Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Sci ; 339: 111948, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38097046

RESUMO

Although long non-coding RNAs have been recognized to play important roles in plant, their possible functions and potential mechanism in Ginkgo biloba flavonoid biosynthesis are poorly understood. Flavonoids are important secondary metabolites and healthy components of Ginkgo biloba. They have been widely used in food, medicine, and natural health products. Most previous studies have focused on the molecular mechanisms of structural genes and transcription factors that regulate flavonoid biosynthesis. Few reports have examined the biological functions of flavonoid biosynthesis by long non-coding RNAs in G. biloba. Long noncoding RNAs associated with flavonoid biosynthesis in G. biloba have been identified through RNA sequencing, but the function of lncRNAs has not been reported. In this study, the expression levels of lnc10 and lnc11 were identified. Quantitative real-time polymerase chain reaction analysis revealed that lnc10 and lnc11 were expressed in all detected organs, and they showed significantly higher levels in immature and mature leaves than in other organs. In addition, to fully identify the function of lnc10 and lnc11 in flavonoid biosynthesis in G. biloba, lnc10 and lnc11 were cloned from G. biloba, and were transformed into Arabidopsis and overexpressed. Compared with the wild type, the flavonoid content was increased in transgenic plants. Moreover, the RNA-sequencing analysis of wild-type, lnc10-overexpression, and lnc11-overexpression plants screened out 2019 and 2552 differentially expressed genes, and the transcript levels of structural genes and transcription factors associated with flavonoid biosynthesis were higher in transgenic Arabidopsis than in the wild type, indicating that lnc10 and lnc11 activated flavonoid biosynthesis in the transgenic lines. Overall, these results suggest that lnc10 and lnc11 positively regulate flavonoid biosynthesis in G. biloba.


Assuntos
Arabidopsis , RNA Longo não Codificante , Ginkgo biloba/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/análise , Arabidopsis/genética , Arabidopsis/metabolismo , Extratos Vegetais/metabolismo , Flavonoides , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Folhas de Planta/metabolismo
2.
Medicine (Baltimore) ; 100(35): e26959, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34477125

RESUMO

ABSTRACT: The purpose of this study was to evaluate the correlation of long non-coding RNA maternally expressed gene 3 (Lnc-MEG3) with disease features, treatment response, and survival in pediatric acute myeloid leukemia (AML) patients.Among 92 de novo pediatric AML patients (before treatment and after 1 course of induction) and 40 controls, bone marrow mononuclear cells were obtained. Then, Lnc-MEG3 expression was determined by reverse transcription quantitative polymerase chain reaction. After 1 course of standard induction therapy of pediatric AML patients, complete remission (CR) was assessed. Furthermore, event-free survival (EFS) and overall survival (OS) were determined according to follow-up data.Lnc-MEG3 was reduced in pediatric AML patients compared with controls. In pediatric AML patients, Lnc-MEG3 was correlated with French-American-Britain subtypes and lower Chinese Medical Association risk stratification, while it was not associated with cytogenetic features, FLT3-ITD mutation, CEBPA mutation, NPM1 mutation, WT1 mutation, or National Comprehensive Cancer Network risk stratification. After 1 course of treatment, Lnc-MEG3 exhibited an up-regulation trend. Furthermore, Lnc-MEG3 was of no difference before treatment between patients with and without CR, while elevated Lnc-MEG3 and change of Lnc-MEG3 after 1 course of treatment were associated with increased CR rate. Additionally, increased Lnc-MEG3 expression before treatment was associated with longer EFS but not OS, while enhanced Lnc-MEG3 expression after 1 course of treatment was correlated with both prolonged EFS and OS.Lnc-MEG3 may have clinical significance as a biomarker for assisting with disease management, treatment optimization, and prognosis improvement in pediatric AML patients.


Assuntos
Biomarcadores Tumorais/análise , Leucemia Mieloide/genética , Leucemia Mieloide/mortalidade , RNA Longo não Codificante/análise , Criança , Pré-Escolar , Feminino , Humanos , Leucemia Mieloide/complicações , Masculino , Nucleofosmina , Prognóstico , Indução de Remissão
3.
Pathol Res Pract ; 215(11): 152649, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31570281

RESUMO

HOXA transcript at the distal tip (HOTTIP) is a long noncoding RNA (lncRNA), which is >200 nucleotides in length. HOTTIP expression has been demonstrated to play a crucial oncogenic role in cancer pathogenesis, and is said to be associated with poor human cancer prognosis. In prostate cancer, HOTTIP has been identified as an oncogene, but its clinicopathologic significance remains unclear. Array-based qRT-PCR was used to investigate lncRNA levels in 10 pairs of prostate cancer tissues and non-neoplastic parenchyma. Tissue microarray (TMA) was constructed using a total of 70 surgically resected prostatic adenocarcinoma tissues obtained from the Korea University Anam Hospital from 2009 to 2013. HOTTIP expression was determined by RNA in situ hybridization(ISH) and was correlated with clinicopathologic features. Increased HOTTIP expression was observed in all available prostate cancer tissue specimens compared with that in paired normal tissue. High HOTTIP expression was positively associated with bad clinicopathologic features, including higher pathologic T stage (p < 0.001), presence of extraprostatic extension (p < 0.001), seminal vesicle invasion (p < 0.001), perineural invasion (p < 0.001), and the tumor involvement of resection margin (p = 0.044). In particular, significantly increased HOTTIP expression was observed in specimens from patients in the high or very high-risk group, according to the 2018 National Comprehensive Cancer Network (NCCN) guidelines (p < 0.001). Also, patients with high HOTTIP expression showed poorer overall survival than those with low expression. In conclusion, we analytically validated the poor prognostic significance of HOTTIP overexpression and its association with bad clinicopathologic features, and present HOTTIP as a potential prognostic biomarker in prostate cancer.


Assuntos
Adenocarcinoma/patologia , Biomarcadores Tumorais/análise , Neoplasias da Próstata/patologia , RNA Longo não Codificante/biossíntese , Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidade , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/mortalidade , RNA Longo não Codificante/análise , Regulação para Cima
4.
J Dairy Sci ; 102(8): 6726-6737, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31155266

RESUMO

Previous studies have demonstrated that bovine milk contains mRNA and microRNA that are largely encapsulated in milk-derived exosomes. However, little information is available about long noncoding RNAs (lncRNA) in bovine milk. Increasing evidence suggests that lncRNA are of particular interest given their key role in gene expression and development. We performed a comprehensive analysis of lncRNA in bovine milk exosomes by RNA sequencing. We used a validated human in vitro digestion model to investigate the stability of lncRNA encapsulated in bovine milk exosomes during the digestion process. We identified 3,475 novel lncRNA and 6 annotated lncRNA. The lncRNA shared characteristics with those of other mammals in terms of length, exon number, and open reading frames. However, lncRNA showed higher expression than mRNAs. We selected 12 lncRNA of high-expression abundance and identified them by PCR. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that lncRNA regulate immune function, osteoblastogenesis, neurodevelopment, reproduction, cell proliferation, and cell-cell communication. We also investigated the 12 lncRNA using quantitative real-time PCR to reveal their expression profiles in milk exosomes during different stages of lactation (colostrum 2 d, 30 d, 150 d, and 270 d); their resulting expression levels in milk exosomes showed variations across the stages. A digestion experiment showed that bovine milk exosome lncRNA was resistant to in vitro digestion with different digestive juices, including saliva, gastric juice, pancreatic juice, and bile juice. Taken together, these results show for the first time that cow milk contains lncRNA, and that their abundance varied at different stages of lactation. As expected, bovine milk exosomal lncRNA were stable during in vitro digestion. These findings provide a basis for further understanding of the physiological role of milk lncRNA.


Assuntos
Leite/química , RNA Longo não Codificante/análise , Animais , Bovinos , Colostro/metabolismo , Digestão , Estabilidade de Medicamentos , Exossomos/química , Exossomos/metabolismo , Feminino , Expressão Gênica , Genoma , Humanos , Lactação/fisiologia , MicroRNAs/genética , Gravidez , RNA Longo não Codificante/genética , RNA Longo não Codificante/fisiologia , RNA Mensageiro/genética , Análise de Sequência de RNA/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA