Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Iran J Kidney Dis ; 1(1): 18-26, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38308547

RESUMO

INTRODUCTION: Chronic kidney disease (CKD) is one of the major chronic human diseases worldwide. Puerarin, extensively used in traditional Chinese medicine, has shown favorable clinical effects in treating CKD. Here, we aimed to elucidate the mechanism by which puerarin alleviates CKD. METHODS: We constructed an animal model of CKD and intragastrically administered 400 mg/kg puerarin to the rat models. The extent of kidney injury was evaluated by performing hematoxylin and eosin staining. Then, we quantified the renal function indicators, inflammatory cytokines, apoptosis-related factors, and pyroptosis-related factors. HK-2 cells were treated with lipopolysaccharide (400 ng/mL) in H2O2 (200 µM) to induce oxidative stress. Then, the cells were treated with puerarin and transfected with overexpressed lncRNA NEAT1 vectors. Finally, the regulatory functions of lncRNA NEAT1 in cell apoptosis and pyroptosis were investigated. RESULTS: Puerarin treatment alleviated kidney damage and suppressed inflammation and apoptosis in the CKD rat model. Puerarin ameliorated pyroptosis in the CKD model by inhibiting caspase-1 and GSDMD-N expression. LncRNA NEAT1 was down-regulated in the CKD model after puerarin treatment. Puerarin enhanced cell viability when lncRNA NEAT1 was overexpressed, and the inhibition of apoptosis was reversed in the LPS/H2O2-stimulated HK-2 cells. Furthermore, lncRNA NEAT1 overexpression blocked the anti-pyroptosis effect of Puerarin in the CKD model. CONCLUSION: Puerarin inhibits pyroptosis and inflammation by regulating lncRNA NEAT1, thereby ameliorating CKD.  DOI: 10.52547/ijkd.7565.


Assuntos
Isoflavonas , Falência Renal Crônica , MicroRNAs , RNA Longo não Codificante , Insuficiência Renal Crônica , Humanos , Ratos , Animais , Piroptose , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/farmacologia , Transdução de Sinais/genética , Peróxido de Hidrogênio/farmacologia , Células Epiteliais , Apoptose , Insuficiência Renal Crônica/tratamento farmacológico , Inflamação , MicroRNAs/genética
2.
J Integr Med ; 21(1): 47-61, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456413

RESUMO

OBJECTIVE: Huangqi Decoction (HQD), a classical traditional Chinese medicine formula, has been used as a valid treatment for alleviating liver fibrosis; however, the underlying molecular mechanism is still unknown. Although our previous studies showed that microRNA-663a (miR-663a) suppresses the proliferation and activation of hepatic stellate cells (HSCs) and the transforming growth factor-ß/small mothers against decapentaplegic (TGF-ß/Smad) pathway, whether long noncoding RNAs (lncRNAs) are involved in HSC activation via the miR-663a/TGF-ß/Smad signaling pathway has not yet reported. The present study aimed to investigate the roles of lncRNA lnc-C18orf26-1 in the activation of HSCs and the mechanism by which HQD inhibits hepatic fibrosis. METHODS: The expression levels of lnc-C18orf26-1, miR-663a and related genes were measured by quantitative reverse transcription-polymerase chain reaction. HSCs were transfected with the miR-663a mimic or inhibitor and lnc-C18orf26-1 small interfering RNAs. The water-soluble tetrazolium salt-1 assay was used to assess the proliferation rate of HSCs. Changes in lncRNA expression were evaluated in miR-663a-overexpressing HSCs by using microarray to identify miR-663a-regulated lncRNAs. RNA hybrid was used to predict the potential miR-663a binding sites on lncRNAs. Luciferase reporter assays further confirmed the interaction between miR-663a and the lncRNA. The expression levels of collagen α-2(I) chain (COL1A2), α-smooth muscle actin (α-SMA) and TGF-ß/Smad signaling pathway-related proteins were determined using Western blotting. RESULTS: Lnc-C18orf26-1 was upregulated in TGF-ß1-activated HSCs and competitively bound to miR-663a. Knockdown of lnc-C18orf26-1 inhibited HSC proliferation and activation, downregulated TGF-ß1-stimulated α-SMA and COL1A2 expression, and inhibited the TGF-ß1/Smad signaling pathway. HQD suppressed the proliferation and activation of HSCs. HQD increased miR-663a expression and decreased lnc-C18orf26-1 expression in HSCs. Further studies showed that HQD inhibited the expression of COL1A2, α-SMA, TGF-ß1, TGF-ß type I receptor (TGF-ßRI) and phosphorylated Smad2 (p-Smad2) in HSCs, and these effects were reversed by miR-663a inhibitor treatment. CONCLUSION: Our study identified lnc-C18orf26-1 and miR-663a as promising therapeutic targets for hepatic fibrosis. HQD inhibits HSC proliferation and activation at least partially by regulating the lnc-C18orf26-1/miR-663a/TGF-ß1/TGF-ßRI/p-Smad2 axis.


Assuntos
Medicamentos de Ervas Chinesas , MicroRNAs , RNA Longo não Codificante , Humanos , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , MicroRNAs/genética , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Proliferação de Células , Fatores de Crescimento Transformadores/metabolismo , Fatores de Crescimento Transformadores/farmacologia
3.
Artigo em Inglês | WPRIM | ID: wpr-971646

RESUMO

OBJECTIVE@#Huangqi Decoction (HQD), a classical traditional Chinese medicine formula, has been used as a valid treatment for alleviating liver fibrosis; however, the underlying molecular mechanism is still unknown. Although our previous studies showed that microRNA-663a (miR-663a) suppresses the proliferation and activation of hepatic stellate cells (HSCs) and the transforming growth factor-β/small mothers against decapentaplegic (TGF-β/Smad) pathway, whether long noncoding RNAs (lncRNAs) are involved in HSC activation via the miR-663a/TGF-β/Smad signaling pathway has not yet reported. The present study aimed to investigate the roles of lncRNA lnc-C18orf26-1 in the activation of HSCs and the mechanism by which HQD inhibits hepatic fibrosis.@*METHODS@#The expression levels of lnc-C18orf26-1, miR-663a and related genes were measured by quantitative reverse transcription-polymerase chain reaction. HSCs were transfected with the miR-663a mimic or inhibitor and lnc-C18orf26-1 small interfering RNAs. The water-soluble tetrazolium salt-1 assay was used to assess the proliferation rate of HSCs. Changes in lncRNA expression were evaluated in miR-663a-overexpressing HSCs by using microarray to identify miR-663a-regulated lncRNAs. RNA hybrid was used to predict the potential miR-663a binding sites on lncRNAs. Luciferase reporter assays further confirmed the interaction between miR-663a and the lncRNA. The expression levels of collagen α-2(I) chain (COL1A2), α-smooth muscle actin (α-SMA) and TGF-β/Smad signaling pathway-related proteins were determined using Western blotting.@*RESULTS@#Lnc-C18orf26-1 was upregulated in TGF-β1-activated HSCs and competitively bound to miR-663a. Knockdown of lnc-C18orf26-1 inhibited HSC proliferation and activation, downregulated TGF-β1-stimulated α-SMA and COL1A2 expression, and inhibited the TGF-β1/Smad signaling pathway. HQD suppressed the proliferation and activation of HSCs. HQD increased miR-663a expression and decreased lnc-C18orf26-1 expression in HSCs. Further studies showed that HQD inhibited the expression of COL1A2, α-SMA, TGF-β1, TGF-β type I receptor (TGF-βRI) and phosphorylated Smad2 (p-Smad2) in HSCs, and these effects were reversed by miR-663a inhibitor treatment.@*CONCLUSION@#Our study identified lnc-C18orf26-1 and miR-663a as promising therapeutic targets for hepatic fibrosis. HQD inhibits HSC proliferation and activation at least partially by regulating the lnc-C18orf26-1/miR-663a/TGF-β1/TGF-βRI/p-Smad2 axis.


Assuntos
Humanos , Fator de Crescimento Transformador beta/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , RNA Longo não Codificante/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , MicroRNAs/genética , Células Estreladas do Fígado/patologia , Cirrose Hepática/metabolismo , Proliferação de Células , Fatores de Crescimento Transformadores/farmacologia
4.
Biomed Pharmacother ; 154: 113630, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36058147

RESUMO

Gastric cancer (GC) is one of the most common gastrointestinal malignancies in the world. Growing evidence emphasizes the critical role of long non-coding RNA (lncRNA) in GC tumorigenesis. The aim of the research was to elucidate the effect and mechanism of Babao Dan (BBD) on lymphangiogenesis of GC in vitro and in vivo via lncRNA-ANRIL/VEGF-C/VEGFR-3 signaling axis. The present study investigated BBD significantly decreased the expression of lncRNA-ANRIL and VEGF-C in GC cells (AGS, BGC823, and MGC80-3) by using real-time quantitative polymerasechain reaction (RT-qPCR) and the secretion and expression of VEGF-C by (enzyme linked immunosorbent assay) ELISA and western blot (WB). BBD significantly inhibited the tumor xenograft of GC growth and the expression of lncRNA-ANRIL, VEGF-C, VEGFR-3 and LYVE-1 in vivo. BBD reduced serum VEGF-C level. In vitro, BBD inhibited the tube formation and decreased the cell viability, proliferation and migration of HLECs by using tube formation, MTT, Hoechst and Transwell assays. In addition, WB assay found that BBD decreased the expression levels of VEGF-C, VEGFR-3, matrix metallopeptidase 2 (MMP-2) and matrix metallopeptidase 9 (MMP-9), and RT-qPCR assay found that the mRNA expression levels of lncRNA-ANRIL, VEGF-C, VEGFR-3, MMP-2, MMP-9, CDK4, Cyclin D1, and Bcl-2 were down-regulated, and the expression of p21 and Bax were increased. Taken together, these results demonstrated that BBD inhibited lymphangiogenesis of GC in vitro and in vivo via the lncRNA-ANRIL/VEGF-C/VEGFR-3 signaling axis.


Assuntos
RNA Longo não Codificante , Neoplasias Gástricas , Linhagem Celular Tumoral , Medicamentos de Ervas Chinesas , Humanos , Linfangiogênese/genética , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , RNA Longo não Codificante/genética , RNA Longo não Codificante/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
5.
Mil Med Res ; 9(1): 23, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35614465

RESUMO

BACKGROUND: LncRNA AK044604 (regulator of insulin sensitivity and autophagy, Risa) and autophagy-related factors Sirt1 and GSK3ß play important roles in diabetic nephropathy (DN). In this study, we sought to explore the effect of Risa on Sirt1/GSK3ß-induced podocyte injury. METHODS: Diabetic db/db mice received Risa-inhibition adeno-associated virus (AAV) via tail vein injection, and intraperitoneal injection of lithium chloride (LiCl). Blood, urine, and kidney tissue samples were collected and analyzed at different time points. Immortalized mouse podocyte cells (MPCs) were cultured and treated with Risa-inhibition lentivirus (LV), EX-527, and LiCl. MPCs were collected under different stimulations as noted. The effects of Risa on podocyte autophagy were examined by qRT-PCR, Western blotting analysis, transmission electron microscopy, Periodic Acid-Schiff staining, and immunofluorescence staining. RESULTS: Risa and activated GSK3ß were overexpressed, but Sirt1 was downregulated in DN mice and high glucose-treated MPCs (P < 0.001, db/m vs. db/db, NG or HM vs. HG), which was correlated with poor prognosis. Risa overexpression attenuated Sirt1-mediated downstream autophagy levels and aggravated podocyte injury by inhibiting the expression of Sirt1 (P < 0.001, db/m vs. db/db, NG or HM vs. HG). In contrast, Risa suppression enhanced Sirt1-induced autophagy and attenuated podocyte injury, which could be abrogated by EX-527 (P < 0.001, db/db + Risa-AAV vs. db/db, HG + Risa-LV vs. HG). Furthermore, LiCl treatment could restore GSK3ß-mediated autophagy of podocytes (P < 0.001, db/db + LiCl vs. db/db, HG + LiCl vs. HG), suggesting that Risa overexpression aggravated podocyte injury by decreasing autophagy. CONCLUSION: Risa could inhibit autophagy by regulating the Sirt1/GSK3ß axis, thereby aggravating podocyte injury in DN. Risa may serve as a therapeutic target for the treatment of DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Glicogênio Sintase Quinase 3 beta , Podócitos , RNA Longo não Codificante , Sirtuína 1 , Animais , Autofagia/genética , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Regulação para Baixo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/farmacologia , Camundongos , Podócitos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/farmacologia , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sirtuína 1/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA