Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 546
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Mol Biol ; 114(3): 47, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632206

RESUMO

Natural Antisense Transcripts (NATs) are a kind of complex regulatory RNAs that play crucial roles in gene expression and regulation. However, the NATs in Cannabis Sativa L., a widely economic and medicinal plant rich in cannabinoids remain unknown. In this study, we comprehensively predicted C. sativa NATs genome-wide using strand-specific RNA sequencing (ssRNA-Seq) data, and validated the expression profiles by strand-specific quantitative reverse transcription PCR (ssRT-qPCR). Consequently, a total of 307 NATs were predicted in C. sativa, including 104 cis- and 203 trans- NATs. Functional enrichment analysis demonstrated the potential involvement of the C. sativa NATs in DNA polymerase activity, RNA-DNA hybrid ribonuclease activity, and nucleic acid binding. Finally, 18 cis- and 376 trans- NAT-ST pairs were predicted to produce 621 cis- and 5,679 trans- small interfering RNA (nat-siRNAs), respectively. These nat-siRNAs were potentially involved in the biosynthesis of cannabinoids and cellulose. All these results will shed light on the regulation of NATs and nat-siRNAs in C. sativa.


Assuntos
Canabinoides , Cannabis , RNA Antissenso/análise , RNA Antissenso/genética , RNA Antissenso/metabolismo , Cannabis/genética , RNA Interferente Pequeno/análise , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Genoma de Planta
2.
J Trace Elem Med Biol ; 83: 127420, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38432121

RESUMO

BACKGROUND: Lead (Pb) poisoning posing a crucial health risk, especially among children, causing devastating damage not only to brain development, but also to kidney function. Thus, an urgent need persists to identify highly effective, safe, and low-toxicity drugs for the treatment of Pb poisoning. The present study focused on exploring the protective effects of Se on Pb-induced nephrotoxicity in weaning rats and human renal tubular epithelial cells, and investigated the possible mechanisms. METHODS: Forty weaning rats were randomly divided into four groups in vivo: control, Pb-exposed, Pb+Se and Se. Serum creatinine (Cr), urea nitrogen (BUN) and hematoxylin and eosin (H&E) staining were performed to evaluate renal function. The activities of antioxidant enzymes in the kidney tissue were determined. In vitro experiments were performed using human renal tubular epithelial cells (HK-2 cells). The cytotoxicity of Pb and Se was detected by 3-(4,5-dimethylthiazol-2yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Inverted fluorescence microscope was used to investigate cell morphological changes and the fluorescence intensity of reactive oxygen species (ROS). The oxidative stress parameters were measured by a multi-detection reader. Nuclear factor-erythroid-2-related factor (NRF2) signaling pathways were measured by Western blot and reverse transcription polymerase chain reaction (RT-PCR) in HK-2 cells. RESULTS: We found that Se alleviated Pb-induced kidney injury by relieving oxidative stress and reducing the inflammatory index. Se significantly increased the activity of the antioxidant enzymes glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT), whereas it decreased the excessive release of malondialdehyde (MDA) in the kidneys of weaning rats and HK-2 cells. Additionally, Se enhanced the antioxidant defense systems via activating the NRF2 transcription factor, thereby promoting the to downstream expression of heme oxygenase 1. Furthermore, genes encoding glutamate-cysteine ligase synthetase catalytic (GCLC), glutamate-cysteine ligase synthetase modifier (GCLM) and NADPH quinone oxidoreductase 1 (NQO1), downstream targets of NRF2, formed a positive feedback loop with NRF2 during oxidative stress responses. The MTT assay results revealed a significant decrease in cell viability with Se treatment, and the cytoprotective role of Se was blocked upon knockdown of NRF2 by small interfering RNA (siRNA). MDA activity results also showed that NRF2 knockdown inhibited the NRF2-dependent transcriptional activity of Se. CONCLUSIONS: Our findings demonstrate that Se ameliorated Pb-induced nephrotoxicity by reducing oxidative stress both in vivo and in vitro. The molecular mechanism underlying Se's action in Pb-induced kidney injury is related to the activation of the NRF2 transcription factor and the activity of antioxidant enzymes, ultimately suppressing ROS accumulation.


Assuntos
Antioxidantes , Selênio , Criança , Humanos , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Selênio/farmacologia , Selênio/metabolismo , Chumbo/metabolismo , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Glutamato-Cisteína Ligase/farmacologia , Desmame , Estresse Oxidativo , Glutationa/metabolismo , Células Epiteliais , Rim/metabolismo , RNA Interferente Pequeno/metabolismo
3.
Int J Biol Macromol ; 264(Pt 2): 130729, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460643

RESUMO

Astrocyte elevated gene-1 (AEG-1) oncogene is a notorious and evolving target in a variety of human malignancies including osteosarcoma. The RNA interference (RNAi) has been clinically proven to effectively knock down specific genes. To successfully implement RNAi in vivo, protective vectors are required not only to protect unstable siRNAs from degradation, but also to deliver siRNAs to target cells with controlled release. Here, we synthesized a Zein-poly(l-lysine) dendrons non-viral modular system that enables efficient siRNA-targeted AEG-1 gene silencing in osteosarcoma and encapsulation of antitumor drugs for controlled release. The rational design of the ZDP integrates the non-ionic and low immunogenicity of Zein and the positive charge of the poly(l-lysine) dendrons (DPLL) to encapsulate siRNA and doxorubicin (DOX) payloads via electrostatic complexes and achieve pH-controlled release in a lysosomal acidic microenvironment. Nanocomplexes-directed delivery greatly improves siRNA stability, uptake, and AEG-1 sequence-specific knockdown in 143B cells, with transfection efficiencies comparable to those of commercial lipofectamine but with lower cytotoxicity. This AEG-1-focused RNAi therapy supplemented with chemotherapy inhibited, and was effective in inhibiting the growth in of osteosarcoma xenografts mouse models. The combination therapy is an alternative or combinatorial strategy that can produce durable inhibitory responses in osteosarcoma patients.


Assuntos
Neoplasias Ósseas , Dendrímeros , Nanopartículas , Osteossarcoma , Zeína , Animais , Camundongos , Humanos , Polilisina , Azidas , Preparações de Ação Retardada , Alcinos , Doxorrubicina/farmacologia , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , RNA Interferente Pequeno/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Microambiente Tumoral
4.
Phytother Res ; 38(3): 1681-1694, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311336

RESUMO

Diabetic cardiomyopathy (DCM) is an important complication resulting in heart failure and death of diabetic patients. However, there is no effective drug for treatments. This study investigated the effect of D-pinitol (DP) on cardiac injury using diabetic mice and glycosylation injury of cardiomyocytes and its molecular mechanisms. We established the streptozotocin-induced SAMR1 and SAMP8 mice and DP (150 mg/kg/day) intragastrically and advanced glycation end-products (AGEs)-induced H9C2 cells. H9C2 cells were transfected with optineurin (OPTN) siRNA and overexpression plasmids. The metabolic disorder indices, cardiac dysfunction, histopathology, immunofluorescence, western blot, and immunoprecipitation were investigated. Our results showed that DP reduced the blood glucose and AGEs, and increased the expression of heart OPTN in diabetic mice and H9C2 cells, thereby inhibiting the endoplasmic reticulum stress (GRP78, CHOP) and glycophagy (STBD1, GABARAPL1), and alleviating the myocardial apoptosis and fibrosis of DCM. The expression of filamin A as an interaction protein of OPTN downregulated by AGEs decreased OPTN abundance. Moreover, OPTN siRNA increased the expression of GRP78, CHOP, STBD1, and GABARAPL1 and inhibited the expression of GAA via GSK3ß phosphorylation and FoxO1. DP may be helpful to treat the onset of DCM. Targeting OPTN with DP could be translated into clinical application in the fighting against DCM.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Inositol/análogos & derivados , Humanos , Camundongos , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Chaperona BiP do Retículo Endoplasmático , Miócitos Cardíacos , Estresse do Retículo Endoplasmático , Transdução de Sinais , Apoptose , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacologia
5.
Mol Metab ; 79: 101838, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37995884

RESUMO

OBJECTIVE: Carbohydrate Response Element Binding Protein (ChREBP) is a glucose 6-phosphate (G6P)-sensitive transcription factor that acts as a metabolic switch to maintain intracellular glucose and phosphate homeostasis. Hepatic ChREBP is well-known for its regulatory role in glycolysis, the pentose phosphate pathway, and de novo lipogenesis. The physiological role of ChREBP in hepatic glycogen metabolism and blood glucose regulation has not been assessed in detail, and ChREBP's contribution to carbohydrate flux adaptations in hepatic Glycogen Storage Disease type 1 (GSD I) requires further investigation. METHODS: The current study aimed to investigate the role of ChREBP as a regulator of glycogen metabolism in response to hepatic G6P accumulation, using a model for acute hepatic GSD type Ib. The immediate biochemical and regulatory responses to hepatic G6P accumulation were evaluated upon G6P transporter inhibition by the chlorogenic acid S4048 in mice that were either treated with a short hairpin RNA (shRNA) directed against ChREBP (shChREBP) or a scrambled shRNA (shSCR). Complementary stable isotope experiments were performed to quantify hepatic carbohydrate fluxes in vivo. RESULTS: ShChREBP treatment normalized the S4048-mediated induction of hepatic ChREBP target genes to levels observed in vehicle- and shSCR-treated controls. In parallel, hepatic shChREBP treatment in S4048-infused mice resulted in a more pronounced accumulation of hepatic glycogen and further reduction of blood glucose levels compared to shSCR treatment. Hepatic ChREBP knockdown modestly increased glucokinase (GCK) flux in S4048-treated mice while it enhanced UDP-glucose turnover as well as glycogen synthase and phosphorylase fluxes. Hepatic GCK mRNA and protein levels were induced by shChREBP treatment in both vehicle- and S4048-treated mice, while glycogen synthase 2 (GYS2) and glycogen phosphorylase (PYGL) mRNA and protein levels were reduced. Finally, knockdown of hepatic ChREBP expression reduced starch domain binding protein 1 (STBD1) mRNA and protein levels while it inhibited acid alpha-glucosidase (GAA) activity, suggesting reduced capacity for lysosomal glycogen breakdown. CONCLUSIONS: Our data show that ChREBP activation controls hepatic glycogen and blood glucose levels in acute hepatic GSD Ib through concomitant regulation of glucose phosphorylation, glycogenesis, and glycogenolysis. ChREBP-mediated control of GCK enzyme levels aligns with corresponding adaptations in GCK flux. In contrast, ChREBP activation in response to acute hepatic GSD Ib exerts opposite effects on GYS2/PYGL enzyme levels and their corresponding fluxes, indicating that GYS2/PYGL expression levels are not limiting to their respective fluxes under these conditions.


Assuntos
Glicemia , Doença de Depósito de Glicogênio Tipo I , Animais , Camundongos , Metabolismo dos Carboidratos , Modelos Animais de Doenças , Glucose/metabolismo , Glucose-6-Fosfato/metabolismo , Glicogênio/metabolismo , Glicogênio Sintase/metabolismo , Glicogênio Hepático/metabolismo , Fosfatos , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Mol Cells ; 46(11): 700-709, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37750239

RESUMO

Mucus hyperproduction and hypersecretion are observed often in respiratory diseases. MUC8 is a glycoprotein synthesized by epithelial cells and generally expressed in the respiratory track. However, the physiological mechanism by which extracellular nucleotides induce MUC8 gene expression in human airway epithelial cells is unclear. Here, we show that UTP could induce MUC8 gene expression through P2Y2-PLCß3-Ca2+ activation. Because the full-length cDNA sequence of MUC8 has not been identified, a specific siRNA-MUC8 was designed based on the partial cDNA sequence of MUC8. siRNA-MUC8 significantly increased TNF-α production and decreased IL-1Ra production, suggesting that MUC8 may downregulate UTP/P2Y2-induced airway inflammation. Interestingly, the PDZ peptide of ZO-1 protein strongly abolished UTP-induced TNF-α production and increased IL-1Ra production and MUC8 gene expression. In addition, the PDZ peptide dramatically increased the levels of UTP-induced ZO proteins and TEER (trans-epithelial electrical resistance). These results show that the anti-inflammatory mucin MUC8 may contribute to homeostasis, and the PDZ peptide can be a novel therapeutic candidate for UTP-induced airway inflammation.


Assuntos
Proteína Antagonista do Receptor de Interleucina 1 , Mucinas , Humanos , Mucinas/genética , Mucinas/metabolismo , Uridina Trifosfato/metabolismo , DNA Complementar , Fator de Necrose Tumoral alfa/metabolismo , Células Epiteliais/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , RNA Interferente Pequeno/metabolismo , Inflamação/metabolismo
7.
Plant Physiol ; 193(4): 2555-2572, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37691396

RESUMO

Phased short-interfering RNAs (phasiRNAs) fine tune various stages of growth, development, and stress responses in plants. Potato (Solanum tuberosum) tuberization is a complex process, wherein a belowground modified stem (stolon) passes through developmental stages like swollen stolon and minituber before it matures to a potato. Previously, we identified several phasiRNA-producing loci (PHAS) from stolon-to-tuber transition stages. However, whether phasiRNAs mediate tuber development remains unknown. Here, we show that a gene encoding NB-ARC DOMAIN-CONTAINING DISEASE RESISTANCE PROTEIN (StRGA4; a PHAS locus) is targeted by Stu-microRNA482c to generate phasiRNAs. Interestingly, we observed that one of the phasiRNAs, referred as short-interfering RNA D29(-), i.e. siRD29(-), targets the gibberellin (GA) biosynthesis gene GIBBERELLIN 3-OXIDASE 3 (StGA3ox3). Since regulation of bioactive GA levels in stolons controls tuber development, we hypothesized that a gene regulatory module, Stu-miR482c-StRGA4-siRD29(-)-StGA3ox3, could govern tuber development. Through transient expression assays and small RNA sequencing, generation of siRD29(-) and its phase was confirmed in planta. Notably, the expression of StGA3ox3 was higher in swollen stolon compared to stolon, whereas siRD29(-) showed a negative association with StGA3ox3 expression. Antisense (AS) lines of StGA3ox3 produced more tubers compared to wild type. As expected, StRGA4 overexpression (OE) lines had high levels of siRD29(-) and mimicked the phenotypes of StGA3ox3-AS lines, indicating the functionality of this module in potato. In vitro tuberization assays (with or without a GA inhibitor) using StGA3ox3 antisense lines and overexpression lines of StGA3ox3 or StRGA4 revealed that StGA3ox3 controls the tuber stalk development. Taken together, our findings suggest that a phasiRNA, siRD29(-), mediates the regulation of StGA3ox3 during stolon-to-tuber transitions in potato.


Assuntos
Giberelinas , Solanum tuberosum , Giberelinas/metabolismo , RNA Interferente Pequeno/metabolismo , Solanum tuberosum/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos , Regulação da Expressão Gênica de Plantas
8.
Altern Ther Health Med ; 29(8): 364-369, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37632963

RESUMO

Background: Ovarian cancer is the leading cause of death linked to gynecological cancers. Notch1, as an important component of Notch signaling, plays an important role in a variety of cancers. This study aims to discuss the mechanisms through which Notch 1 influences the development of ovarian cancer. Methods: To design and establish the short hairpin (sh) RNA for targeting Notch 1, we transfected THP-1 cells (one of the human macrophagic lines). The cells were divided into shRNA negative control (NC) group and the Notch 1 shRNA group. The CoC1 cells and THP-1 cells (human mononuclear macrophages) are co-cultured, which are injected into the nude mice subcutaneously based on proposition. The sizes of tumors and their volumes are observed through HE staining. Flow cytometry is used to sort out macrophages from subcutaneous tumors of nude mice, whose protein-related expression is detected through western blot. Then the NC group and the Notch 1 shRNA group in the co-culture system are treated with PI3K/mTOR Inhibitor-13 sodium (200 nM) for 48h and then co-cultured with human endothelial cell lines HUVEC, CoC1, and THP-1 to test the tube-forming capacity of HUVEC cells in each group to detect the protein-related expression in THP-1 cells using western blot. Results: It is seen that the Notch 1 shRNA group includes a significantly larger tumor size, decreased relative expression, and the obvious increase of the relative protein expression in p-PI3K, p-mTOR, HIF1α, and VEGF compared with the NC group. Through tube-forming experiments, the Notch1 shRNA group significantly increased the number of HUVEC tubes. However, after the use of PI3K/mTOR Inhibitor-13 sodium, the number of tubes decreased in the NC and Notch1 shRNA groups, and there is no significant discrepancy in comparison to the NC group. The in vitro western blotting results indicate no obvious variation of Notch 1's relative protein expression in both the NC group and Notch 1 shRNA group after the use of PI3K/mTOR Inhibitor-13 sodium, while the relative protein expression of p-PI3K, p-mTOR, HIF1α, and VEGF was significantly reduced and there was no significant difference. Conclusion: This study found that specific knockout of Notch 1 in tumor-associated macrophages will promote the activation of the PI3K/mTOR signaling pathway and the expression of HIF1α and VEGF, thus promoting angiogenesis and the development of ovarian cancer. Thus, this study provides insight into novel prognostic biomarkers and therapeutic targets for the treatment and research of ovarian cancer.


Assuntos
Neoplasias Ovarianas , Fator A de Crescimento do Endotélio Vascular , Animais , Camundongos , Humanos , Feminino , Camundongos Nus , Fator A de Crescimento do Endotélio Vascular/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Sódio/metabolismo , Proliferação de Células , Apoptose
9.
Mol Neurobiol ; 60(11): 6227-6247, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37439957

RESUMO

Stroke is one of the leading causes of disability and death globally with a lack of effective therapeutic strategies. Catalpol is a bioactive compound derived from the traditional Chinese medicine Rehmannia glutinosa and it has been shown to be protective against various neurological diseases. The potential roles of catalpol against ischemic stroke are still not completely clear. In this study, we examined the effect and mechanism of catalpol against ischemic stroke using in vivo rat distal middle cerebral artery occlusion (dMCAO) and in vitro oxygen-glucose deprivation (OGD) models. We demonstrated that catalpol indeed attenuated the neurological deficits caused by dMCAO and improved neurological function. Catalpol remarkably promoted angiogenesis, promoted proliferation and differentiation of neural stem cells (NSCs) in the subventricular zone (SVZ), and prevented neuronal loss and astrocyte activation in the ischemic cortex or hippocampal dentate gyrus (DG) in vivo. The vascular endothelial growth factor receptor 2 (KDR, VEGFR-2) inhibitor SU5416 and VEGF-A shRNA were used to investigate the underlying mechanisms. The results showed that SU5416 administration or VEGF-A-shRNA transfection both attenuated the effects of catalpol. We also found that catalpol promoted the proliferation of cultured brain microvascular endothelial cells (BMECs) and the proliferation and differentiation of NSCs subjected to OGD insult in vitro. Interestingly, the impact of catalpol on cultured cells was also inhibited by SU5416. Moreover, catalpol was shown to protect NSCs against OGD indirectly by promoting BMEC proliferation in the co-cultured system. Taken together, catalpol showed therapeutic potential in cerebral ischemia by promoting angiogenesis and NSC proliferation and differentiation. The protective effects of catalpol were mediated through VEGF-A/KDR pathway activation.


Assuntos
AVC Isquêmico , Células-Tronco Neurais , Acidente Vascular Cerebral , Ratos , Animais , AVC Isquêmico/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Diferenciação Celular , Células-Tronco Neurais/metabolismo , Oxigênio/metabolismo , Proliferação de Células , RNA Interferente Pequeno/metabolismo , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo
10.
CNS Neurosci Ther ; 29(11): 3479-3492, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37287407

RESUMO

AIMS: Lysine-specific demethylase 6B (KDM6B) serves as a key mediator of gene transcription. It regulates expression of proinflammatory cytokines and chemokines in variety of diseases. Herein, the role and the underlying mechanisms of KDM6B in inflammatory pain were studied. METHODS: The inflammatory pain was conducted by intraplantar injection of complete Freund's adjuvant (CFA) in rats. Immunofluorescence, Western blotting, qRT-PCR, and chromatin immunoprecipitation (ChIP)-PCR were performed to investigate the underlying mechanisms. RESULTS: CFA injection led to upregulation of KDM6B and decrease in the level of H3K27me3 in the dorsal root ganglia (DRG) and spinal dorsal horn. The mechanical allodynia and thermal hyperalgesia following CFA were alleviated by the treatment of intrathecal injection of GSK-J4, and by microinjection of AAV-EGFP-KDM6B shRNA in the sciatic nerve or in lumbar 5 dorsal horn. The increased production of tumor necrosis factor-α (TNF-α) following CFA in the DRGs and dorsal horn was inhibited by these treatments. ChIP-PCR showed that CFA-induced increased binding of nuclear factor κB with TNF-α promoter was repressed by the treatment of microinjection of AAV-EGFP-KDM6B shRNA. CONCLUSIONS: These results suggest that upregulated KDM6B via facilitating TNF-α expression in the DRG and spinal dorsal horn aggravates inflammatory pain.


Assuntos
Gânglios Espinais , Histonas , Corno Dorsal da Medula Espinal , Fator de Necrose Tumoral alfa , Animais , Ratos , Desmetilação , Adjuvante de Freund/toxicidade , Gânglios Espinais/metabolismo , Histonas/metabolismo , Hiperalgesia/metabolismo , Lisina/metabolismo , Dor/metabolismo , Medição da Dor , Ratos Sprague-Dawley , RNA Interferente Pequeno/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
11.
Food Funct ; 14(10): 4891-4904, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37144827

RESUMO

The intestinal epithelial barrier plays a fundamental role in human and animal health. Mitochondrial dysfunction can lead to intestinal epithelial barrier damage. The interaction between mitochondria and lysosomes has been proved to regulate each other's dynamics. Our previous studies have demonstrated that biogenic selenium nanoparticles (SeNPs) can alleviate intestinal epithelial barrier injury through regulating mitochondrial autophagy. In this study, we hypothesize that the protective effects of SeNPs against intestinal epithelial barrier dysfunction are associated with mitochondrial-lysosomal crosstalk. The results showed that lipopolysaccharide (LPS) and TBC1D15 siRNA transfection both caused the increase of intestinal epithelial permeability, activation of mitophagy, and mitochondrial and lysosomal dysfunction in porcine jejunal epithelial cells (IPEC-J2). SeNP pretreatment significantly up-regulated the expression levels of TBC1D15 and Fis1, down-regulated Rab7, caspase-3, MCOLN2 and cathepsin B expression levels, reduced cytoplasmic Ca2+ concentration, effectively alleviated mitochondrial and lysosomal dysfunction, and maintained the integrity of the intestinal epithelial barrier in IPEC-J2 cells exposed to LPS. Furthermore, SeNPs obviously reduced cytoplasmic Ca2+ concentration and activated the TBC1D15/Fis/Rab7-mediated signaling pathway, shortened the contact time between mitochondria and lysosomes, inhibited mitophagy, maintained mitochondrial and lysosomal homeostasis, and effectively attenuated intestinal epithelial barrier injury in IPEC-J2 cells transfected with TBC1D15 siRNA. These results indicated that the protective effect of SeNPs on intestinal epithelial barrier injury is closely associated with the TBC1D15/Rab7-mediated mitochondria-lysosome crosstalk signaling pathway.


Assuntos
Gastroenteropatias , Enteropatias , Nanopartículas , Selênio , Humanos , Animais , Suínos , Selênio/farmacologia , Selênio/metabolismo , Mucosa Intestinal/metabolismo , Lipopolissacarídeos/farmacologia , Enteropatias/metabolismo , Mitocôndrias , Células Epiteliais/metabolismo , Lisossomos/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas Ativadoras de GTPase/metabolismo
12.
Phytomedicine ; 115: 154839, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37121060

RESUMO

BACKGROUND: Genistein (GEN) is one of the most well-known phytoestrogens identified in various legumes. Although increasing evidence shows GEN has a potential use in phytotherapy to regulate lipid metabolism, its therapeutic mechanisms have not yet been completely elucidated, especially epigenetic alterations of miRNAs to alleviate lipid accumulation in the liver remains unknown. PURPOSE: To clarify how GEN modulates the miRNA profile in HepG2 cells and investigate molecular mechanisms of the modulated miRNA on regulating hepatic lipid metabolism. METHODS: The miRNA microarray was performed to compare the miRNAs expression patterns, followed by determining principal miRNA and its target gene associated with hepatic lipid metabolism modulated by GEN. miR-363-3p mimics (mi) and phosphatase and tensin homolog (PTEN)-siRNA were transfected into HepG2 cells and GEN was further treated with the cells for 24 h RESULTS: GEN induced downregulation of miR-363-3p and upregulation of PTEN, which was a target mRNA of miR-363-3p. The miR-363-3p mi led to an upregulation of sterol-regulatory element-binding protein-1c (SREBP-1c) and its downstream lipid synthesis-related factors in HepG2 cells. In addition, the inhibition of PTEN led to an increase of lipogenesis, which was associated with the AKT/mTOR signal regulation. However, GEN treatment could abrogate the lipogenic effects of miR-363-3p mi or PTEN siRNA. The modulation was associated with estrogen receptor ß (ERß). CONCLUSION: We discerned a new mechanism that GEN regulated hepatic lipid metabolism by inhibiting miR-363-3p, which could be mediated via ERß and by targeting PTEN in HepG2 cells. Additionally, GEN reduced hepatic lipid accumulation by regulating PTEN-AKT/mTOR signal. It implicated a protective role of GEN by elucidating its epigenetic modification of the miRNA modulated by ERß on improving hepatic lipid metabolism and provided novel evidence of the mechanism on targeting miR-363-3p/PTEN in treating hepatic lipid disorders.


Assuntos
Metabolismo dos Lipídeos , MicroRNAs , Humanos , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Transdução de Sinais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Genisteína/farmacologia , Células Hep G2 , MicroRNAs/genética , MicroRNAs/metabolismo , Serina-Treonina Quinases TOR/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , RNA Interferente Pequeno/metabolismo , Lipídeos
13.
Int Immunopharmacol ; 116: 109825, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36764277

RESUMO

Acute cardiovascular events increase significantly in postmenopausal women. The relationship between estrogen receptor (ER) and plaque stability in the postmenopausal stage remains to be elucidated. We aimed to explore whether ERα activation improves plaque instability in the postmenopausal stage. Here, we report that postmenopausal women showed increased macrophage activation and plaque instability with increased MCP-1, MMP9, TLR4, MYD88 and NF-κB p65 and decreased ERα and TIMP1 expression in the vascular endothelium. Moreover, ovariectomy in LDLR-/- mice resulted in a significant increase in plaque area and necrotic core area, as well as a significant decrease in collagen content and an increase in macrophage accumulation in the artery. Ovariectomy also reduced serum estrogen levels and ERα expression and upregulated TLR4 and MMP9 expression in arteries in LDLR-/- mice. Estrogen or phytoestrogen therapy upregulated the expression level of ERα in ovariectomized mice and increased plaque stability by inhibiting macrophage accumulation and TLR4 signaling. In vitro, LPS incubation of RAW264.7 cells resulted in a significant decrease in ERα and TIMP1 expression and an increase in TLR4 activation, and estrogen or phytoestrogen treatment increased ERα and TIMP1 expression and inhibited TLR4 activation and MMP9 expression in LPS-treated RAW264.7 cells. Compared to control siRNA transfected RAW264.7 cells, TLR4 siRNA promoted TIMP1 expression in RAW264.7 cells with LPS incubation, but did not affect ERα expression in RAW264.7 cells with or without LPS treatment. The ERα inhibitor MPP abolished the regulatory effect of estrogen or phytoestrogen on LPS-induced RAW264.7 cells. In conclusion, the present study demonstrates that decreased ERα expression promotes macrophage infiltration and plaque instability in the postmenopausal stage, and activation of ERα in the postmenopausal stage alleviates atherosclerotic plaque instability by inhibiting TLR4 signaling and macrophage-related inflammation.


Assuntos
Receptor alfa de Estrogênio , Placa Aterosclerótica , Receptor 4 Toll-Like , Animais , Feminino , Camundongos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Lipopolissacarídeos , Macrófagos , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , NF-kappa B/metabolismo , Fitoestrógenos , Pós-Menopausa , RNA Interferente Pequeno/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Humanos , Células RAW 264.7
14.
J Nanobiotechnology ; 21(1): 18, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650517

RESUMO

The occurrence of osteoarthritis (OA) is highly correlated with the reduction of joint lubrication performance, in which persistent excessive inflammation and irreversible destruction of cartilage dominate the mechanism. The inadequate response to monotherapy methods, suboptimal efficacy caused by undesirable bioavailability, short retention, and lack of stimulus-responsiveness, are few unresolved issues. Herein, we report a pH-responsive metal-organic framework (MOF), namely, MIL-101-NH2, for the co-delivery of anti-inflammatory drug curcumin (CCM) and small interfering RNA (siRNA) for hypoxia inducible factor (HIF-2α). CCM and siRNA were loaded via encapsulation and surface coordination ability of MIL-101-NH2. Our vitro tests showed that MIL-101-NH2 protected siRNA from nuclease degradation by lysosomal escape. The pH-responsive MIL-101-NH2 gradually collapsed in an acidic OA microenvironment to release the CCM payloads to down-regulate the level of pro-inflammatory cytokines, and to release the siRNA payloads to cleave the target HIF-2α mRNA for gene-silencing therapy, ultimately exhibiting the synergetic therapeutic efficacy by silencing HIF-2α genes accompanied by inhibiting the inflammation response and cartilage degeneration of OA. The hybrid material reported herein exhibited promising potential performance for OA therapy as supported by both in vitro and in vivo studies and may offer an efficacious therapeutic strategy for OA utilizing MOFs as host materials.


Assuntos
Curcumina , Estruturas Metalorgânicas , Osteoartrite , Humanos , Curcumina/farmacologia , Condrócitos/metabolismo , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Inflamação/metabolismo , Concentração de Íons de Hidrogênio
15.
Chem Biol Interact ; 371: 110344, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36623717

RESUMO

Angiogenesis is a biological process in which resting endothelial cells start proliferating, migrating and forming new blood vessels. Angiogenesis is particularly important in the repair of bone tissue defects. Naringin (NG) is the main active monomeric component of traditional Chinese medicine, which has various biological activities, such as anti-osteoporosis, anti-inflammatory, blood activation and microcirculation improvement. At present, the mechanism of naringin in the process of angiogenesis is not clear. PIWI protein-interacting RNA (piRNA) is a small noncoding RNA (sncRNA) that has the functions of regulating protein synthesis, regulating the structure of chromatin and the genome, stabilizing mRNA and others. Several studies have demonstrated that piRNAs can mediate the angiogenesis process. Whether naringin can interfere with the process of angiogenesis by regulating piRNAs and related target genes deserves further exploration. Thus, the purpose of this study was to validate the potential angiogenic and bone regeneration properties and related mechanisms of naringin both in vivo and in vitro.


Assuntos
Flavanonas , RNA de Interação com Piwi , RNA Interferente Pequeno/metabolismo , Células Endoteliais/metabolismo , Flavanonas/farmacologia
16.
Phytother Res ; 37(1): 89-100, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36161389

RESUMO

Inflammatory bowel disease is a disease that can invade the whole digestive tract and is accompanied by immune abnormalities. Immune dysfunction involving dendritic cells (DCs) and T cells is recognized as a key factor in diseases. Indirubin (IDRB) exerts antiinflammatory effects and can help in treating immune diseases. This study aimed to isolate bone marrow-derived dendritic cells (BMDCs) using lipopolysaccharide (LPS) to obtain mature DCs (mDCs). The expression of CD80, CD86, CD40, and MHC-II was detected using flow cytometry after treatment with IDRB. αVß8 siRNA was used to knock down αVß8 in mDCs, and the expression of CD80, CD86, CD40, and MHC-II was detected. Meanwhile, DCs were co-cultured with T cells. Then, T cell differentiation was detected using flow cytometry, and the cytokine levels were detected using enzyme-linked immunosorbent assay. The animal model of dextran sulfate sodium (DSS)-induced inflammatory bowel disease was established in mice. After intervention with IDRB and αVß8 shRNA, the intestinal tissues were evaluated using H&E staining, disease activity index (DAI) score, and histological damage index, and the corresponding factors and cytokines to regulatory T cells (Treg) and Th17 were measured. The results showed that αVß8 was expressed in immature DCs and mDCs. CD80, CD86, CD40, and MHC-II expression decreased after IDRB treatment in mDCs. Meanwhile, the expression of TNF-α and TGF-ß also decreased after IDRB treatment. The effect of IDRB on the expression of CD80, CD86, CD40, MHC-II, TNF-α, and TGF-ß in mDCs was reversed by αVß8 siRNA. The Treg differentiation increased after IDRB treatment, while the differentiation of Th17 cells was inhibited. This effect of IDRB was reversed by mDCs after treatment with αVß8 siRNA. In vivo experiments showed that IDRB alleviated the symptoms of inflammatory bowel disease in animals. Enteritis significantly reduced, and the effect of IDRB was reversed by αVß8 shRNA. The results suggested that IDRB regulated the differentiation of T cells by mediating the maturation of BMDCs through αVß8. This study confirmed the therapeutic effect of IDRB in inflammatory bowel disease and suggested that IDRB might serve as a potential drug.


Assuntos
Doenças Inflamatórias Intestinais , Fator de Necrose Tumoral alfa , Camundongos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Medula Óssea/metabolismo , Diferenciação Celular , Citocinas/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Células Cultivadas , Doenças Inflamatórias Intestinais/tratamento farmacológico , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacologia , Células Dendríticas/metabolismo , Camundongos Endogâmicos C57BL
17.
Chin J Integr Med ; 29(3): 224-232, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35809177

RESUMO

OBJECTIVE: To explore whether casticin (CAS) suppresses stemness in cancer stem-like cells (CSLCs) obtained from human cervical cancer (CCSLCs) and the underlying mechanism. METHODS: Spheres from HeLa and CaSki cells were used as CCSLCs. DNA methyltransferase 1 (DNMT1) activity and mRNA levels, self-renewal capability (Nanog and Sox2), and cancer stem cell markers (CD133 and CD44), were detected by a colorimetric DNMT activity/inhibition assay kit, quantitative real-time reverse transcription-polymerase chain reaction, sphere and colony formation assays, and immunoblot, respectively. Knockdown and overexpression of DNMT1 by transfection with shRNA and cDNA, respectively, were performed to explore the mechanism for action of CAS (0, 10, 30, and 100 nmol/L). RESULTS: DNMT1 activity was increased in CCSLCs compared with HeLa and CaSki cells (P<0.05). In addition, HeLa-derived CCSLCs transfected with DNMT1 shRNA showed reduced sphere and colony formation abilities, and lower CD133, CD44, Nanog and Sox2 protein expressions (P<0.05). Conversely, overexpression of DNMT1 in HeLa cells exhibited the oppositive effects. Furthermore, CAS significantly reduced DNMT1 activity and transcription levels as well as stemness in HeLa-derived CCSLCs (P<0.05). Interestingly, DNMT1 knockdown enhanced the inhibitory effect of CAS on stemness. As expected, DNMT1 overexpression reversed the inhibitory effect of CAS on stemness in HeLa cells. CONCLUSION: CAS effectively inhibits stemness in CCSLCs through suppression of DNMT1 activation, suggesting that CAS acts as a promising preventive and therapeutic candidate in cervical cancer.


Assuntos
Neoplasias do Colo do Útero , Feminino , Humanos , Linhagem Celular Tumoral , Células HeLa , Células-Tronco Neoplásicas/metabolismo , RNA Interferente Pequeno/metabolismo , Neoplasias do Colo do Útero/metabolismo
18.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36498896

RESUMO

The technique of cloning has wide applications in animal husbandry and human biomedicine. However, the very low developmental efficiency of cloned embryos limits the application of cloning. Ectopic XIST-expression-induced abnormal X chromosome inactivation (XCI) is a primary cause of the low developmental competence of cloned mouse and pig embryos. Knockout or knockdown of XIST improves cloning efficiency in both pigs and mice. The transcription factor Yin yang 1(YY1) plays a critical role in XCI by triggering the transcription of X-inactive specific transcript (XIST) and facilitating the localization of XIST RNA on the X chromosome. This study aimed to investigate whether RNA interference to suppress the expression of YY1 can inhibit erroneous XIST expression, rescue abnormal XCI, and improve the developmental ability of cloned pig embryos. The results showed that YY1 binds to the 5' regulatory region of the porcine XIST gene in pig cells. The microinjection of YY1 siRNA into cloned pig embryos reduced the transcript abundance of XIST and upregulated the mRNA level of X-linked genes at the 4-cell and blastocyst stages. The siRNA-mediated knockdown of YY1 altered the transcriptome and enhanced the in vitro and in vivo developmental efficiency of cloned porcine embryos. These results suggested that YY1 participates in regulating XIST expression and XCI in cloned pig embryos and that the suppression of YY1 expression can increase the developmental rate of cloned pig embryos. The present study established a new method for improving the efficiency of pig cloning.


Assuntos
Desenvolvimento Embrionário , RNA Longo não Codificante , Animais , Blastocisto/metabolismo , Clonagem de Organismos/métodos , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Interferente Pequeno/metabolismo , Suínos , Inativação do Cromossomo X , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
19.
Elife ; 112022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36193674

RESUMO

RNA interference systems depend on the synthesis of small RNA precursors whose sequences define the target spectrum of these silencing pathways. The Drosophila Heterochromatin Protein 1 (HP1) variant Rhino permits transcription of PIWI-interacting RNA (piRNA) precursors within transposon-rich heterochromatic loci in germline cells. Current models propose that Rhino's specific chromatin occupancy at piRNA source loci is determined by histone marks and maternally inherited piRNAs, but also imply the existence of other, undiscovered specificity cues. Here, we identify a member of the diverse family of zinc finger associated domain (ZAD)-C2H2 zinc finger proteins, Kipferl, as critical Rhino cofactor in ovaries. By binding to guanosine-rich DNA motifs and interacting with the Rhino chromodomain, Kipferl recruits Rhino to specific loci and stabilizes it on chromatin. In kipferl mutant flies, Rhino is lost from most of its target chromatin loci and instead accumulates on pericentromeric Satellite arrays, resulting in decreased levels of transposon targeting piRNAs and impaired fertility. Our findings reveal that DNA sequence, in addition to the H3K9me3 mark, determines the identity of piRNA source loci and provide insight into how Rhino might be caught in the crossfire of genetic conflicts.


The genes within our DNA encode the essentials of our body plan and how each task in the body is achieved. However, our genome also contains many repetitive regions of DNA that do not encode functional genes. Some of these regions are genetic parasites known as transposons that try to multiply and spread around the DNA of their host. To prevent transposon DNA from interfering with the way the body operates, humans and other animals have evolved elaborate defense mechanisms to identify transposons and prevent them from multiplying. In one such mechanism, known as the piRNA pathway, the host makes small molecules known as piRNAs that have sequences complementary to those of transposons, and act as guides to silence the transposons. The instructions to make these piRNAs are stored in the form of transposon fragments in dedicated regions of host DNA called piRNA clusters. These clusters thereby act as genetic memory, allowing the host to recognize and silence specific transposons in other locations within the host's genome. In fruit flies, a protein called Rhino binds to piRNA clusters that are densely packed to allow piRNAs to be made. However, it remained unclear how Rhino is able to identify and bind to piRNA clusters, but not to other similarly densely packed regions of DNA. Baumgartner et al. used a combination of genetic, genomic, and imaging approaches to study how Rhino finds its way in the fruit fly genome. They found that another protein called Kipferl interacts with Rhino and is required for Rhino to bind to nearly all piRNA clusters. Since Kipferl can by itself bind to the sequences that Rhino needs to find, the results suggest that Kipferl acts to recruit and initiate Rhino binding within densely packed piRNA clusters. Further experiments found that, in flies lacking Kipferl, Rhino binds to regions of DNA called Satellite repeats, hinting that these selfish sequences may compete for Rhino for their own benefit. The finding that Kipferl and Rhino work together to define the memory system of the piRNA pathway strongly advances our understanding of how a sequence-specific defense system based on small RNAs can be established.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Elementos de DNA Transponíveis/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Guanosina/metabolismo , Precursores de RNA/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Dedos de Zinco
20.
Int J Mol Med ; 50(6)2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36281932

RESUMO

Vascular calcification is commonly observed in chronic kidney disease. The mechanism of how the calcification signal from endothelial cells is transmitted to vascular smooth muscle cells (VSMCs) remains unknown. The aim of the present study was to investigate whether exosomes from HUVECs (HUVEC­Exos) could regulate VSMC calcification and its potential signaling pathway. HUVEC­Exos were isolated from HUVECs under no phosphorus (NP) and high phosphorus (HP) conditions. Alizarin Red S staining and calcium (Ca) content analysis were carried out to detect calcification in VSMCs. Proteomics analysis was carried out to detect the differential expression of exosomal proteins. Protein and mRNA levels were measured by western blot analysis and reverse transcription­quantitative PCR (RT­qPCR). Exosomes derived from HP­HUVECs promoted the calcification of VSMCs, as assessed by Alizarin Red S staining, alkaline phosphatase activity assays, Ca content measurements and the increased expression of runt­related transcription factor 2 and osteopontin. Proteomic analysis detected the upregulation of STAT1 in HP­exosomes from HUVECs (HUVEC­Exos) compared with NP­HUVEC­Exos, which was also confirmed by western blot analysis and RT­qPCR. Inhibition of STAT1 expression in VSMCs using fludarabine or knockdown of STAT1 expression using small interfering RNA alleviated the calcification of VSMCs. Furthermore, lithium chloride (Wnt activator) reversed the protective effect of STAT1 inhibition on VSMC calcification, while Dickkopf­1 (Wnt inhibitor) exerted the opposite effect, suggesting that activation of the Wnt/ß­catenin signaling pathway was involved in STAT1­mediated VSMC calcification. In conclusion, the present results indicated that exosomal STAT1 derived from HP­treated HUVECs could promote VSMC calcification, and activation of the Wnt/ß­catenin pathway may be a potential mechanism of the VSMC calcification promoted by exosomes.


Assuntos
Músculo Liso Vascular , Calcificação Vascular , Humanos , Músculo Liso Vascular/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Osteopontina/metabolismo , Células Endoteliais/metabolismo , Cálcio/metabolismo , Fósforo/metabolismo , Fosfatase Alcalina/metabolismo , Proteômica , RNA Interferente Pequeno/metabolismo , Cloreto de Lítio/farmacologia , Miócitos de Músculo Liso/metabolismo , Calcificação Vascular/metabolismo , RNA Mensageiro/metabolismo , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA