, enabling ''self-sensitization'' to enhance the efficacy of RIT as demonstrated in carefully designed in vitro experiments of this study. In the meanwhile, the strong NIR absorbance of WS2 -PEG could be utilized for NIR light-induced photothermal therapy (PTT), which if applied on tumors would be able to greatly relieve their hypoxia state and help to overcome hypoxia-associated radioresistance of tumors. Therefore, with (188) Re-WS2 -PEG as a multifunctional agent, which shows efficient passive tumor homing after intravenous injection, in vivo self-sensitized, NIR-enhanced RIT cancer treatment is realized, achieving excellent tumor killing efficacy in a mouse tumor model. This work presents a new concept of applying nanotechnology in RIT, by delivering radioisotopes into tumors, self-sensitizing the irradiation-induced cell damage, and modulating the tumor hypoxia state to further enhance the therapeutic outcomes.


Assuntos
Dissulfetos/química , Fotoquimioterapia/métodos , Radioisótopos/química , Radioisótopos/uso terapêutico , Rênio/química , Tungstênio/química , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Feminino , Hipertermia Induzida , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C
18.
Phys Med ; 32(5): 691-700, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27157626

RESUMO

PURPOSE: Beta particles emitted by radioisotopes used in targeted radionuclide therapies (TRT) create Bremsstrahlung (BRS) which may affect SPECT quantification when imaging these isotopes. The purpose of the current study was to investigate the characteristics of Bremsstrahlung produced in tissue by three ß-emitting radioisotopes used in TRT. METHODS: Monte Carlo simulations of (177)Lu, (188)Re, and (90)Y sources placed in water filled cylinders were performed. BRS yields, mean energies and energy spectra for (a) all photons generated in the decays, (b) photons that were not absorbed and leave the cylinder, and (c) photons detected by the camera were analyzed. Next, the results of simulations were compared with those from experiments performed on a clinical SPECT camera using same acquisition conditions and phantom configurations as in simulations. RESULTS: Simulations reproduced relatively well the shapes of the measured spectra, except for (90)Y which showed an overestimation in the low energy range. Detailed analysis of the results allowed us to suggest best collimators and imaging conditions for each of the investigated isotopes. Finally, our simulations confirmed that the BRS contribution to the energy spectra in quantitative imaging of (177)Lu and (188)Re could be ignored. CONCLUSIONS: For (177)Lu and (188)Re, BRS contributes only marginally to the total spectra recorded by the camera. Our analysis shows that MELP and HE collimators are the best for imaging these two isotopes. For (90)Y, HE collimator should be used.


Assuntos
Lutécio/química , Radioisótopos/química , Radioisótopos/uso terapêutico , Rênio/química , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Radioisótopos de Ítrio/química , Simulação por Computador , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons , Água/química
19.
Q J Nucl Med Mol Imaging ; 59(3): 317-26, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26200222

RESUMO

Antibiotics, antifungal and antiviral medications have traditionally been used in the management of infections. Due to widespread emergence of resistance to antimicrobial medications, and their side effects, there is a growing need for alternative approaches for management of such conditions. Antibiotic resistant bacterial pathogens are on the rise. A cure has not been achieved for viral infections like AIDS, while fungal and parasitic infections are constant threats to the health of general public. The incidence of opportunistic infections in immunocompromised individuals like HIV patients, patients receiving high dose steroids, chemotherapy patients, and organ transplant recipients is on the rise. Radioimmunotherapy (RIT) has the potential to be a suitable and viable therapeutic modality in the arena of infection management. Provided the target-associated antigen is expressed by the target cells and minimally or not expressed by other tissues, selective targeting of radiation to target sites can be theoretically accomplished with relative sparing normal tissues from radiation exposure. In our laboratory we successfully demonstrated the effectiveness of RIT for treating infectious diseases. We targeted murine cryptococcosis with a mAb to the Cryptococcus neoformans capsular glucuronoxylomannan labeled with Bismuth-213 ((213)Bi) or Rhenium-188 ((188)Re). We subsequently extended the applicability of RIT for treating bacterial and viral infections. One of the advantages of using RIT to treat infections as opposed to cancer is that, in contrast to tumor cells, cells expressing microbial antigens are antigenically very different from host tissues and thus provide the potential for exquisite specificity and low cross-reactivity. Ever increasing incidence of infectious pathologies, exhaustion of antimicrobial possibilities and rising drug resistance calls for use of alternative and novel therapeutic options and we believe RIT is the need of the hour to combat these infections.


Assuntos
Infecções Bacterianas/radioterapia , Avaliação Pré-Clínica de Medicamentos , Infecções por HIV/radioterapia , Micoses/radioterapia , Compostos Radiofarmacêuticos/uso terapêutico , Animais , Anticorpos Monoclonais/química , Infecções Bacterianas/diagnóstico por imagem , Bismuto/uso terapêutico , Criptococose/radioterapia , Cryptococcus neoformans , Infecções por HIV/diagnóstico por imagem , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Micoses/diagnóstico por imagem , Radioimunoterapia/métodos , Radioisótopos/uso terapêutico , Cintilografia , Rênio/uso terapêutico , Distribuição Tecidual
20.
Invest New Drugs ; 33(4): 848-60, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26108551

RESUMO

Rhenium (I)-diselenother (Re-diselenoether) is a water soluble metal-based compound, combining one atom of rhenium and two atoms of selenium. This compound has been reported to exhibit marked activities against several solid tumor cell lines. We now disclose an improved synthesis of this complex. The Re-diselenoether showed a potent inhibitory effect on MDA-MB231 cell division in vitro, which lasted when the complex was no longer present in the culture. Re-diselenoether induced a remarkable reduction of the volume of the primitive breast tumors and of the pulmonary metastases without clinical signs of toxicity, in mice-bearing a MDA-MB231 Luc+ tumor, orthotopically transplanted, after a daily oral administration at the dose of 10 mg/kg/d. Interestingly, an antagonism was observed when cisplatin was administered as a single i.p. injection 1 week after the end of the Re-diselenoether administration. In an effort to gain insight of the mechanisms of action of Re-diselenoether complex, interaction with 9-methylguanine as a nucleic acid base model was studied. We have shown that Re-diselenoether gave both mono- and bis-guanine Re adducts, the species assumed to be responsible for the DNA intrastrand lesions.


Assuntos
Antineoplásicos/uso terapêutico , Complexos de Coordenação/uso terapêutico , Neoplasias Mamárias Experimentais/tratamento farmacológico , Rênio/uso terapêutico , Selênio/uso terapêutico , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Feminino , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos Nus , Rênio/farmacologia , Selênio/farmacologia , Distribuição Tecidual , Carga Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA