Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Biol Chem ; 289(22): 15350-62, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24719327

RESUMO

S-adenosylhomocysteine (SAH) is a negative regulator of most methyltransferases and the precursor for the cardiovascular risk factor homocysteine. We have previously identified a link between the homocysteine-induced suppression of the selenoprotein glutathione peroxidase 1 (GPx-1) and endothelial dysfunction. Here we demonstrate a specific mechanism by which hypomethylation, promoted by the accumulation of the homocysteine precursor SAH, suppresses GPx-1 expression and leads to inflammatory activation of endothelial cells. The expression of GPx-1 and a subset of other selenoproteins is dependent on the methylation of the tRNA(Sec) to the Um34 form. The formation of methylated tRNA(Sec) facilitates translational incorporation of selenocysteine at a UGA codon. Our findings demonstrate that SAH accumulation in endothelial cells suppresses the expression of GPx-1 to promote oxidative stress. Hypomethylation stress, caused by SAH accumulation, inhibits the formation of the methylated isoform of the tRNA(Sec) and reduces GPx-1 expression. In contrast, under these conditions, the expression and activity of thioredoxin reductase 1, another selenoprotein, is increased. Furthermore, SAH-induced oxidative stress creates a proinflammatory activation of endothelial cells characterized by up-regulation of adhesion molecules and an augmented capacity to bind leukocytes. Taken together, these data suggest that SAH accumulation in endothelial cells can induce tRNA(Sec) hypomethylation, which alters the expression of selenoproteins such as GPx-1 to contribute to a proatherogenic endothelial phenotype.


Assuntos
Células Endoteliais/enzimologia , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Metiltransferases/metabolismo , Aminoacil-RNA de Transferência/metabolismo , S-Adenosil-Homocisteína/metabolismo , Adesão Celular/fisiologia , Células Endoteliais/efeitos dos fármacos , Homocisteína/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Peróxido de Hidrogênio/metabolismo , Leucócitos/citologia , Metilação , Estresse Oxidativo/fisiologia , RNA de Transferência de Serina/metabolismo , S-Adenosilmetionina/metabolismo , Selênio/farmacologia , Selenoproteínas/metabolismo , Glutationa Peroxidase GPX1
2.
Mol Cell Biol ; 33(24): 4900-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24126054

RESUMO

Human TRIT1 is a tRNA isopentenyltransferase (IPTase) homologue of Escherichia coli MiaA, Saccharomyces cerevisiae Mod5, Schizosaccharomyces pombe Tit1, and Caenorhabditis elegans GRO-1 that adds isopentenyl groups to adenosine 37 (i6A37) of substrate tRNAs. Prior studies indicate that i6A37 increases translation fidelity and efficiency in codon-specific ways. TRIT1 is a tumor suppressor whose mutant alleles are associated with cancer progression. We report the systematic identification of i6A37-containing tRNAs in a higher eukaryote, performed using small interfering RNA knockdown and other methods to examine TRIT1 activity in HeLa cells. Although several potential substrates contained the IPTase recognition sequence A36A37A38 in the anticodon loop, only tRNA(Ser)AGA, tRNA(Ser)CGA, tRNA(Ser)UGA, and selenocysteine tRNA with UCA (tRNA([Ser]Sec)UCA) contained i6A37. This subset is a significantly more restricted than that for two distant yeasts (S. cerevisiae and S. pombe), the only other organisms comprehensively examined. Unlike the fully i6A37-modified tRNAs for Ser, tRNA([Ser]Sec)UCA is partially (∼40%) modified. Exogenous selenium and other treatments that decreased the i6A37 content of tRNA([Ser]Sec)UCA led to increased levels of the tRNA([Ser]Sec)UCA. Of the human mitochondrion (mt)-encoded tRNAs with A36A37A38, only mt tRNAs tRNA(Ser)UGA and tRNA(Trp)UCA contained detectable i6A37. Moreover, while tRNA(Ser) levels were unaffected by TRIT1 knockdown, the tRNA([Ser]Sec)UCA level was increased and the mt tRNA(Ser)UGA level was decreased, suggesting that TRIT1 may control the levels of some tRNAs as well as their specific activity.


Assuntos
Alquil e Aril Transferases/metabolismo , RNA de Transferência de Serina/metabolismo , Alquil e Aril Transferases/genética , Sequência de Bases , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Sequências Repetidas Invertidas , Processamento Pós-Transcricional do RNA , RNA Interferente Pequeno/genética , RNA de Transferência de Leucina/genética , RNA de Transferência de Leucina/metabolismo , RNA de Transferência de Serina/genética , RNA de Transferência de Triptofano/genética , RNA de Transferência de Triptofano/metabolismo , Selênio/fisiologia , Especificidade por Substrato
3.
Eur J Biochem ; 271(4): 694-702, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14764085

RESUMO

The methanogenic archaea Methanococcus jannaschii and M. maripaludis contain an atypical seryl-tRNA synthetase (SerRS), which recognizes eukaryotic and bacterial tRNAsSer, in addition to the homologous tRNASer and tRNASec species. The relative flexibility in tRNA recognition displayed by methanogenic SerRSs, shown by aminoacylation and gel mobility shift assays, indicates the conservation of some serine determinants in all three domains. The complex of M. maripaludis SerRS with the homologues tRNASer was isolated by gel filtration chromatography. Complex formation strongly depends on the conformation of tRNA. Therefore, the renaturation conditions for in vitro transcribed tRNASer(GCU) isoacceptor were studied carefully. This tRNA, unlike many other tRNAs, is prone to dimerization, possibly due to several stretches of complementary oligonucleotides within its sequence. Dimerization is facilitated by increased tRNA concentration and can be diminished by fast renaturation in the presence of 5 mm magnesium chloride.


Assuntos
Mathanococcus/enzimologia , RNA de Transferência de Serina/metabolismo , Serina-tRNA Ligase/metabolismo , Anticódon/genética , Sequência de Bases , Cromatografia em Gel , Dimerização , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli/enzimologia , Focalização Isoelétrica , Mathanococcus/genética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Ligação Proteica , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/metabolismo , RNA de Transferência de Serina/química , RNA de Transferência de Serina/genética , Serina/metabolismo , Serina-tRNA Ligase/química , Especificidade por Substrato , Transcrição Gênica , Leveduras/enzimologia
4.
Biochim Biophys Acta ; 1359(1): 25-34, 1997 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-9398082

RESUMO

We reported previously that the selenium status of rats influences both the steady-state levels and distributions of two selenocysteine tRNA isoacceptors and that these isoacceptors differ by a single methyl group attached to the ribosyl moiety at position 34. In this study, we demonstrate that repletion of selenium-deficient rats results in a gradual, tissue-dependent shift in the distribution of these isoacceptors. Rats fed a selenium-deficient diet possess a greater abundance of the species unmethylated on the ribosyl moiety at position 34 compared to the form methylated at this position. A redistribution of the Sec-tRNA isoacceptors occurred in tissues of selenium-supplemented rats whereby the unmethylated form gradually shifted toward the methylated form. This was true in each of four tissues examined, muscle, kidney, liver and heart, although the rate of redistribution was tissue-specific. Muscle manifested a predominance of two minor serine isoacceptors under conditions of extreme selenium-deficiency which also appeared to respond to selenium. Ribosomal binding studies revealed that one of the two additional isoacceptors decodes the serine codeword, AGU, and the second decodes the serine codeword, UCU. Interestingly, muscle and heart were the slower tissues to return to a 'selenium adequate' tRNA distribution pattern.


Assuntos
RNA de Transferência Aminoácido-Específico/metabolismo , Selênio/deficiência , Selênio/metabolismo , Animais , Cromatografia por Troca Iônica , Códon/genética , Dieta , Rim/metabolismo , Fígado/metabolismo , Masculino , Músculos/metabolismo , Miocárdio/metabolismo , Especificidade de Órgãos , Proteínas/metabolismo , RNA de Transferência de Serina/metabolismo , Ratos , Ratos Sprague-Dawley , Ribossomos/metabolismo , Selênio/administração & dosagem , Selenoproteínas
5.
Biochem J ; 284 ( Pt 3): 827-34, 1992 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-1622399

RESUMO

Selenocysteine (Scy) was synthesized on natural opal suppressor tRNA(Ser) by conversion from seryl-tRNA. We studied the mechanisms of the synthesis of mammalian Scy-tRNA using hydro[75Se]selenide (H75Se-). We found Scy synthase activity in the 105,000 g supernatant of a murine liver extract. The supernatant was chromatographed on DEAE-cellulose, and the activity was eluted at 0.12 M-KCl. The reaction mixture for synthesis of Scy-tRNA contained suppressor tRNA, serine, ATP, seryl-tRNA synthetase (SerRS), HSe- and the enzyme to synthesize Scy-tRNA. These are all essential for the synthesis of Scy-tRNA. Scy in the tRNA product was confirmed by five t.l.c. systems. The conversion from seryl-tRNA to Scy-tRNA was also confirmed with the use of [14C]- and [3H]-serine. The apparent Km values for the substrates serine, tRNA, ATP and HSe- were 30 microM, 140 nM, 2 mM and 40 nM respectively. The active eluates from DEAE-cellulose contained no tRNA kinase. This result showed that Scy-tRNA was not synthesized through phosphoseryl-tRNA. ATP was necessary when Scy-tRNA was synthesized from seryl-tRNA and HSe-. Therefore ATP is used for not only the synthesis of seryl-tRNA but also for the synthesis of Scy-tRNA from seryl-tRNA. The active fraction from DEAE-cellulose was chromatographed on Sephacryl S-300, but the activity disappeared. However, the activity was recovered by mixing the eluates corresponding to proteins of 500 kDa and 20 kDa. In order to examine the binding of HSe- to proteins, a mixture of the active fraction, H75Se- and ATP was analysed by chromatography on Sephacryl S-300. The 75Se radioactivity was found at the position of a 20 kDa protein in the presence of ATP. Thus the 20 kDa protein plays a role in binding HSe- in the presence of ATP. The 500 kDa protein must have a role in the synthesis of Scy-tRNA. There are two natural suppressor serine tRNAs, tRNA(NCA) and tRNA(CmCA), in cell cytosol. The present paper shows that the suppressor tRNA fraction, eluted later on benzoylated DEAE-(BD-)cellulose, is a better substrate with which to synthesize Scy-tRNA. Thus we consider that murine Scy-tRNA is synthesized from a suppressor seryl-tRNA on the 500 kDa protein with the activated HSe-, which is synthesized with ATP on the 20 kDa protein. This mammalian mechanism used to synthesize Scy is similar to that seen in Escherichia coli.


Assuntos
Fígado/enzimologia , Compostos de Selênio , Transferases/metabolismo , Animais , Sequência de Bases , Bovinos , Cromatografia DEAE-Celulose , Cromatografia em Gel , Citosol/enzimologia , Escherichia coli/genética , Cinética , Camundongos , Camundongos Endogâmicos ICR , Modelos Biológicos , Dados de Sequência Molecular , Peso Molecular , Oligodesoxirribonucleotídeos , Aminoacil-RNA de Transferência/biossíntese , Aminoacil-RNA de Transferência/genética , RNA de Transferência de Serina/metabolismo , Selênio/metabolismo , Radioisótopos de Selênio , Transferases/genética , Transferases/isolamento & purificação
6.
Proc Natl Acad Sci U S A ; 87(2): 543-7, 1990 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-2405383

RESUMO

The selD gene from Escherichia coli, whose product is involved in selenium metabolism, has been cloned and sequenced. selD codes for a protein of 347 amino acids with a calculated molecular weight of 36,687. Analysis of the selD gene product through expression of the gene in the phage T7 promoter/polymerase system confirmed the predicted molecular weight of the protein. Gene disruption experiments demonstrated that the SelD protein is required both for the incorporation of selenium into the modified nucleoside 5-methylaminomethyl-2-selenouridine of tRNA and for the biosynthesis of selenocysteine from an L-serine residue esterbonded to tRNA(Ser)(UCA). tRNA(Ser)(UCA) has been purified, aminoacylated with L-serine, and used as a substrate for the development of an in vitro system for selenocysteine biosynthesis. Efficient formation of selenocysteinyl-tRNA(Ser)(UCA) was achieved by using extracts in which both the selD and the selA gene products were overproduced. The results demonstrate that selenocysteine is synthesized from L-serine bound to tRNA(UCA) and they are in accord with SelD functioning as a donor of reduced selenium.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Drosophila , Escherichia coli/genética , Genes Bacterianos , Fosfotransferases , RNA de Transferência Aminoácido-Específico/metabolismo , Aminoacil-RNA de Transferência/biossíntese , RNA de Transferência de Serina/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Códon/genética , Genótipo , Dados de Sequência Molecular , Mutação , Plasmídeos , Aminoacil-RNA de Transferência/genética , Mapeamento por Restrição , Selênio/metabolismo
7.
J Biol Chem ; 264(17): 9724-7, 1989 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-2498338

RESUMO

The presence of a unique opal suppressor seryl-tRNA in higher vertebrates which is converted to phosphoseryl-tRNA has been known for several years, but its function has been uncertain (see Hatfield, D. (1985) Trends Biochem. Sci. 10, 201-204 for review). In the present study, we demonstrate that this tRNA species also occurs in vivo as selenocysteyl-tRNA(Ser) suggesting that it functions both as a carrier molecule upon which selenocysteine is synthesized and as a direct selenocysteine donor to a growing polypeptide chain in response to specific UGA codons. [75Se]Seleno[3H]cysteyl-tRNA(Ser) formed by administering 75Se and [3H]serine to rat mammary tumor cells (TMT-081-MS) in culture was isolated from the cell extract. The amino acid attached to the tRNA was identified as selenocysteine following its deacylation and reaction with iodoacetate and 3-bromopropionate. The resulting alkyl derivatives co-chromatographed on an amino acid analyzer with authentic carboxymethylselenocysteine and carboxyethylselenocysteine. Seryl-tRNA(Ser) and phosphoseryl-tRNA(Ser) (Hatfield, D., Diamond, A., and Dudock, B. (1982) Proc. Natl. Acad. Sci. U. S. A. 79, 6215-6219), which co-migrate on a reverse phase chromatographic column with selenocysteyl-tRNA(Ser), were also identified in extracts of TMT-018-MS cells. Hence, we propose that a metabolic pathway for selenocysteine synthesis in mammalian cells is the conversion of seryl-tRNA(Ser) via phosphoseryl-tRNA(Ser) to selenocysteyl-tRNA(Ser). In a ribosomal binding assay selenocysteyl-tRNA(Ser) recognizes UGA but not any of the serine codons. Selenocysteyl-tRNA(Ser) is deacylated more readily than seryl-tRNA(Ser) (i.e. 58% deacylation during 15 min at pH 8.0 and 37 degrees C as compared to 41%).


Assuntos
Códon , RNA Mensageiro , Aminoacil-RNA de Transferência/genética , Animais , Sequência de Bases , Linhagem Celular , Neoplasias Mamárias Experimentais/metabolismo , Aminoacil-RNA de Transferência/isolamento & purificação , Aminoacil-RNA de Transferência/metabolismo , RNA de Transferência de Serina/genética , RNA de Transferência de Serina/metabolismo , Ratos , Ribossomos/metabolismo , Ácido Selenioso , Selênio/metabolismo , Radioisótopos de Selênio , Serina/metabolismo , Trítio
8.
J Biol Chem ; 264(16): 9696-702, 1989 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-2524488

RESUMO

A tRNA gene whose product is aminoacylated with serine and the serine moiety is then phosphorylated to form phosphoseryl-tRNA (see Hatfield, D. (1985) Trends Biochem. Sci. 10, 201-204 for review) has now been shown to form selenocysteyl-tRNA; hence the corresponding gene is designated as selenocysteine tRNA Ser (B. J. Lee, P. J. Worland, J. N. Davis, T. C. Stadtman, and D. Hatfield (1989) J. Biol. Chem. 264, in press). In the present study, we show that the expression of this unique tRNA gene is governed by at least three upstream regulatory elements. In initial studies, the relative efficiencies of transcription of the human, rabbit, chicken, and Xenopus selenocysteine tRNA genes were compared in vivo in Xenopus oocytes and in vitro in HeLa cell extracts. The Xenopus gene was severalfold more actively expressed, both in vivo and in vitro, than the human and rabbit genes, whereas the chicken gene was poorly expressed. Exchange of the 5'-flanking regions of the Xenopus and chicken genes, which have identical gene sequences, reversed their levels of transcription, demonstrating that a regulatory site or sites exist upstream of these genes. Deletion-substitution mutants in the Xenopus gene and its 5'-flanking sequence show in in vitro assays that 1) the level of transcription is reduced substantially when a GC-rich stretch that is immediately upstream of a TATA box in the -30 region is removed; 2) the level of transcription is virtually abolished when the TATA box is removed; and 3) deletions up to and further upstream of the GC-rich region do not affect the level of transcription. The same deletions, when used in in vivo assays, demonstrate a step-down in expression with the deletion removing the GC-rich region, a further step-down in expression with the deletion removing the TATA box, but the most pronounced reduction in expression was observed with a deletion removing an AT-rich region between nucleotides -62 and -76. Thus, a regulatory site was identified in vivo which was not detected in vitro, and transcription of the selenocysteine tRNA Ser gene is determined by multiple upstream regulatory elements.


Assuntos
Cisteína/análogos & derivados , RNA de Transferência Aminoácido-Específico/genética , RNA de Transferência de Serina/genética , Sequências Reguladoras de Ácido Nucleico , Selênio/metabolismo , Transcrição Gênica , Xenopus/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Galinhas , Deleção Cromossômica , Cisteína/metabolismo , Genes , Humanos , Dados de Sequência Molecular , Mutação , RNA Polimerase III , RNA de Transferência de Serina/isolamento & purificação , RNA de Transferência de Serina/metabolismo , Coelhos , Selenocisteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA