Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 4377, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29531265

RESUMO

The blood-brain barrier (BBB) is increasingly regarded as a dynamic interface that adapts to the needs of the brain, responds to physiological changes, and gets affected by and can even promote diseases. Modulation of BBB function at the molecular level in vivo is beneficial for a variety of basic and clinical studies. Here we show that our heteroduplex oligonucleotide (HDO), composed of an antisense oligonucleotide and its complementary RNA, conjugated to α-tocopherol as a delivery ligand, efficiently reduced the expression of organic anion transporter 3 (OAT3) gene in brain microvascular endothelial cells in mice. This proof-of-concept study demonstrates that intravenous administration of chemically synthesized HDO can remarkably silence OAT3 at the mRNA and protein levels. We also demonstrated modulation of the efflux transport function of OAT3 at the BBB in vivo. HDO will serve as a novel platform technology to advance the biology and pathophysiology of the BBB in vivo, and will also open a new therapeutic field of gene silencing at the BBB for the treatment of various intractable neurological disorders.


Assuntos
Barreira Hematoencefálica/metabolismo , Oligonucleotídeos/metabolismo , Animais , Barreira Hematoencefálica/fisiologia , Células Endoteliais/metabolismo , Inativação Gênica , Camundongos , Oligonucleotídeos Antissenso/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , RNA Complementar/metabolismo
2.
Biochem J ; 474(6): 1003-1016, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28270562

RESUMO

Sperm-specific phospholipase C zeta (PLCζ) is widely considered to be the physiological stimulus that evokes intracellular calcium (Ca2+) oscillations that are essential for the initiation of egg activation during mammalian fertilisation. A recent genetic study reported a male infertility case that was directly associated with a point mutation in the PLCζ C2 domain, where an isoleucine residue had been substituted with a phenylalanine (I489F). Here, we have analysed the effect of this mutation on the in vivo Ca2+ oscillation-inducing activity and the in vitro biochemical properties of human PLCζ. Microinjection of cRNA or recombinant protein corresponding to PLCζI489F mutant at physiological concentrations completely failed to cause Ca2+ oscillations and trigger development. However, this infertile phenotype could be effectively rescued by microinjection of relatively high (non-physiological) amounts of recombinant mutant PLCζI489F protein, leading to Ca2+ oscillations and egg activation. Our in vitro biochemical analysis suggested that the PLCζI489F mutant displayed similar enzymatic properties, but dramatically reduced binding to PI(3)P and PI(5)P-containing liposomes compared with wild-type PLCζ. Our findings highlight the importance of PLCζ at fertilisation and the vital role of the C2 domain in PLCζ function, possibly due to its novel binding characteristics.


Assuntos
Domínios C2 , Cálcio/metabolismo , Infertilidade Masculina/genética , Fosfoinositídeo Fosfolipase C/química , Mutação Puntual , Substituição de Aminoácidos , Animais , Sinalização do Cálcio , Bovinos , Feminino , Fertilização , Expressão Gênica , Humanos , Isoleucina/química , Isoleucina/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Masculino , Camundongos , Microinjeções , Oócitos/citologia , Oócitos/metabolismo , Fenilalanina/química , Fenilalanina/metabolismo , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Fosfoinositídeo Fosfolipase C/genética , Fosfoinositídeo Fosfolipase C/metabolismo , Ligação Proteica , RNA Complementar/administração & dosagem , RNA Complementar/genética , RNA Complementar/metabolismo , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espermatozoides/metabolismo , Espermatozoides/patologia
3.
Sci Rep ; 6: 24737, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27113677

RESUMO

Egg activation refers to events required for transition of a gamete into an embryo, including establishment of the polyspermy block, completion of meiosis, entry into mitosis, selective recruitment and degradation of maternal mRNA, and pronuclear development. Here we show that zinc fluxes accompany human egg activation. We monitored calcium and zinc dynamics in individual human eggs using selective fluorophores following activation with calcium-ionomycin, ionomycin, or hPLCζ cRNA microinjection. These egg activation methods, as expected, induced rises in intracellular calcium levels and also triggered the coordinated release of zinc into the extracellular space in a prominent "zinc spark." The ability of the gamete to mount a zinc spark response was meiotic-stage dependent. Moreover, chelation of intracellular zinc alone was sufficient to induce cell cycle resumption and transition of a meiotic cell into a mitotic one. Together, these results demonstrate critical functions for zinc dynamics and establish the zinc spark as an extracellular marker of early human development.


Assuntos
Óvulo/metabolismo , Zinco/metabolismo , Ionóforos de Cálcio/farmacologia , Quelantes/química , Diaminas/química , Etilenos/química , Feminino , Humanos , Ionomicina/farmacologia , Meiose , Microinjeções , Microscopia de Fluorescência , Óvulo/efeitos dos fármacos , Fosfoinositídeo Fosfolipase C/genética , Compostos Policíclicos/química , RNA Complementar/genética , RNA Complementar/metabolismo , Zinco/química
4.
Cell Physiol Biochem ; 38(1): 359-67, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26824455

RESUMO

BACKGROUND: The serum & glucocorticoid inducible kinase isoform SGK3 is a powerful regulator of several transporters, ion channels and the Na+/K+ ATPase. Targets of SGK3 include the ubiquitin ligase Nedd4-2, which is in turn a known regulator of the voltage gated K+ channel Kv1.5 (KCNA5). The present study thus explored whether SGK3 modifies the activity of the voltage gated K+ channel KCNA5, which participates in the regulation of diverse functions including atrial cardiac action potential, activity of vascular smooth muscle cells, insulin release and tumour cell proliferation. METHODS: cRNA encoding KCNA5 was injected into Xenopus oocytes with and without additional injection of cRNA encoding wild-type SGK3, constitutively active S419DSGK3, inactive K191NSGK3 and/or wild type Nedd4-2. Voltage gated K+ channel activity was quantified utilizing dual electrode voltage clamp. RESULTS: Voltage gated current in KCNA5 expressing Xenopus oocytes was significantly enhanced by wild-type SGK3 and S419DSGK3, but not by K191NSGK3. SGK3 was effective in the presence of ouabain (1 mM) and thus did not require Na+/K+ ATPase activity. Coexpression of Nedd4-2 decreased the voltage gated current in KCNA5 expressing Xenopus oocytes, an effect largely reversed by additional coexpression of SGK3. CONCLUSION: SGK3 is a positive regulator of KCNA5, which is at least partially effective by abrogating the effect of Nedd4-2.


Assuntos
Canal de Potássio Kv1.5/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Camundongos , Mutagênese Sítio-Dirigida , Ubiquitina-Proteína Ligases Nedd4 , Oócitos/metabolismo , Ouabaína/farmacologia , Técnicas de Patch-Clamp , Proteínas Serina-Treonina Quinases/genética , RNA Complementar/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Xenopus/crescimento & desenvolvimento , Xenopus/metabolismo , Proteínas de Xenopus
5.
Crit Care Med ; 44(5): e253-63, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26496445

RESUMO

OBJECTIVE: Systemic PaO2 oscillations occur during cyclic recruitment and derecruitment of atelectasis in acute respiratory failure and might harm brain tissue integrity. DESIGN: Controlled animal study. SETTING: University research laboratory. SUBJECTS: Adult anesthetized pigs. INTERVENTIONS: Pigs were randomized to a control group (anesthesia and extracorporeal circulation for 20 hr with constant PaO2, n = 10) or an oscillation group (anesthesia and extracorporeal circulation for 20 hr with artificial PaO2 oscillations [3 cycles min⁻¹], n = 10). Five additional animals served as native group (n = 5). MEASUREMENTS AND MAIN RESULTS: Outcome following exposure to artificial PaO2 oscillations compared with constant PaO2 levels was measured using 1) immunohistochemistry, 2) real-time polymerase chain reaction for inflammatory markers, 3) receptor autoradiography, and 4) transcriptome analysis in the hippocampus. Our study shows that PaO2 oscillations are transmitted to brain tissue as detected by novel ultrarapid oxygen sensing technology. PaO2 oscillations cause significant decrease in NISSL-stained neurons (p < 0.05) and induce inflammation (p < 0.05) in the hippocampus and a shift of the balance of hippocampal neurotransmitter receptor densities toward inhibition (p < 0.05). A pathway analysis suggests that cerebral immune and acute-phase response may play a role in mediating PaO2 oscillation-induced brain injury. CONCLUSIONS: Artificial PaO2 oscillations cause mild brain injury mediated by inflammatory pathways. Although artificial PaO2 oscillations and endogenous PaO2 oscillations in lung-diseased patients have different origins, it is likely that they share the same noxious effect on the brain. Therefore, PaO2 oscillations might represent a newly detected pathway potentially contributing to the crosstalk between acute lung and remote brain injury.


Assuntos
Lesões Encefálicas/etiologia , Lesões Encefálicas/fisiopatologia , Respiração Artificial/efeitos adversos , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/terapia , Animais , Gasometria , Oxigenação por Membrana Extracorpórea/métodos , Mediadores da Inflamação/metabolismo , Atelectasia Pulmonar/prevenção & controle , RNA Complementar/metabolismo , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real , Suínos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo , Ácido gama-Aminobutírico/metabolismo
6.
Proc Natl Acad Sci U S A ; 112(30): 9400-5, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26170305

RESUMO

Ca(2+)-calmodulin (CaM) regulates varieties of ion channels, including Transient Receptor Potential vanilloid subtype 4 (TrpV4). It has previously been proposed that internal Ca(2+) increases TrpV4 activity through Ca(2+)-CaM binding to a C-terminal Ca(2+)-CaM binding domain (CBD). We confirmed this model by directly presenting Ca(2+)-CaM protein to membrane patches excised from TrpV4-expressing oocytes. Over 50 TRPV4 mutations are now known to cause heritable skeletal dysplasia (SD) and other diseases in human. We have previously examined 14 SD alleles and found them to all have gain-of-function effects, with the gain of constitutive open probability paralleling disease severity. Among the 14 SD alleles examined, E797K and P799L are located immediate upstream of the CBD. They not only have increase basal activity, but, unlike the wild-type or other SD-mutant channels examined, they were greatly reduced in their response to Ca(2+)-CaM. Deleting a 10-residue upstream peptide (Δ795-804) that covers the two SD mutant sites resulted in strong constitutive activity and the complete lack of Ca(2+)-CaM response. We propose that the region immediately upstream of CBD is an autoinhibitory domain that maintains the closed state through electrostatic interactions, and adjacent detachable Ca(2+)-CaM binding to CBD sterically interferes with this autoinhibition. This work further supports the notion that TrpV4 mutations cause SD by constitutive leakage. However, the closed conformation is likely destabilized by various mutations by different mechanisms, including the permanent removal of an autoinhibition documented here.


Assuntos
Doenças Ósseas/fisiopatologia , Calmodulina/química , Canalopatias/fisiopatologia , Canais de Cátion TRPV/fisiologia , Alelos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Doenças Ósseas/genética , Cálcio/química , Quelantes/química , Perfilação da Expressão Gênica , Humanos , Ativação do Canal Iônico , Dados de Sequência Molecular , Mutação , Oócitos/citologia , Ligação Proteica/genética , Estrutura Terciária de Proteína , RNA Complementar/metabolismo , Homologia de Sequência de Aminoácidos , Canais de Cátion TRPV/genética , Xenopus laevis
7.
PLoS One ; 9(10): e110423, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25333352

RESUMO

Eag (Kv10) and Erg (Kv11) belong to two distinct subfamilies of the ether-à-go-go K+ channel family (KCNH). While Erg channels are characterized by an inward-rectifying current-voltage relationship that results from a C-type inactivation, mammalian Eag channels display little or no voltage-dependent inactivation. Although the amino (N)-terminal region such as the eag domain is not required for the C-type inactivation of Erg channels, an N-terminal deletion in mouse Eag1 has been shown to produce a voltage-dependent inactivation. To further discern the role of the eag domain in the inactivation of Eag1 channels, we generated N-terminal chimeras between rat Eag (rEag1) and human Erg (hERG1) channels that involved swapping the eag domain alone or the complete cytoplasmic N-terminal region. Functional analyses indicated that introduction of the homologous hERG1 eag domain led to both a fast phase and a slow phase of channel inactivation in the rEag1 chimeras. By contrast, the inactivation features were retained in the reverse hERG1 chimeras. Furthermore, an eag domain-lacking rEag1 deletion mutant also showed the fast phase of inactivation that was notably attenuated upon co-expression with the rEag1 eag domain fragment, but not with the hERG1 eag domain fragment. Additionally, we have identified a point mutation in the S4-S5 linker region of rEag1 that resulted in a similar inactivation phenotype. Biophysical analyses of these mutant constructs suggested that the inactivation gating of rEag1 was distinctly different from that of hERG1. Overall, our findings are consistent with the notion that the eag domain plays a critical role in regulating the inactivation gating of rEag1. We propose that the eag domain may destabilize or mask an inherent voltage-dependent inactivation of rEag1 K+ channels.


Assuntos
Canais de Potássio Éter-A-Go-Go/metabolismo , Ativação do Canal Iônico/fisiologia , Animais , Canais de Potássio Éter-A-Go-Go/química , Canais de Potássio Éter-A-Go-Go/genética , Feminino , Células HEK293 , Humanos , Camundongos , Oócitos/fisiologia , Técnicas de Patch-Clamp , Estrutura Terciária de Proteína , RNA Complementar/metabolismo , Ratos , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Transfecção , Xenopus/crescimento & desenvolvimento
8.
Endocrinology ; 155(4): 1498-509, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24428528

RESUMO

According to the "developmental origin of health and disease" hypothesis, the metabolic set points of glucose and lipid metabolism are determined prenatally. In the case of a diabetic pregnancy, the embryo is exposed to higher glucose and lipid concentrations as early as during preimplantation development. We used the rabbit to study the effect of maternal diabetes type 1 on lipid accumulation and expression of lipogenic markers in preimplantation blastocysts. Accompanied by elevated triglyceride and glucose levels in the maternal blood, embryos from diabetic rabbits showed a massive intracellular lipid accumulation and increased expression of fatty acid transporter 4, fatty acid-binding protein 4, perilipin/adipophilin, and maturation of sterol-regulated element binding protein. However, expression of fatty acid synthase, a key enzyme for de novo synthesis of fatty acids, was not altered in vivo. During a short time in vitro culture of rabbit blastocysts, the accumulation of lipid droplets and expression of lipogenic markers were directly correlated with increasing glucose concentration, indicating that hyperglycemia leads to increased lipogenesis in the preimplantation embryo. Our study shows the decisive effect of glucose as the determining factor for fatty acid metabolism and intracellular lipid accumulation in preimplantation embryos.


Assuntos
Blastocisto/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Lipídeos/química , Gravidez em Diabéticas/metabolismo , Aloxano/química , Animais , Glicemia/metabolismo , Modelos Animais de Doenças , Proteínas de Transporte de Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Feminino , Gravidez , Complicações na Gravidez , Prenhez , RNA Complementar/metabolismo , Coelhos , Triglicerídeos/sangue
9.
Dev Biol ; 386(1): 111-22, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24309209

RESUMO

The zebrafish pronephros provides a conserved model to study kidney development, in particular to delineate the poorly understood processes of how nephron segment pattern and cell type choice are established. Zebrafish nephrons are divided into distinct epithelial regions that include a series of proximal and distal tubule segments, which are comprised of intercalated transporting epithelial cells and multiciliated cells (MCC). Previous studies have shown that retinoic acid (RA) regionalizes the renal progenitor field into proximal and distal domains and that Notch signaling later represses MCC differentiation, but further understanding of these pathways has remained unknown. The transcription factor mecom (mds1/evi1 complex) is broadly expressed in renal progenitors, and then subsequently marks the distal tubule. Here, we show that mecom is necessary to form the distal tubule and to restrict both proximal tubule formation and MCC fate choice. We found that mecom and RA have opposing roles in patterning discrete proximal and distal segments. Further, we discovered that RA is required for MCC formation, and that one mechanism by which RA promotes MCC fate choice is to inhibit mecom. Next, we determined the epistatic relationship between mecom and Notch signaling, which limits MCC fate choice by lateral inhibition. Abrogation of Notch signaling with the γ-secretase inhibitor DAPT revealed that Notch and mecom did not have additive effects in blocking MCC formation, suggesting that they function in the same pathway. Ectopic expression of the Notch signaling effector, Notch intracellular domain (NICD), rescued the expansion of MCCs in mecom morphants, indicating that mecom acts upstream to induce Notch signaling. These findings suggest a model in which mecom and RA arbitrate proximodistal segment domains, while MCC fate is modulated by a complex interplay in which RA inhibition of mecom, and mecom promotion of Notch, titrates MCC number. Taken together, our studies have revealed several essential and novel mechanisms that control pronephros development in the zebrafish.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Néfrons/embriologia , Receptores Notch/metabolismo , Tretinoína/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Diferenciação Celular , Linhagem da Célula , Epistasia Genética , Genômica , Rim/embriologia , Proteína do Locus do Complexo MDS1 e EVI1 , Néfrons/metabolismo , Organogênese/fisiologia , Pronefro/metabolismo , Estrutura Terciária de Proteína , RNA Complementar/metabolismo , Transdução de Sinais , Fatores de Tempo , Peixe-Zebra/genética
10.
PLoS One ; 8(7): e67690, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935841

RESUMO

BACKGROUND: Monocarboxylate transporters (MCTs) transport monocarboxylates such as lactate, pyruvate and ketone bodies. These transporters are very attractive therapeutic targets in cancer. Elucidations of the functions and structures of MCTs is necessary for the development of effective medicine which targeting these proteins. However, in comparison with MCT1, there is little information on location of the function moiety of MCT4 and which constituent amino acids govern the transport function of MCT4. The aim of the present work was to determine the molecular mechanism of L-lactate transport via hMCT4. EXPERIMENTAL APPROACH: Transport of L-lactate via hMCT4 was determined by using hMCT4 cRNA-injected Xenopus laevis oocytes. hMCT4 mediated L-lactate uptake in oocytes was measured in the absence and presence of chemical modification agents and 4,4'-diisothiocyanostilbene-2,2'-disulphonate (DIDS). In addition, L-lactate uptake was measured by hMCT4 arginine mutants. Immunohistochemistry studies revealed the localization of hMCT4. RESULTS: In hMCT4-expressing oocytes, treatment with phenylglyoxal (PGO), a compound specific for arginine residues, completely abolished the transport activity of hMCT4, although this abolishment was prevented by the presence of L-lactate. On the other hand, chemical modifications except for PGO treatment had no effect on the transport activity of hMCT4. The transporter has six conserved arginine residues, two in the transmembrane-spanning domains (TMDs) and four in the intracellular loops. In hMCT4-R278 mutants, the uptake of L-lactate is void of any transport activity without the alteration of hMCT4 localization. CONCLUSIONS: Our results suggest that Arg-278 in TMD8 is a critical residue involved in substrate, L-lactate recognition by hMCT4.


Assuntos
Arginina/metabolismo , Lactatos/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Oócitos/metabolismo , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Sequência de Aminoácidos , Animais , Arginina/genética , Sítios de Ligação/genética , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Células CACO-2 , Feminino , Humanos , Concentração de Íons de Hidrogênio , Imuno-Histoquímica , Cinética , Lactatos/farmacocinética , Microscopia Confocal , Modelos Moleculares , Dados de Sequência Molecular , Transportadores de Ácidos Monocarboxílicos/química , Transportadores de Ácidos Monocarboxílicos/genética , Proteínas Musculares/química , Proteínas Musculares/genética , Mutagênese Sítio-Dirigida , Fenilglioxal/farmacologia , Estrutura Secundária de Proteína , RNA Complementar/genética , RNA Complementar/metabolismo , Homologia de Sequência de Aminoácidos , Xenopus laevis
11.
Biochem Biophys Res Commun ; 438(2): 295-300, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23896604

RESUMO

Ion channel opening and desensitization is a fundamental process in neurotransmission. The ATP-gated P2X1 receptor (P2X1R) shows rapid and long-lasting desensitization upon agonist binding. This makes the electrophysiological investigation of its desensitization process, agonist unbinding, and recovery from desensitization a challenging task. Here, we show that the fluorescent agonist Alexa-647-ATP is a potent agonist at the P2X1R and a versatile tool to directly visualize agonist binding and unbinding. We demonstrate that the long-lasting desensitization of the P2X1R is due to both slow unbinding of agonist from the desensitized receptor and agonist mediated receptor internalization. Furthermore, the unbinding of the agonist Alexa-647-ATP from the desensitized receptor is accelerated in the continuous presence of competitive ligand. Modeling of our data indicates that three agonist molecules are required to drive the receptor into desensitization. Direct visualization of ligand unbinding from the desensitized receptor demonstrates the cooperativity of this process.


Assuntos
Trifosfato de Adenosina/metabolismo , Carbocianinas/farmacologia , Corantes Fluorescentes/farmacologia , Receptores Purinérgicos P2X1/metabolismo , Animais , Inibidores Enzimáticos/farmacologia , Oócitos/citologia , Oócitos/metabolismo , Técnicas de Patch-Clamp , Ligação Proteica , RNA Complementar/metabolismo , Ratos , Xenopus laevis
12.
Proc Natl Acad Sci U S A ; 110(20): 8296-301, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23630285

RESUMO

The phytohormone abscisic acid (ABA) plays a key role in the plant response to drought stress. Hence, ABA-dependent gene transcription and ion transport is regulated by a variety of protein kinases and phosphatases. However, the nature of the membrane-delimited ABA signal transduction steps remains largely unknown. To gain insight into plasma membrane-bound ABA signaling, we identified sterol-dependent proteins associated with detergent resistant membranes from Arabidopsis thaliana mesophyll cells. Among those, we detected the central ABA signaling phosphatase ABI1 (abscisic-acid insensitive 1) and the calcium-dependent protein kinase 21 (CPK21). Using fluorescence microscopy, we found these proteins to localize in membrane nanodomains, as observed by colocalization with the nanodomain marker remorin Arabidopsis thaliana remorin 1.3 (AtRem 1.3). After transient coexpression, CPK21 interacted with SLAH3 [slow anion channel 1 (SLAC1) homolog 3] and activated this anion channel. Upon CPK21 stimulation, SLAH3 exhibited the hallmark properties of S-type anion channels. Coexpression of SLAH3/CPK21 with ABI1, however, prevented proper nanodomain localization of the SLAH3/CPK21 protein complex, and as a result anion channel activation failed. FRET studies revealed enhanced interaction of SLAH3 and CPK21 within the plasma membrane in response to ABA and thus confirmed our initial observations. Interestingly, the ABA-induced SLAH3/CPK21 interaction was modulated by ABI1 and the ABA receptor RCAR1/PYL9 [regulatory components of ABA receptor 1/PYR1 (pyrabactin resistance 1)-like protein 9]. We therefore propose that ABA signaling via inhibition of ABI1 modulates the apparent association of a signaling and transport complex within membrane domains that is necessary for phosphorylation and activation of the S-type anion channel SLAH3 by CPK21.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Canais Iônicos/metabolismo , Metabolismo dos Lipídeos , Animais , Ânions/metabolismo , Detergentes/farmacologia , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/metabolismo , Espectrometria de Massas , Microscopia Confocal , Microscopia de Fluorescência , Oócitos/citologia , Oócitos/metabolismo , Estrutura Terciária de Proteína , RNA Complementar/metabolismo , Transdução de Sinais , Esteróis/metabolismo , Xenopus/metabolismo
13.
Cell Rep ; 3(1): 237-45, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23318259

RESUMO

Mitochondria are centers of metabolism and signaling whose content and function must adapt to changing cellular environments. The biological signals that initiate mitochondrial restructuring and the cellular processes that drive this adaptive response are largely obscure. To better define these systems, we performed matched quantitative genomic and proteomic analyses of mouse muscle cells as they performed mitochondrial biogenesis. We find that proteins involved in cellular iron homeostasis are highly coordinated with this process and that depletion of cellular iron results in a rapid, dose-dependent decrease of select mitochondrial protein levels and oxidative capacity. We further show that this process is universal across a broad range of cell types and fully reversed when iron is reintroduced. Collectively, our work reveals that cellular iron is a key regulator of mitochondrial biogenesis, and provides quantitative data sets that can be leveraged to explore posttranscriptional and posttranslational processes that are essential for mitochondrial adaptation.


Assuntos
Ferro/metabolismo , Renovação Mitocondrial , Proteômica , RNA Complementar/metabolismo , Animais , Respiração Celular/efeitos dos fármacos , DNA Mitocondrial/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Quelantes de Ferro/farmacologia , Camundongos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Renovação Mitocondrial/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , RNA Complementar/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Fatores de Tempo , Transativadores/metabolismo , Fatores de Transcrição
14.
Toxicol Sci ; 126(1): 242-54, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22262565

RESUMO

The whole embryo culture (WEC) model serves as a potential alternative for classical in vivo developmental toxicity testing. In the WEC, cultured rat embryos are exposed during neurulation and early organogenesis and evaluated for morphological effects. Toxicogenomic-based approaches may improve the predictive ability of WEC by providing molecular-based markers associated with chemical exposure, which can be compared across multiple parameters (e.g., exposure duration, developmental time, experimental model). Additionally, comparisons between in vitro and in vivo models may identify objective relevant molecular responses linked with developmental toxicity endpoints in vivo. In this study, using a transcriptomic approach, we compared all-trans retinoic acid (RA)-exposed and nonexposed Wistar rat embryos derived using WEC (RA, 0.5 µg/ml) or in vivo (RA, 50 mg/kg, oral gavage) to identify overlapping and nonoverlapping effects of RA on RNA expression in parallel with morphological changes. Across six time points (gestational day 10 + 2-48 h), we observed strong similarities in RA response at the gene (directionality, significance) and functional (e.g., embryonic development, cell differentiation) level which associated with RA-induced adverse morphological effects, including growth reduction as well as alterations in neural tube, limb, branchial, and mandible development. We observed differences between models in the timing of RA-induced effects on genes related to embryonic development and RA metabolism. These observations on the gene expression level were associated with specific differential morphological outcomes. This study supports the use of WEC to examine compound-induced molecular responses relative to in vivo and, furthermore, assists in defining the applicability domain of the WEC in determining complementary windows of sensitivity for developmental toxicological investigations.


Assuntos
Ectogênese/efeitos dos fármacos , Embrião de Mamíferos/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Teratogênicos/toxicidade , Testes de Toxicidade , Tretinoína/toxicidade , Animais , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Feminino , Perfilação da Expressão Gênica , Exposição Materna , Modelos Biológicos , Neurulação/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Organogênese/efeitos dos fármacos , Gravidez , RNA/isolamento & purificação , RNA/metabolismo , RNA Complementar/metabolismo , Ratos , Ratos Wistar , Toxicogenética/métodos
15.
Hum Reprod ; 27(1): 222-31, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22095789

RESUMO

BACKGROUND: Male factor and idiopathic infertility contribute significantly to global infertility, with abnormal testicular gene expression considered to be a major cause. Certain types of male infertility are caused by failure of the sperm to activate the oocyte, a process normally regulated by calcium oscillations, thought to be induced by a sperm-specific phospholipase C, PLCzeta (PLCζ). Previously, we identified a point mutation in an infertile male resulting in the substitution of histidine for proline at position 398 of the protein sequence (PLCζ(H398P)), leading to abnormal PLCζ function and infertility. METHODS AND RESULTS: Here, using a combination of direct-sequencing and mini-sequencing of the PLCζ gene from the patient and his family, we report the identification of a second PLCζ mutation in the same patient resulting in a histidine to leucine substitution at position 233 (PLCζ(H233L)), which is predicted to disrupt local protein interactions in a manner similar to PLCζ(H398P) and was shown to exhibit abnormal calcium oscillatory ability following predictive 3D modelling and cRNA injection in mouse oocytes respectively. We show that PLCζ(H233L) and PLCζ(H398P) exist on distinct parental chromosomes, the former inherited from the patient's mother and the latter from his father. Neither mutation was detected utilizing custom-made single-nucleotide polymorphism assays in 100 fertile males and females, or 8 infertile males with characterized oocyte activation deficiency. CONCLUSIONS: Collectively, our findings provide further evidence regarding the importance of PLCζ at oocyte activation and forms of male infertility where this is deficient. Additionally, we show that the inheritance patterns underlying male infertility are more complex than previously thought and may involve maternal mechanisms.


Assuntos
Infertilidade Masculina/genética , Fosfoinositídeo Fosfolipase C/genética , Fosfoinositídeo Fosfolipase C/metabolismo , Mutação Puntual , Animais , Cálcio/metabolismo , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Camundongos , Mães , Oócitos/citologia , Polimorfismo de Nucleotídeo Único , RNA Complementar/metabolismo , Análise de Sequência de DNA
16.
Proc Natl Acad Sci U S A ; 108(46): E1184-91, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21930928

RESUMO

Transient receptor potential (TRP) channels are polymodal signal detectors that respond to a wide array of physical and chemical stimuli, making them important components of sensory systems in both vertebrate and invertebrate organisms. Mammalian TRPA1 channels are activated by chemically reactive irritants, whereas snake and Drosophila TRPA1 orthologs are preferentially activated by heat. By comparing human and rattlesnake TRPA1 channels, we have identified two portable heat-sensitive modules within the ankyrin repeat-rich aminoterminal cytoplasmic domain of the snake ortholog. Chimeric channel studies further demonstrate that sensitivity to chemical stimuli and modulation by intracellular calcium also localize to the N-terminal ankyrin repeat-rich domain, identifying this region as an integrator of diverse physiological signals that regulate sensory neuron excitability. These findings provide a framework for understanding how restricted changes in TRPA1 sequence account for evolution of physiologically diverse channels, also identifying portable modules that specify thermosensitivity.


Assuntos
Proteínas de Drosophila/química , Canais de Cátion TRPC/química , Canais de Potencial de Receptor Transitório/química , Animais , Crotalus , Citoplasma/metabolismo , Dimerização , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Eletrofisiologia/métodos , Temperatura Alta , Humanos , Canais Iônicos , Oócitos/metabolismo , Mutação Puntual , Estrutura Terciária de Proteína , RNA Complementar/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Canal de Cátion TRPA1 , Canais de Cátion TRPC/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Xenopus , Xenopus laevis/metabolismo , Peixe-Zebra
17.
Biol Pharm Bull ; 34(4): 523-7, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21467640

RESUMO

Resveratrol, which is found in grapes, red wine, and berries, has many beneficial health effects, such as anti-cancer, neuro-protective, anti-inflammatory, and life-prolonging effects. However, the cellular mechanisms by which resveratrol acts are relatively unknown, especially in terms of possible regulation of receptors involved in synaptic transmission. 5-Hydroxytryptamine type 3A (5-HT(3A)) receptor is one of several ligand-gated ion channels involved in fast synaptic transmission. In the present study, we investigated the effect of resveratrol on mouse 5-HT(3A) receptor channel activity. 5-HT(3A) receptor was expressed in Xenopus oocytes, and the current was measured using a two-electrode voltage clamp technique. Treatment of resveratrol itself had no effect on the oocytes injected with H(2)O as well as on the oocytes injected with 5-HT(3A) receptor cRNA. In the oocytes injected with 5-HT(3A) receptor cRNA, co- or pre-treatment of resveratrol with 5-HT potentiated 5-HT-induced inward peak current (I(5-HT)) with concentration-, reversible, and voltage-independent manners. The EC(50) of resveratrol was 28.0±2.4 µM. The presence of resveratrol caused a leftward shift of 5-HT concentration-response curve. Protein kinase C (PKC) activator or inhibitor had no effect on resveratrol action on I(5-HT). Site-directed mutations of pre-transmembrane domain 1 (pre-TM1) such as R222A, R222D, R222E, R222K, and R222T abolished or attenuated resveratrol-induced enhancement of I(5-HT), indicating that resveratrol might interact with pre-TM1 of 5-HT(3A) receptor. These results indicate that resveratrol might regulate 5-HT(3A) receptor channel activity via interaction with the N-terminal domain and these results further show that resveratrol-mediated regulation of 5-HT(3A) receptor channel activity might be one of cellular mechanisms of resveratrol action.


Assuntos
Arginina/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Extratos Vegetais/farmacologia , Receptores 5-HT3 de Serotonina/metabolismo , Serotonina/metabolismo , Estilbenos/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Animais , Frutas , Transporte de Íons/efeitos dos fármacos , Camundongos , Mutagênese Sítio-Dirigida , Mutação , Neurotransmissores/farmacologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Estrutura Terciária de Proteína/efeitos dos fármacos , RNA Complementar/metabolismo , Receptores 5-HT3 de Serotonina/genética , Resveratrol , Membranas Sinápticas/efeitos dos fármacos , Membranas Sinápticas/metabolismo , Vitis/química , Vinho , Xenopus
18.
Methods Mol Biol ; 691: 167-85, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20972753

RESUMO

Transcript profiling ("Transcriptomics") is a widely used technique that obtains information on the abundance of multiple mRNA transcripts within a biological sample simultaneously. Therefore, when a number of such samples are analysed, as in a scientific experiment, large and complex data sets are gene-rated. Here, we describe the use of one method commonly used to generate transcriptomics data, namely the use of Affymetrix GeneChip microarrays. Data generated in transcriptomics experiments can be analysed using a multitude of approaches, but a common goal is to identify those transcripts whose abundance is altered by the experimental conditions, or which differ between sets of samples. Here, we describe a simple approach, the calculation of the volcano score, which identifies transcripts with altered abundance, taking into account both the magnitude of the alteration and its statistical significance.


Assuntos
Perfilação da Expressão Gênica/métodos , Estatística como Assunto/métodos , Biotina/metabolismo , Células Cultivadas , DNA Complementar/biossíntese , DNA Complementar/genética , Humanos , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Controle de Qualidade , RNA Complementar/biossíntese , RNA Complementar/genética , RNA Complementar/isolamento & purificação , RNA Complementar/metabolismo , Software , Espectrofotometria
19.
Biol Reprod ; 83(1): 92-101, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20357268

RESUMO

Injection of mammalian sperm extracts or cRNA of the sperm-specific phospholipase C zeta 1 (PLCZ1) has been shown to trigger repetitive oscillations in the concentration of free calcium ([Ca(2+)](i)), leading to oocyte activation and embryo development in all mammals studied to date. While PLCZ1 has cross-species activity, it has also been observed that species-specific differences may exist in the frequency and pattern of the resulting [Ca(2+)](i) oscillations following PLCZ1 cRNA injection into oocytes of different species. Accordingly, we used a crossover design strategy to directly investigate the activity of murine and bovine PLCZ1 in both murine and bovine oocytes. In murine oocytes, injection of murine Plcz1 cRNA induced [Ca(2+)](i) oscillations at 10-fold lower concentrations than bovine PLCZ1, although in bovine oocytes bovine PLCZ1 was more effective than murine Plcz1 at inducing [Ca(2+)](i) oscillations. Investigation of ITPR1 (IP(3)R1) down-regulation in bovine oocytes by PLCZ1 cRNA also showed that bovine PLCZ1 was more active in homologous oocytes. To determine whether these PLCZs exhibited similar cellular distribution, Venus-tagged PLCZ1 cRNA was injected into oocytes, and PLCZ1 was overexpressed. Bovine PLCZ1 failed to accumulate in the pronucleus (PN) of bovine or murine zygotes, despite possessing a putative nuclear localization signal. Conversely, murine PLCZ1 accumulated in the PN of both murine and bovine zygotes. These results demonstrate that murine PLCZ1 and bovine PLCZ1 possess species-specific differences in activity and suggest potential differences in the mode of action of the protein between the two species. Variation in sperm PLCZ1 protein content among species, along with oocyte-specific differences in the localization and availability of PLCZ1 substrates, may further contribute to optimize the activation stimulus to enhance embryo development.


Assuntos
Sinalização do Cálcio , Bovinos/metabolismo , Camundongos/metabolismo , Oócitos/metabolismo , Fosfoinositídeo Fosfolipase C/metabolismo , RNA Complementar/metabolismo , Animais , Regulação para Baixo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Microinjeções , Proteínas Recombinantes/metabolismo , Especificidade da Espécie , Espermatozoides/enzimologia
20.
PLoS One ; 4(11): e7743, 2009 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-19888450

RESUMO

Photosynthetic diatoms are exposed to rapid and unpredictable changes in irradiance and spectral quality, and must be able to acclimate their light harvesting systems to varying light conditions. Molecular mechanisms behind light acclimation in diatoms are largely unknown. We set out to investigate the mechanisms of high light acclimation in Phaeodactylum tricornutum using an integrated approach involving global transcriptional profiling, metabolite profiling and variable fluorescence technique. Algae cultures were acclimated to low light (LL), after which the cultures were transferred to high light (HL). Molecular, metabolic and physiological responses were studied at time points 0.5 h, 3 h, 6 h, 12 h, 24 h and 48 h after transfer to HL conditions. The integrated results indicate that the acclimation mechanisms in diatoms can be divided into an initial response phase (0-0.5 h), an intermediate acclimation phase (3-12 h) and a late acclimation phase (12-48 h). The initial phase is recognized by strong and rapid regulation of genes encoding proteins involved in photosynthesis, pigment metabolism and reactive oxygen species (ROS) scavenging systems. A significant increase in light protecting metabolites occur together with the induction of transcriptional processes involved in protection of cellular structures at this early phase. During the following phases, the metabolite profiling display a pronounced decrease in light harvesting pigments, whereas the variable fluorescence measurements show that the photosynthetic capacity increases strongly during the late acclimation phase. We show that P. tricornutum is capable of swift and efficient execution of photoprotective mechanisms, followed by changes in the composition of the photosynthetic machinery that enable the diatoms to utilize the excess energy available in HL. Central molecular players in light protection and acclimation to high irradiance have been identified.


Assuntos
Diatomáceas/metabolismo , Fotossíntese/fisiologia , Aclimatação/fisiologia , Carbono/química , Clorofila/química , Diatomáceas/fisiologia , Transporte de Elétrons , Luz , Modelos Biológicos , Pigmentação , Plastídeos/metabolismo , RNA Complementar/metabolismo , Fatores de Tempo , Transcrição Gênica , Xantofilas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA