Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2988, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316805

RESUMO

Ginger has been associated with a decreased incidence of colorectal cancer (CRC) through reduction in inflammatory pathways and inhibition of tumor growth. Recent pre-clinical models have implicated changes in the gut microbiome as a possible mediator of the ginger effect on CRC. We hypothesized that, in adults previously diagnosed with a colorectal adenoma, ginger supplementation would alter the fecal microbiome in the direction consistent with its CRC-inhibitory effect. Sixty-eight adults were randomized to take either ginger or placebo daily for 6 weeks, with a 6-week washout and longitudinal stool collection throughout. We performed 16S rRNA sequencing and evaluated changes in overall microbial diversity and the relative abundances of pre-specified CRC-associated taxa using mixed-effects logistic regression. Ginger supplementation showed no significant effect on microbial community structure through alpha or beta diversity. Of 10 pre-specified CRC-associated taxa, there were significant decreases in the relative abundances of the genera Akkermansia (p < 0.001), Bacteroides (p = 0.018), and Ruminococcus (p = 0.013) after 6-week treatment with ginger compared to placebo. Ginger supplementation led to decreased abundances of Akkermansia and Bacteroides, which suggests that ginger may have an inhibitory effect on CRC-associated taxa. Overall, ginger supplementation appears to have a limited effect on gut microbiome in patients with colorectal adenomas.


Assuntos
Adenoma , Neoplasias Colorretais , Microbiota , Zingiber officinale , Adulto , Humanos , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , Neoplasias Colorretais/patologia , Fezes/química , Adenoma/tratamento farmacológico , Suplementos Nutricionais
2.
BMC Vet Res ; 19(1): 281, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38124157

RESUMO

BACKGROUND: Feline chronic enteropathy is a set of disorders defined as the presence of clinical signs of gastrointestinal disease for at least three weeks. The most common final diagnoses are inflammatory bowel disease and alimentary small cell lymphoma. The etiopathogenesis of these diseases is incompletely understood; however, it is hypothesised that they involve a combination of factors, including altered composition and/or functionality of the intestinal microbiome. An important factor in the interplay of the microbiome and host is the production of short- and branched-chain fatty acids.  The aim of this study was to evaluate the possible differences in faecal microbiota diversity, composition and fatty acid production between cats suffering from chronic enteropathy and healthy cats. Sixteen cats suffering from chronic enteropathy and fourteen healthy control cats were enrolled in the study. The microbiota compositions of faecal samples were analysed by using next-generation amplicon sequencing of the V3V4 fragment of the 16S rRNA gene. Fatty acids were evaluated by high-performance liquid chromatography. RESULTS: Both the alpha and beta diversities were significantly lower in samples obtained from cats with chronic enteropathy. The relative abundance of the phylum Proteobacteria, orders Lactobacillales and Enterobacterales, family Enteriobacteriaceae and genus Escherichia Shigella were higher in diseased cats, whereas the abundance of the phylum Bacteroidota and order Peptococcales were higher in control cats. The faecal concentrations of short-chain fatty acids were higher in cats with chronic enteropathy, with lower propionate proportions and higher butyrate proportions. CONCLUSION: The study revealed alterations in microbiota compositions and short-chain fatty acid concentration in cats suffering from chronic enteropathy, which is an important finding both for research on the pathogenesis of the disease and for potential therapeutic interventions in the form of faecal microbiota transplantation and/or probiotic supplementation.


Assuntos
Doenças do Gato , Doenças Inflamatórias Intestinais , Microbiota , Gatos , Animais , Ácidos Graxos/análise , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , Ácidos Graxos Voláteis/análise , Doenças Inflamatórias Intestinais/veterinária , Fezes/microbiologia
3.
J Tradit Chin Med ; 43(6): 1176-1189, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37946480

RESUMO

OBJECTIVE: To observe the efficacy of moxibustion in the treatment of chronic fatigue syndrome (CFS) and explore the effects on gut microbiota and metabolic profiles. METHODS: Forty-eight male Sprague-Dawley rats were randomly assigned to control group (Con), CFS model group (Mod, established by multiple chronic stress for 35 d), MoxA group (CFS model with moxibustion Shenque (CV8) and Guanyuan (CV4), 10 min/d, 28 d) and MoxB group (CFS model with moxibustion Zusanli (ST36), 10 min/d, 28 d). Open-field test (OFT) and Morris-water-maze test (MWMT) were determined for assessment the CFS model and the therapeutic effects of moxibustion.16S rRNA gene sequencing analysis based gut microbiota integrated untargeted liquid chromatograph-mass spectrometer (LC-MS) based fecal metabolomics were executed, as well as Spearman correlation analysis, was utilized to uncover the functional relevance between the potential metabolites and gut microbiota. RESULTS: The results of our behavioral tests showed that moxibustion improved the performance of CFS rats in the OFT and the MWMT. Microbiome profiling analysis revealed that the gut microbiomes of CFS rats were less diverse with altered composition, including increases in pro-inflammatory species (such as Proteobacteria) and decreases in anti-inflammatory species (such as Bacteroides, Lactobacillus, Ruminococcus, and Prevotella). Moxibustion partially normalized these changes in the gut microbiota. Furthermore, CFS was associated with metabolic disorders, which were effectively ameliorated by moxibustion. This was demonstrated by the normalization of 33 microbiota-related metabolites, including mannose (P = 0.001), aspartic acid (P = 0.009), alanine (P = 0.007), serine (P = 0.000), threonine (P = 0.027), methionine (P = 0.023), 5-hydroxytryptamine (P = 0.008), alpha-linolenic acid (P = 0.003), eicosapentaenoic acid (P = 0.006), hypoxanthine (P = 0.000), vitamin B6 (P = 0.000), cholic acid (P = 0.013), and taurocholate (P = 0.002). Correlation analysis showed a significant association between the perturbed fecal microbiota and metabolite levels, with a notable negative relationship between LCA and Bacteroides. CONCLUSIONS: In this study, we demonstrated that moxibustion has an antifatigue-like effect. The results from the 16S rRNA gene sequencing and metabolomics analysis suggest that the therapeutic effects of moxibustion on CFS are related to the regulation of gut microorganisms and their metabolites. The increase in Bacteroides and decrease in LCA may be key targets for the moxibustion treatment of CFS.


Assuntos
Síndrome de Fadiga Crônica , Microbioma Gastrointestinal , Moxibustão , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Moxibustão/métodos , Síndrome de Fadiga Crônica/terapia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , Metabolômica
4.
Phytomedicine ; 121: 155084, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37722245

RESUMO

BACKGROUND: Cinnamomi cortex called as Rougui (RG) in Chinese was a widely used food-medicine homology. RG has the potential to treat chronic atrophic gastritis (CAG), a disease with widespread impact in the Chinese population. PURPOSE: This study aimed to explore its mechanism against CAG based on amalgamated strategies. METHODS: Network pharmacology was used to predict the potential effective components and the core targets of RG against CAG based on the comprehensive chemical characterization using UHPLC-Q/TOF MS (ultra high performance liquid chromatogramphy-quadrupole/time-of-flight mass spectrometry). The CAG animals model were further used to validate its pharmacodynamics, of which gut microbiota of caecal contents were analyzed by integrating metabolomics, 16S rRNA sequencing, Metorigin metabolite traceability analysis and molecular docking to explore its action mechanism. RESULTS: Network pharmacology firstly predicted the efficacy of RG was attributed to four effective components and seven targets. Metabolomics of caecal contents in CAG rats revealed primary bile acid biosynthesis was its targeted metabolic pathway associated with the metabolism of gut microbiota coupled with Metorigin traceability analysis. 16S rRNA sequencing showed that RG treated CAG by regulating the imbalance of gut microbiota. Molecular docking further confirmed that the effective components of RG could intervene with potential targets, metorigin analysis pathway, and key enzymes of gut microbiota metabolic pathways. CONCLUSION: Our results proved that RG exerted favorable effect on CAG. The four active ingredients (quercetin, kaempferol, oleic acid, and (-)-epicatechin) of RG were the key to exert drug effect, which could targeted the core target of CAG, primary bile acid biosynthesis and intestinal flora metabolic pathways.


Assuntos
Medicamentos de Ervas Chinesas , Gastrite Atrófica , Ratos , Animais , Gastrite Atrófica/tratamento farmacológico , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , Ratos Sprague-Dawley , Farmacologia em Rede , Simulação de Acoplamento Molecular , Metabolômica/métodos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Ácidos e Sais Biliares
5.
Molecules ; 28(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37570841

RESUMO

Theaflavins (TFs), the primary bioactive components in black tea, are poorly absorbed in the small intestine. However, the biological activity of TFs does not match their low bioavailability, which suggests that the gut microbiota plays a crucial role in their biotransformation and activities. In this study, we aimed to investigate the biotransferred metabolites of TFs produced by the human gut microbiota and these metabolites' function. We profiled the microbial metabolites of TFs by in vitro anaerobic human gut microbiota fermentation using liquid chromatography tandem mass spectrometry (LC-MS/MS) methods. A total of 17 microbial metabolites were identified, and their corresponding metabolic pathways were proposed. Moreover, full-length 16S rRNA gene sequence analysis revealed that the TFs altered the gut microbiota diversity and increased the relative abundance of specific members of the microbiota involved in the catabolism of the TFs, including Flavonifractor_plautii, Bacteroides_uniformis, Eubacterium_ramulus, etc. Notably, the antioxidant capacity of the TF sample increased after fermentation compared to the initial sample. In conclusion, the results contribute to a more comprehensive understanding of the microbial metabolites and antioxidant capacity of TFs.


Assuntos
Camellia sinensis , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Cromatografia Líquida , Antioxidantes/farmacologia , Antioxidantes/análise , Chá/química , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , Fezes/química , Espectrometria de Massas em Tandem , Camellia sinensis/genética
6.
Exp Gerontol ; 178: 112216, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37211069

RESUMO

BACKGROUND: Functional constipation is a common gastrointestinal disorder especially severely affecting the life quality of the aged. Jichuanjian (JCJ) has been widely used for aged functional constipation (AFC) in clinic. Yet, the mechanisms of JCJ merely scratch the surface with being studied at a single level, rather than from a systematic perspective of the whole. AIM: The purpose of this study was to explore the underlying mechanisms of JCJ in treating AFC from the perspectives of fecal metabolites and related pathways, gut microbiota, key gene targets and functional pathways, as well as "behaviors-microbiota-metabolites" relationships. METHODS: 16S rRNA analysis and fecal metabolomics combined with network pharmacology were applied to investigate the abnormal performances of AFC rats, as well as the regulatory effects of JCJ. RESULTS: JCJ significantly regulated the abnormalities of rats' behaviors, the microbial richness, and the metabolite profiles that were interrupted by AFC. 19 metabolites were found to be significantly associated with AFC involving in 15 metabolic pathways. Delightfully, JCJ significantly regulated 9 metabolites and 6 metabolic pathways. AFC significantly interrupted the levels of 4 differential bacteria while JCJ significantly regulated the level of SMB53. HSP90AA1 and TP53 were the key genes, and pathways in cancer was the most relevant signaling pathways involving in the mechanisms of JCJ. CONCLUSION: The current findings not only reveal that the occurrence of AFC is closely related to gut microbiota mediating amino acid and energy metabolism, but also demonstrate the effects and the underlying mechanisms of JCJ on AFC.


Assuntos
Constipação Intestinal , Medicamentos de Ervas Chinesas , Fezes , Animais , Ratos , Microbioma Gastrointestinal , Metabolômica , Metaboloma , Fezes/microbiologia , Medicamentos de Ervas Chinesas/farmacologia , Constipação Intestinal/tratamento farmacológico , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , Farmacologia em Rede
7.
Phytother Res ; 37(8): 3195-3210, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37013717

RESUMO

Elevations in circling branched-chain amino acids (BCAAs) levels associated with insulin resistance and type 2 diabetes mellitus (T2DM). Morus alba L. water extracts (MLE) show hypoglycemic function, but the precise mechanism remains obscure. This study is designed to investigate the association of the antidiabetes effect of MLE with the BCAAs co-metabolism modulated by host and gut microbiota. Tissue-specific expressions of BCAA-catabolizing enzymes were detected by RT-PCR and western blot, respectively. The components of the intestinal microflora were analyzed by high-throughput 16S rRNA gene sequencing. The results showed that MLE administration improved blood glucose and insulin level, decreased inflammatory cytokines expression, and lowered serum and feces BCAAs levels. Furthermore, MLE reversed the abundance changes of the bacterial genera correlated with serum and feces BCAAs, such as Anaerovorax, Bilophila, Blautia, Colidextribacter, Dubosiella, Intestinimonas, Lachnoclostridium, Lachnospiraceae_NK4A136, Oscillibacter, and Roseburia. Functionality prediction indicated that MLE potentially inhibited bacterial BCAAs biosynthesis, and promoted the tissue-specific expression of BCAAs catabolic enzyme. More importantly, MLE had obvious impacts on BCAA catabolism in germ-free-mimic T2DM mice. Those results indicated that MLE improving T2DM-related biochemical abnormalities is associated with not only gut microbiota modification but also the tissue-specific expression of BCAAs catabolic enzyme.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Resistência à Insulina , Morus , Camundongos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Morus/química , RNA Ribossômico 16S/análise , Aminoácidos de Cadeia Ramificada/análise , Aminoácidos de Cadeia Ramificada/metabolismo , Folhas de Planta/química
8.
Phytomedicine ; 113: 154737, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36905867

RESUMO

BACKGROUND: Antibiotic-associated diarrhea (AAD) has had a significant increase in the last years, with limited available effective therapies. Shengjiang Xiexin Decoction (SXD), a classic traditional Chinese medicine formula for treating diarrhea, is a promising alternative for reducing the incidence of AAD. PURPOSE: This study aimed to explore the therapeutic effect of SXD on AAD and to investigate its potential therapeutic mechanism by integrated analysis of the gut microbiome and intestinal metabolic profile. METHODS: 16S rRNA sequencing analysis of the gut microbiota and untargeted-metabolomics analysis of feces were performed. The mechanism was further explored by fecal microbiota transplantation (FMT). RESULTS: SXD could effectively ameliorate AAD symptoms and restore intestinal barrier function. In addition, SXD could significantly improve the diversity of the gut microbiota and accelerate the recovery of the gut microbiota. At the genus level, SXD significantly increased the relative abundance of Bacteroides spp (p < 0.01) and decreased the relative abundance of Escherichia_Shigela spp (p < 0.001). Untargeted metabolomics showed that SXD significantly improved gut microbiota and host metabolic function, particularly bile acid metabolism and amino acid metabolism. CONCLUSION: This study demonstrated that SXD could extensively modulate the gut microbiota and intestinal metabolic homeostasis to treat AAD.


Assuntos
Microbioma Gastrointestinal , Humanos , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , Diarreia/induzido quimicamente , Diarreia/tratamento farmacológico , Homeostase , Antibacterianos/efeitos adversos
9.
Phytomedicine ; 109: 154557, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36610165

RESUMO

BACKGROUND: As a classical traditional Chinese medicine (TCM), Xiaojianzhong Tang (XJZ) is effective in treating chronic atrophic gastritis (CAG). However, the pharmacological mechanism of XJZ has not been fully explained. PURPOSE: The purpose of this study was to investigate the mechanism of XJZ against CAG rats via gut microbiome using a multi-omics approach. METHODS: The rat cecal contents were analyzed through the integration of an untargeted metabolomic approach based on ultra-high performance liquid chromatography coupled with the quadrupole-time of flight mass spectrometry (UHPLC-QTOF-MS) and 16S rRNA gene sequencing. Finally, the interaction of differential metabolites with bile acid (BA)-related targets was verified by molecular docking. RESULTS: A new strategy was adopted to screen out the differential metabolites based on the comprehensive evaluation of VIP, |log2(FC)|, -ln(p-value) and ǀp(corr)ǀ. As results, XJZ showed favor regulations on the screened metabolites, cholic acid, deoxycholic acid, glycoursodeoxycholic acid, taurochenodesoxycholic acid, docosahexaenoic acid and L-isoleucine. The 16S rRNA gene sequencing analysis showed that XJZ could regulate gut microbiota disturbances in CAG rats, especially bile acid (BA) metabolism-related bacteria (Butyricimonas, Desulfovibrio, Bacteroides, Parabacteroides, Acetobacter and Alistipes). Molecular docking further showed that the differential metabolites regulated by XJZ had a good docking effect on BA-related targets. CONCLUSION: The current work indicated that XJZ's therapeutic action was strongly linked to BA-related microorganisms and metabolic processes. These findings provided new insights into the effects of XJZ for the treatment of CAG.


Assuntos
Medicamentos de Ervas Chinesas , Gastrite Atrófica , Microbioma Gastrointestinal , Ratos , Animais , Gastrite Atrófica/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , Simulação de Acoplamento Molecular , Metabolômica/métodos , Ácidos e Sais Biliares
10.
Artigo em Inglês | MEDLINE | ID: mdl-36209673

RESUMO

Semen Euphorbiae (SE) is a toxic traditional Chinese medicine made from the dry or mature seed of Euphorbia lathyris L. Research demonstrates that the toxic side-effects from eating SE are associated with intestinal disturbance. By processing to produce Semen Euphorbiae Pulveratum (SEP), the toxicity is reduced, and diarrhea is attenuated. However, there are minimal studies on the differential effects between SE and SEP on microbiota and fecal metabolites. In this study, 16S rDNA sequencing and UPLC-Q-TOF/MS were interpreted with PCA and OPLS-DA multivariate analysis to understand the effect of SE and SEP on the gut microbiota and fecal metabolic phenotype in rats. Compared to the blank control group, the results showed that both SE and SEP were associated with increased microbes from the phylum Firmicutes and decreased Bacteroidetes, but the change was not as strong in the SEP administration group. Meanwhile, the fecal metabolism of rats also changed significantly, since 17 additional metabolites were detected in both groups, including amino acid metabolites, bacterial metabolites, and lipid metabolites. Our results indicate that the SEP administration group may reduce toxicity by differentially influencing intestinal metabolites and flora.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Microbiota , Ratos , Animais , Medicamentos de Ervas Chinesas/análise , Metaboloma , Fezes/química , Fenótipo , Sementes , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , Metabolômica/métodos
11.
Artigo em Inglês | MEDLINE | ID: mdl-35662877

RESUMO

Zingiber officinale and Panax ginseng, as well-known traditional Chinese medicines, have been used together to clinically treat ulcerative colitis with synergistic effects for thousands of years. However, their compatibility mechanism remains unclear. In this study, the shift of gut microbiome and fecal metabolic profiles were monitored by 16S rRNA sequencing technology and ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry analysis, respectively, which aimed to reveal the synergistic mechanism of Zingiber officinale and Panax ginseng on the amelioration of ulcerative colitis. The results showed that the relative abundance of beneficial bacteria (such as Muribaculaceae_norank, Lachnospiraceae NK4A136 group and Akkermansia) was significantly increased and the abundance of pathogenic bacteria (such as Bacteroides, Parabacteroides and Desulfovibrio) was markedly decreased after the intervention of Zingiber officinale-Panax ginseng herb pair. And a total of 16 differential metabolites related to ulcerative colitis were identified by the metabolomics analysis, which were majorly associated with the metabolic pathways, including arachidonic acid metabolism, tryptophan metabolism, and steroid biosynthesis. Based on these findings, it was suggested that the regulation of the gut microbiota-metabolite axis might be a potential target for the synergistic mechanism of Zingiber officinale-Panax ginseng herb pair in the treatment of ulcerative colitis. Furthermore, the integrated analysis of microbiome and metabolomics used in this study could also serve as a useful template for exploring the mechanism of other drugs.


Assuntos
Colite Ulcerativa , Microbioma Gastrointestinal , Panax , Zingiber officinale , Animais , Colite Ulcerativa/tratamento farmacológico , Camundongos , Panax/química , RNA Ribossômico 16S/análise
12.
Sci Total Environ ; 837: 155801, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35561922

RESUMO

Root exudate metabolites are a key medium for the interaction between plants and soil microbiota. L-theanine is a unique non-protein amino acid critical for the flavor and potential health benefits of tea products; however, its biological function in tea plants is not well understood. As L-theanine is mainly synthesized in the roots of tea plants, we hypothesized that L-theanine could affect the function of the rhizosphere microbiota by modulating microbial assembly. In the present study, L-theanine was detected in the exudates of tea plant roots using liquid chromatography-mass spectrometry. Additionally, 16S rRNA gene sequencing revealed that L-theanine significantly altered the structure of the rhizosphere microbiota and selectively shaped rhizosphere microbial assembly. Moreover, metagenomic data showed that L-theanine affected the abundance of genes encoding element cycling in soil. Interestingly, the denitrification and complete nitrification pathways were significantly inhibited by L-theanine by decreasing the narH, napA, and napB genes abundance. These findings provide new insights into the biological function of L-theanine, as well as the implications of interactions between tea plant root exudates and the rhizosphere microbiome.


Assuntos
Camellia sinensis , Microbiota , Camellia sinensis/química , Glutamatos , Microbiota/genética , Raízes de Plantas/metabolismo , RNA Ribossômico 16S/análise , Rizosfera , Solo/química , Microbiologia do Solo , Chá/metabolismo
13.
Sci Rep ; 12(1): 8830, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614185

RESUMO

Chitin-glucan (CG), an insoluble dietary fiber, has been shown to improve cardiometabolic disorders associated with obesity in mice. Its effects in healthy subjects has recently been studied, revealing its interaction with the gut microbiota. In this double-blind, randomized, cross-over, twice 3-week exploratory study, we investigated the impacts of CG on the cardiometabolic profile and gut microbiota composition and functions in 15 subjects at cardiometabolic risk. They consumed as a supplement 4.5 g of CG daily or maltodextrin as control. Before and after interventions, fasting and postprandial metabolic parameters and exhaled gases (hydrogen [H2] and methane [CH4]) were evaluated. Gut microbiota composition (16S rRNA gene sequencing analysis), fecal concentrations of bile acids, long- and short-chain fatty acids (LCFA, SCFA), zonulin, calprotectin and lipopolysaccharide binding protein (LBP) were analyzed. Compared to control, CG supplementation increased exhaled H2 following an enriched-fiber breakfast ingestion and decreased postprandial glycemia and triglyceridemia response to a standardized test meal challenge served at lunch. Of note, the decrease in postprandial glycemia was only observed in subjects with higher exhaled H2, assessed upon lactulose breath test performed at inclusion. CG decreased a family belonging to Actinobacteria phylum and increased 3 bacterial taxa: Erysipelotrichaceae UCG.003, Ruminococcaceae UCG.005 and Eubacterium ventriosum group. Fecal metabolites, inflammatory and intestinal permeability markers did not differ between groups. In conclusion, we showed that CG supplementation modified the gut microbiota composition and improved postprandial glycemic response, an early determinant of cardiometabolic risk. Our results also suggest breath H2 production as a non-invasive parameter of interest for predicting the effectiveness of dietary fiber intervention.


Assuntos
Doenças Cardiovasculares , Microbioma Gastrointestinal , Humanos , Bactérias , Glicemia/análise , Quitina/metabolismo , Fibras na Dieta/análise , Suplementos Nutricionais , Fezes/microbiologia , Glucanos/metabolismo , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética
14.
FEMS Microbiol Lett ; 369(1)2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35349671

RESUMO

In the recent years, a growing number of studies have shown that the occurrence of myocardial ischemia (MI) is closely related to the gut microbiota (GM). The Danshen-Honghua herb pair (DHHP), a classic combination in traditional Chinese herbal formulas, has been widely applied throughout history to cure cardiovascular disease, exhibiting remarkable clinical efficacy to treat ischemic heart disease (IHD). However, the intrinsic regulation mechanism of DHHP in treating MI remains unclear. This study aims to investigate the possible protective mechanism of DHHP in rats with acute myocardial ischemia (AMI) induced by isoproterenol (ISO) through 16S rRNA gene sequencing technique. Pharmacodynamic results showed that DHHP significantly ameliorated the pathological changes and improved the abnormal cardiac enzymes levels in the AMI rats. In addition, GM analysis demonstrated that DHHP effectively ameliorated the ISO-induced dysbiosis of the GM community, mainly by enhancing the GM diversity and increasing the relative abundance of Bacteroides, Roseburia, unclassified_f__Lachnospiraceae, and Lachnospiraceae_NK4A136_group, the abundance ratio of Bacteroidetes to Firmicutes, and decreasing the relative abundance of Escherichia-Shigella and Enterococcus. In summary, this study revealed that DHHP could improve ischemic myocardial injury in rats, and that its regulation mechanism is associated with significantly ameliorating the composition of GM, thus contributing to further our understanding of the anti-MI mechanisms of DHHP.


Assuntos
Microbioma Gastrointestinal , Isquemia Miocárdica , Salvia miltiorrhiza , Animais , Carthamus tinctorius , Medicamentos de Ervas Chinesas , Isquemia Miocárdica/tratamento farmacológico , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , Ratos , Salvia miltiorrhiza/genética
15.
Oxid Med Cell Longev ; 2022: 5559151, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35126816

RESUMO

BACKGROUND: The Caoguo-4 decoction, a classical Mongolian medicine formula, is widely used to treat spleen deficiency diarrhea (SDD) in Mongolian for decades. Previously, the Caoguo-4 decoction volatile oil has been confirmed to be effective in ameliorating symptoms of spleen deficiency diarrhea in an animal model. However, the underlying mechanism of the Caoguo-4 decoction volatile oil is yet to be established. The aim of the current study was to investigate the antidiarrheal effects and mechanism of the Caoguo-4 decoction volatile oil. METHOD: Wistar rats were randomly divided into 5 groups of 10 animals including control, model, positive, Caoguo-4 decoction, and Caoguo-4 decoction volatile oil groups (10 rats in each group). All the rats, besides those in the control group, were induced to develop SDD by a bitter-cold purgation method with Xiaochengqi decoction. The antidiarrheal effect of Caoguo-4 decoction volatile oil was evaluated by pathological section, serum D-xylose and AMS content, plasma MTL content, and gut microbiota analysis via 16S rRNA sequencing. RESULTS: The results showed that the developed SDD rat model (model group) had decreased food intake, increased weight loss, soft stool, and bad hair color. When compared with the control group, serum was significantly reduced serum D-xylose and AML but increased MTL levels in the model group (p < 0.05). However, after treatment with either the Caoguo-4 decoction (the decoction group) or Smecta (the positive group) or volatile oil from the Caoguo-4 decoction (the volatile oil group), a significant increase in the serum D-xylose levels was observed. Additionally, AML levels significantly increased in the positive and volatile oil groups, and MTL levels significantly decreased in the decoction and volatile oil groups, when compared with the model group (p < 0.05). The pathological changes of the intestinal mucosa showed that the structure of the epithelium in the villi of the small intestine was affected, deformed, and incomplete in the model group when compared with the control group. However, either the decoction group or the volatile oil group recovered the villous morphology. The results of OTU analysis and alpha diversity analysis of intestinal bacteria showed that the intestinal microbiota of the SDD model rats showed an obvious decrease in richness and diversity of intestinal microbiota. But the intervention treatment of decoction and volatile oil could significantly recover the richness and diversity of intestinal microbiota. CONCLUSION: The intestinal microbiota destroyed in SDD modelling could be significantly improved by the Caoguo-4 decoction volatile oils, which provides reference for clinical medication.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Óleos Voláteis/farmacologia , Amilases/metabolismo , Animais , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Cianobactérias/genética , Cianobactérias/isolamento & purificação , Diarreia/tratamento farmacológico , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/uso terapêutico , Fezes/microbiologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Masculino , Óleos Voláteis/uso terapêutico , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Ratos , Ratos Wistar , Baço/patologia , Xilose/sangue
16.
Am J Clin Nutr ; 115(1): 142-153, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34617558

RESUMO

BACKGROUND: Bovine milk-derived oligosaccharides (MOS) containing primarily galacto-oligosaccharides with inherent concentrations of sialylated oligosaccharides can be added to infant formula to enhance the oligosaccharide profile. OBJECTIVE: To investigate the effects of an MOS-supplemented infant formula on gut microbiota and intestinal immunity. METHODS: In a double-blind, randomized, controlled trial, healthy term formula-fed infants aged 21-26 d either received an intact protein cow milk-based formula (control group, CG, n = 112) or the same formula containing 7.2 g MOS/L (experimental group, EG, n = 114) until the age of 6 mo. Exclusively human milk-fed infants (HFI, n = 70) from an observational study served as the reference. Fecal samples collected at baseline, and the ages of 2.5 and 4 mo were assessed for microbiota (16S ribosomal RNA-based approaches), metabolites, and biomarkers of gut health and immune response. RESULTS: Aged 2.5 and 4 mo, redundancy analysis (P = 0.002) and average phylogenetic distance (P < 0.05) showed that the overall microbiota composition in EG was different from CG and closer to that of HFI. Similarly, EG caesarean-born infants were different from CG caesarean- or vaginally born infants and approaching HFI vaginally born infants. Relative bifidobacteria abundance was higher in EG compared with CG (P < 0.05) approaching HFI. At the age of 4 mo, counts of Clostridioides difficile and Clostridium perfringens were ∼90% (P < 0.001) and ∼65% (P < 0.01) lower in EG compared with CG, respectively. Geometric LS mean (95% CI) fecal secretory IgA in EG was twice that of CG [70 (57, 85) compared with 34 (28, 42) mg/g, P < 0.001] and closer to HFI. Fecal oral polio vaccine-specific IgA was ∼50% higher in EG compared with CG (P = 0.065). Compared with CG, EG and HFI had lower fecal calcium excretion (by ∼30%, P < 0.005) and fecal pH (P < 0.001), and higher lactate concentration (P < 0.001). CONCLUSIONS: Infant formula with MOS shifts the gut microbiota and metabolic signature closer to that of HFI, has a strong bifidogenic effect, reduces fecal pathogens, and improves the intestinal immune response.


Assuntos
Suplementos Nutricionais , Microbioma Gastrointestinal , Fórmulas Infantis/química , Fenômenos Fisiológicos da Nutrição do Lactente , Oligossacarídeos/administração & dosagem , Animais , Método Duplo-Cego , Fezes/microbiologia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Leite/química , Leite Humano/química , Estudos Observacionais como Assunto , Filogenia , RNA Ribossômico 16S/análise
17.
Nutrients ; 13(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34959775

RESUMO

The initial colonization of the human microbiota is of paramount importance. In this context, the oropharyngeal administration of colostrum is a safe, viable, and well-tolerated practice even by the smallest preterm infants. Therefore, this study evaluated the effects of oropharyngeal administration of colostrum on the establishment of preterm infants' oral microbiota. A longitudinal observational study was carried out with 20 premature neonates, divided into two groups: one receiving the protocol (Oropharyngeal Administration of Colostrum; OAC) and the other one receiving Standard Caare (SC). Saliva samples were collected from the newborns weekly during the study period (from the day of birth until the 21st day of life) for analysis of oral microbiota through 16S rRNA gene sequencing. We observed that the colonization of the oral microbiota of preterm newborns preseanted a higher relative abundance of Staphylococcus on the 7th day of life, mainly in the OAC group. Additionally, an increased abundance of Bifidobacterium and Bacteroides was observed in the OAC group at the first week of life. Regarding alpha and beta diversity, time was a key factor in the oral modulation of both groups, showing how dynamic this environment is in early life.


Assuntos
Colostro/microbiologia , Recém-Nascido Prematuro/metabolismo , Microbiota/genética , Boca/microbiologia , Administração Oral , Feminino , Humanos , Recém-Nascido , Estudos Longitudinais , Masculino , Orofaringe/microbiologia , RNA Ribossômico 16S/análise , Saliva/microbiologia
18.
Nutrients ; 13(12)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34959832

RESUMO

Refined foods are commonly depleted in certain bioactive components that are abundant in 'natural' (plant) foods. Identification and addition of these 'missing' bioactives in the diet is, therefore, necessary to counteract the deleterious impact of convenience food. In this study, multiomics approaches were employed to assess the addition of the popular supplementary soluble dietary fibers inulin and psyllium, both in isolation and in combination with a refined animal feed. A 16S rRNA sequencing and 1H NMR metabolomic investigation revealed that, whilst inulin mediated an increase in Bifidobacteria, psyllium elicited a broader microbial shift, with Parasutterella and Akkermansia being increased and Enterorhabdus and Odoribacter decreased. Interestingly, the combination diet benefited from both inulin and psyllium related microbial changes. Psyllium mediated microbial changes correlated with a reduction of glucose (R -0.67, -0.73, respectively, p < 0.05) and type 2 diabetes associated metabolites: 3-methyl-2-oxovaleric acid (R -0.72, -0.78, respectively, p < 0.05), and citrulline (R -0.77, -0.71, respectively, p < 0.05). This was in line with intestinal and hepatic carbohydrate response (e.g., Slc2a2, Slc2a5, Khk and Fbp1) and hepatic lipogenesis (e.g., Srebf1 and Fasn), which were significantly reduced under psyllium addition. Although established in the liver, the intestinal response associated with psyllium was absent in the combination diet, placing greater significance upon the established microbial, and subsequent metabolomic, shift. Our results therefore highlight the heterogeneity that exists between distinct dietary fibers in the context of carbohydrate uptake and metabolism, and supports psyllium containing combination diets, for their ability to negate the impact of a refined diet.


Assuntos
Fibras na Dieta/farmacologia , Suplementos Nutricionais , Inulina/farmacologia , Psyllium/farmacologia , Ração Animal , Animais , Dieta/métodos , Fast Foods , Microbioma Gastrointestinal/efeitos dos fármacos , Glucose/metabolismo , Intestinos/metabolismo , Lipogênese/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Compostos Fitoquímicos/farmacologia , RNA Ribossômico 16S/análise
19.
Ren Fail ; 43(1): 1577-1587, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34861810

RESUMO

OBJECTIVE: To investigate whether high-phosphorus diets alter gut microbiota in healthy rats and chronic kidney disease (CKD) rats. METHODS: In this 4-week randomized controlled trial, healthy rats and CKD rats were fed a regular-phosphorus (Pi: 0.8%) and high-phosphorus (Pi: 1.2%) diet. The subjects were divided into four groups: sham-group rats with regular-phosphorus diet intervention (CTL group), sham-group rats with high-phosphorus diet intervention (CTLP group), CKD model rats with regular-phosphorus diet intervention (CKD group), and CKD model rats with high-phosphorus diet intervention (CKDP group). The V3-V4 region of the 16S rRNA gene was sequenced to study the effect of a high-phosphorus diet on gut microbiota. RESULTS: A high-phosphorus intervention increased systolic blood pressure (SBP) and parathyroid hormone (PTH) in CTL and CKD rats but did not change serum creatinine and 25(OH)D levels. After the high-phosphorus diet, serum phosphate and fibroblast growth factor 23 (FGF23) increased in the CKDP group compared with the CKD group. The gut microbiota was significantly altered after intervention with a high-phosphorus diet in CTL and CKD group rats. A high-phosphorus diet reduced the Shannon index values of gut microbiota in all rats. The Chao1 and Ace indexes were decreased in the CTL group after high-phosphorus diet intervention. Some microbial genera were elevated significantly after high-phosphorus dietary intervention, such as Blautia and Allobaculum. The main bacteria linked to SBP and FGF23 also correlated directly with creatinine. After high-phosphorus diet intervention, the bacteria Prevotella were positively related to SBP in CTLP and CKDP groups. CONCLUSIONS: High-phosphorus diets were associated with adverse changes in gut microbiota and elevated SBP, which may have adverse consequences for long-term health outcomes.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Dieta , Microbioma Gastrointestinal/efeitos dos fármacos , Falência Renal Crônica , Fósforo/administração & dosagem , Animais , Biomarcadores/sangue , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Hormônio Paratireóideo/sangue , RNA Ribossômico 16S/análise , Ratos , Ratos Sprague-Dawley
20.
Microbiome ; 9(1): 218, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34732247

RESUMO

BACKGROUND: Fructo-oligosaccharides (FOS), inulin, and galacto-oligosaccharides (GOS) are widely recognized prebiotics that profoundly affect the intestinal microbiota, including stimulation of bifidobacteria and lactobacilli, and are reported to elicit several health benefits. The combination of dietary FOS and inulin with calcium phosphate was reported to stimulate commensal Lactobacillus populations and protect the host against pathogenic Enterobacteriaceae, but little is known about the effects of GOS in diets with a different level of calcium phosphate. METHODS: We investigated the microbiome changes elicited by dietary supplementation with GOS or inulin using diets with high (100 mmol/kg) and low (30 mmol/kg) calcium phosphate levels in adult Wistar rats. Rats were acclimatized to the respective experimental diets for 14 days, after which fecal material was collected, DNA was extracted from fecal material, and the V3­V4 region of the bacterial 16S rRNA gene was amplified with PCR, followed by microbial composition analysis. In tandem, the organic acid profiles of the fecal material were analyzed. RESULTS: Feeding rats non-supplemented (no prebiotic-added) diets revealed that diets rich in calcium phosphate favored members of the Firmicutes and increased fecal lactic, succinic, acetic, propionic, and butyric acid levels. In contrast, relatively low dietary calcium phosphate levels promoted the abundance of mucin degrading genera like Akkermansia and Bacteroides, and resulted in increased fecal propionic acid levels and modest increases in lactic and butyric acid levels. Irrespective of the calcium phosphate levels, supplementation with GOS or inulin strongly stimulated Bifidobacterium, while only high calcium phosphate diets increased the endogenous Faecalibaculum populations. CONCLUSIONS: Despite the prebiotic's substantial difference in chemical structure, sugar composition, oligomer size, and the microbial degradation pathway involved in their utilization, inulin and GOS modulated the gut microbiota very similarly, in a manner that strongly depended on the dietary calcium phosphate level. Therefore, our study implies that the collection of detailed diet information including micronutrient balance is necessary to correctly assess diet-driven microbiota analysis. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Animais , Fosfatos de Cálcio/análise , Fosfatos de Cálcio/farmacologia , Fezes/microbiologia , Inulina/farmacologia , Oligossacarídeos/metabolismo , Oligossacarídeos/farmacologia , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA