Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830118

RESUMO

Soil salinization is a major environmental stress that causes crop yield reductions worldwide. Therefore, the cultivation of salt-tolerant crops is an effective way to sustain crop yield. Tomatoes are one of the vegetable crops that are moderately sensitive to salt stress. Global market demand for tomatoes is huge and growing. In recent years, the mechanisms of salt tolerance in tomatoes have been extensively investigated; however, the molecular mechanism through which non-coding RNAs (ncRNAs) respond to salt stress is not well understood. In this study, we utilized small RNA sequencing and whole transcriptome sequencing technology to identify salt-responsive microRNAs (miRNAs), messenger RNAs (mRNAs), and circular RNAs (circRNAs) in roots of M82 cultivated tomato and Solanum pennellii (S. pennellii) wild tomato under salt stress. Based on the theory of competitive endogenous RNA (ceRNA), we also established several salt-responsive ceRNA networks. The results showed that circRNAs could act as miRNA sponges in the regulation of target mRNAs of miRNAs, thus participating in the response to salt stress. This study provides insights into the mechanisms of salt tolerance in tomatoes and serves as an effective reference for improving the salt tolerance of salt-sensitive cultivars.


Assuntos
Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla/métodos , MicroRNAs/genética , RNA Circular/genética , RNA de Plantas/genética , Plantas Tolerantes a Sal/genética , Solanum lycopersicum/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genoma de Planta/genética , RNA-Seq/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Solanum/genética , Especificidade da Espécie
2.
J Cereb Blood Flow Metab ; 41(11): 3052-3068, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34027687

RESUMO

Brain mural cells, including pericytes and vascular smooth muscle cells, are important for vascular development, blood-brain barrier function, and neurovascular coupling, but the molecular characteristics of human brain mural cells are incompletely characterized. Single cell RNA-sequencing (scRNA-seq) is increasingly being applied to assess cellular diversity in the human brain, but the scarcity of mural cells in whole brain samples has limited their molecular profiling. Here, we leverage the combined power of multiple independent human brain scRNA-seq datasets to build a transcriptomic database of human brain mural cells. We use this combined dataset to determine human-mouse species differences in mural cell transcriptomes, culture-induced dedifferentiation of human brain pericytes, and human mural cell organotypicity, with several key findings validated by RNA fluorescence in situ hybridization. Together, this work improves knowledge regarding the molecular constituents of human brain mural cells, serves as a resource for hypothesis generation in understanding brain mural cell function, and will facilitate comparative evaluation of animal and in vitro models.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/citologia , Miócitos de Músculo Liso/metabolismo , Pericitos/metabolismo , Transcriptoma/genética , Animais , Barreira Hematoencefálica/fisiologia , Humanos , Hibridização in Situ Fluorescente/métodos , Medicina Integrativa/métodos , Camundongos , Acoplamento Neurovascular/fisiologia , RNA Citoplasmático Pequeno/genética , RNA-Seq/métodos
3.
RNA Biol ; 18(11): 1574-1587, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33345702

RESUMO

RNA-sequencing (RNA-seq) analysis of gene expression and alternative splicing should be routine and robust but is often a bottleneck for biologists because of different and complex analysis programs and reliance on specialized bioinformatics skills. We have developed the '3D RNA-seq' App, an R shiny App and web-based pipeline for the comprehensive analysis of RNA-seq data from any organism. It represents an easy-to-use, flexible and powerful tool for analysis of both gene and transcript-level gene expression to identify differential gene/transcript expression, differential alternative splicing and differential transcript usage (3D) as well as isoform switching from RNA-seq data. 3D RNA-seq integrates state-of-the-art differential expression analysis tools and adopts best practice for RNA-seq analysis. The program is designed to be run by biologists with minimal bioinformatics experience (or by bioinformaticians) allowing lab scientists to analyse their RNA-seq data. It achieves this by operating through a user-friendly graphical interface which automates the data flow through the programs in the pipeline. The comprehensive analysis performed by 3D RNA-seq is extremely rapid and accurate, can handle complex experimental designs, allows user setting of statistical parameters, visualizes the results through graphics and tables, and generates publication quality figures such as heat-maps, expression profiles and GO enrichment plots. The utility of 3D RNA-seq is illustrated by analysis of data from a time-series of cold-treated Arabidopsis plants and from dexamethasone-treated male and female mouse cortex and hypothalamus data identifying dexamethasone-induced sex- and brain region-specific differential gene expression and alternative splicing.


Assuntos
Processamento Alternativo , Arabidopsis/metabolismo , Córtex Cerebelar/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hipotálamo/metabolismo , RNA-Seq/métodos , RNA/genética , Animais , Arabidopsis/efeitos dos fármacos , Córtex Cerebelar/efeitos dos fármacos , Temperatura Baixa , Biologia Computacional/métodos , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Hipotálamo/efeitos dos fármacos , Camundongos , RNA/metabolismo , Software
4.
J Ethnopharmacol ; 264: 113364, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32916233

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Lonicerae japonicae flos (LJF, the dried flower bud or newly bloomed flower of Lonicera japonica Thunb.), a typical herbal medicine, targets the lung, heart and stomach meridian with the function of clearing heat and detoxication. It ameliorated inflammatory responses and protected against acute lung inflammation in animal models. Acute lung injury (ALI) is a kind of inflammatory disease in which alveolar cells are damaged. However, a network pharmacology study to thoroughly investigate the mechanisms preventing ALI has not been performed. AIM OF THE STUDY: In this study, we examined the main active ingredients in LJF and the protective effects of LJF on LPS-induced ALI in rats. MATERIALS AND METHODS: First, the main active ingredients of LJF were screened in the TCMSP database, and the ALI-associated targets were collected from the GeneCards database. Then, we used compound-target and target-pathway networks to uncover the preventive mechanisms of LJF. Furthermore, we assessed the preventive effects of LJF in an LPS-induced rat model with the RNA-Seq technique to validate the possible molecular mechanisms of the effects of LJF in the treatment of ALI. RESULTS: The network pharmacology results identified 28 main active compounds in LJF, and eight chemical components highly related to the potential targets, which were potential active compounds in LJF. In all, 94 potential targets were recognized, including IL6, TNF, PTGS2, APP, F2, and GRM5. The pathways revealed that the possible targets of LJF involved in the regulation of the IL-17 signalling pathway. Then, in vivo experiments indicated that LJF decreased the levels of proinflammatory cytokines (TNF-, IL-1, and IL-6) in serum and bronchoalveolar lavage fluid, decreased the levels of oxidative stress factors (MDA and MPO) and increased the activities of SOD and GSH-Px in lung tissue. The RNA-Seq results revealed that 7811, 775 and 3654 differentially expressed genes (DEGs) in Ctrl (control group), ALI-LJF (Lonicerae japonicae flos group) and ALI-DXSM (dexamethasone group), respectively. KEGG pathway analysis showed that the DEGs associated with immune response and inflammation signalling pathways and the IL-17 signalling pathway were significantly enriched in LJF. Compared with those in ALI, the expression of CXCL2, CXCL1, CXCL6, NFKBIA, IFNG, IL6, IL17A, IL17F, IL17C, MMP9 and TNFAIP3, which are involved in the IL-17 signalling pathway, were significantly decreased in the LJF group according to the qRT-PCR analyses. CONCLUSIONS: In view of the network pharmacology and RNA-Seq results, the study identified the main active ingredient and potential targets of LJF involved in protecting against ALI, which suggests directions for further research on LJF.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Lipopolissacarídeos/toxicidade , Lonicera , Extratos Vegetais/uso terapêutico , Mapas de Interação de Proteínas/efeitos dos fármacos , RNA-Seq/métodos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Animais , Masculino , Extratos Vegetais/farmacologia , Mapas de Interação de Proteínas/fisiologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento
5.
J Ethnopharmacol ; 268: 113639, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33301914

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Panax notoginseng saponins (PNS), the main active ingredients of Panax notoginseng (Burkill) F.H.Chen, have been clinically used for cardiovascular diseases treatment in China as the Traditional Chinese Medicine (TCM) (Duan et al., 2017). Evidence demonstrated that PNS protected cardiomyocytes from myocardial ischemia, but the more underlying molecular mechanisms of the protective effect are still unclear. The aims of this study are to systematically know the function of PNS and discover new roles of PNS in ischemic cardiomyocytes. MATERIALS AND METHODS: To confirm PNS function on ischemic cardiomyopathy, we established in vitro myocardial ischemia model on H9C2 cardiomyocyte line, which was induced by oxygen-glucose depletion (OGD). Then RNA-seq was carried out to systematically analyze global gene expression. This study was aimed to systematically investigate the protective effect and more potential molecular mechanisms of PNS on H9C2 cardiomyocytes in vitro through whole-transcriptome analysis with total RNA sequencing (RNA-Seq). RESULTS: PNS exhibited anti-apoptotic effect in H9C2 cardiomyocytes in OGD-induced myocardial ischemia model. Through RNA-seq, we found that OGD affected expression profiling of many genes, including upregulated and downregulated genes. PNS inhibited cardiomyocyte apoptosis and death through rescuing cell cycle arrest, the DNA double-strand breakage repair process and chromosome segregation. Interestingly, for the canonical signaling pathways regulation, RNA-seq showed PNS could inhibit cardiac hypertrophy, MAPK signaling pathway, and re-activate PI3K/AKT and AMPK signaling pathways. Experimental data also confirmed the PNS could protect cardiomyocytes from OGD-induced apoptosis through activating PI3K/AKT and AMPK signaling pathways. Moreover, RNA-seq demonstrated that the expression levels of many non-coding RNAs, such as miRNAs and lncRNAs, were significantly affected after PNS treatment, suggesting that PNS could protect cardiomyocytes through regulating non-coding RNAs. CONCLUSION: RNA-seq systematically revealed different novel roles of Panax Notoginseng Saponins (PNS) in protecting cardiomyocytes from apoptosis, induced by myocardial ischemia, through rescuing cell cycle arrest and cardiac hypertrophy, re-activating the DNA double-strand breakage repair process, chromosome segregation, PI3K/Akt and AMPK signaling pathways and regulating non-coding RNAs.


Assuntos
Isquemia Miocárdica/genética , Miócitos Cardíacos/efeitos dos fármacos , Panax notoginseng , Extratos Vegetais/farmacologia , RNA-Seq/métodos , Saponinas/farmacologia , Animais , Linhagem Celular , Expressão Gênica , Perfilação da Expressão Gênica/métodos , Isquemia Miocárdica/tratamento farmacológico , Miócitos Cardíacos/fisiologia , Extratos Vegetais/uso terapêutico , Ratos , Saponinas/uso terapêutico
6.
J Vis Exp ; (164)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33165331

RESUMO

Caterpillar fungus (Ophiocordyceps sinensis) is one of the most valued fungal Traditional Chinese medicine (TCM), and it contains plenty of active ingredients such as adenosine. Adenosine is considered as a biologically effective ingredient that has a variety of anti-tumor and immunomodulatory activities. In order to further elucidate the mechanism of purine nucleosidase (PN) in adenosine biosynthesis, a gene encoding PN was successfully mined and further analyzed based on the RNA-Seq database of caterpillar fungus. The full-length cDNA of PN was 855 bp, which encoded 284 amino acids. BLAST analysis showed the highest homology of 85.06% with nucleoside hydrolase in NCBI. ProtProm analysis showed that the relative molecular weight was 30.69 kDa and the isoelectric point was 11.55. The secondary structure of PN was predicted by Predict Protein; the results showed that alpha helix structure accounted for 28.17%, strand structure accounted for 11.97%, and loop structure accounted for 59.86%. Moreover, PN gene was further cloned from transcriptome and detected by agarose gel electrophoresis for verification. This study provides more sufficient scientific basis and new ideas for the genetic regulation of adenosine biosynthesis in fungal TCM.


Assuntos
Mineração de Dados/métodos , Bases de Dados Genéticas , N-Glicosil Hidrolases/metabolismo , RNA-Seq/métodos , Transcriptoma
7.
J Pharmacol Toxicol Methods ; 106: 106915, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32871229

RESUMO

INTRODUCTION: Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes are being evaluated for their use in pharmacological and toxicological testing, particularly for electrophysiological side effects. However, little is known about the composition of the commercially available iCell cardiomyocyte (Fuijifilm Cellular Dynamics) cultures and the transcriptomic phenotype of individual cells. METHODS: We characterized iCell cardiomyocytes (assumed to be a mixture of nodal-, atrial-, and ventricular-like cardiomyocytes together with potential residual non-myocytes) using bulk RNA-sequencing, followed by investigation of cellular heterogeneity using two different single-cell RNA-sequencing platforms. RESULTS: Bulk RNA-sequencing identified key cardiac markers (TNNT2, MYL7) as well as fibroblast associated genes (P4HB, VIM), and cardiac ion channels in the iCell cardiomyocyte culture. High-resolution single cell RNA-sequencing demonstrated that both, cardiac and fibroblast-related genes were co-expressed throughout the cell population. This approach resolved two cell clusters within iCell cardiomyocytes. Interestingly, these clusters could not be associated with known cardiac subtypes. However, transcripts of ion channels potentially useful as functional markers for cardiac subtypes were below the detection limits of the single-cell approaches used. Instead, one cluster (10.8% of the cells) is defined by co-expression of cardiac and cell cycle-related genes (e.g. TOP2A). Incorporation of bromodeoxyuridine further confirmed the capability of iCell cardiomyocytes to enter cell cycle. DISCUSSION: The co-expression of cardiac related genes with cell cycle or fibroblast related genes may be interpreted either as aberrant or as an immature feature. However, this excludes the presence of a non-cardiomyocyte sub-population and indicates that some cardiomyocytes themselves enter cell cycle.


Assuntos
Miócitos Cardíacos/fisiologia , RNA-Seq/métodos , Análise de Célula Única/métodos , Biomarcadores/análise , Ciclo Celular/genética , Diferenciação Celular/genética , Linhagem Celular , Separação Celular , Avaliação Pré-Clínica de Medicamentos/métodos , Fibroblastos/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Transcriptoma/fisiologia
8.
Sci Rep ; 10(1): 15310, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943706

RESUMO

Panax notoginseng is one of the most widely used traditional Chinese herbs with particularly valued roots. Triterpenoid saponins are mainly specialized secondary metabolites, which medically act as bioactive components. Knowledge of the ginsenoside biosynthesis in P. notoginseng, which is of great importance in the industrial biosynthesis and genetic breeding program, remains largely undetermined. Here we combined single molecular real time (SMRT) and Second-Generation Sequencing (SGS) technologies to generate a widespread transcriptome atlas of P. notoginseng. We mapped 2,383 full-length non-chimeric (FLNC) reads to adjacently annotated genes, corrected 1,925 mis-annotated genes and merged into 927 new genes. We identified 8,111 novel transcript isoforms that have improved the annotation of the current genome assembly, of which we found 2,664 novel lncRNAs. We characterized more alternative splicing (AS) events from SMRT reads (20,015 AS in 6,324 genes) than Illumina reads (18,498 AS in 9,550 genes), which contained a number of AS events associated with the ginsenoside biosynthesis. The comprehensive transcriptome landscape reveals that the ginsenoside biosynthesis predominantly occurs in flowers compared to leaves and roots, substantiated by levels of gene expression, which is supported by tissue-specific abundance of isoforms in flowers compared to roots and rhizomes. Comparative metabolic analyses further show that a total of 17 characteristic ginsenosides increasingly accumulated, and roots contained the most ginsenosides with variable contents, which are extraordinarily abundant in roots of the three-year old plants. We observed that roots were rich in protopanaxatriol- and protopanaxadiol-type saponins, whereas protopanaxadiol-type saponins predominated in aerial parts (leaves, stems and flowers). The obtained results will greatly enhance our understanding about the ginsenoside biosynthetic machinery in the genus Panax.


Assuntos
Ginsenosídeos/biossíntese , Ginsenosídeos/genética , Panax notoginseng/genética , Transcriptoma/genética , Processamento Alternativo/genética , Flores/genética , Flores/metabolismo , Flores/fisiologia , Perfilação da Expressão Gênica/métodos , Genes de Plantas/genética , Ginsenosídeos/metabolismo , Anotação de Sequência Molecular/métodos , Panax/genética , Panax/metabolismo , Panax notoginseng/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , RNA-Seq/métodos , Rizoma/genética , Rizoma/metabolismo , Rizoma/fisiologia , Sapogeninas/metabolismo , Saponinas/genética , Saponinas/metabolismo , Sequenciamento do Exoma/métodos
9.
J Immunol Res ; 2020: 8624963, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32802896

RESUMO

Single-cell RNA sequencing allows highly detailed profiling of cellular immune responses from limited-volume samples, advancing prospects of a new era of systems immunology. The power of single-cell RNA sequencing offers various opportunities to decipher the immune response to infectious diseases and vaccines. Here, we describe the potential uses of single-cell RNA sequencing methods in prophylactic vaccine development, concentrating on infectious diseases including COVID-19. Using examples from several diseases, we review how single-cell RNA sequencing has been used to evaluate the immunological response to different vaccine platforms and regimens. By highlighting published and unpublished single-cell RNA sequencing studies relevant to vaccinology, we discuss some general considerations how the field could be enriched with the widespread adoption of this technology.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , RNA-Seq/métodos , Análise de Célula Única , Vacinologia/métodos , Vacinas Virais/administração & dosagem , Animais , COVID-19 , Linhagem Celular , Ensaios Clínicos como Assunto , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Celular/genética , Imunidade Inata/genética , Imunogenicidade da Vacina , Pneumonia Viral/epidemiologia , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , RNA Viral/isolamento & purificação , SARS-CoV-2 , Vacinas Virais/imunologia
10.
Parasit Vectors ; 13(1): 344, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32650825

RESUMO

BACKGROUND: Hydrogen peroxide (H2O2) is one of the delousing agents used to control sea lice infestations in salmonid aquaculture. However, some Lepeophtheirus salmonis populations have developed resistance towards H2O2. An increased gene expression and activity of catalase, an enzyme that breaks down H2O2, have been detected in resistant lice, being therefore introduced as a resistance marker in the salmon industry. In the present study the aim was to validate the use of catalase expression as a marker and to identify new candidate genes as additional markers to catalase, related to H2O2 resistance in L. salmonis. METHODS: A sensitive and an H2O2 resistant laboratory strain (P0 generation, not exposed to H2O2 for several years) were batch crossed to generate a cohort with a wide range of H2O2 sensitivities (F2 generation). F2 adult females were then exposed to H2O2 to separate sensitive and resistant individuals. Those F2 lice, the P0 lice and field-collected resistant lice (exposed to H2O2 in the field) were used in an RNA sequencing study. RESULTS: Catalase was upregulated in resistant lice exposed to H2O2 compared to sensitive lice. This was, however, not the case for unexposed resistant P0 lice. Several other genes were found differentially expressed between sensitive and resistant lice, but most of them seemed to be related to H2O2 exposure. However, five genes were consistently up- or downregulated in the resistant lice independent of exposure history. The upregulated genes were: one gene in the DNA polymerase family, one gene encoding a Nesprin-like protein and an unannotated gene encoding a small protein. The downregulated genes encoded endoplasmic reticulum resident protein 29 and an aquaporin (Glp1_v2). CONCLUSIONS: Catalase expression seems to be induced by H2O2 exposure, since it was not upregulated in unexposed resistant lice. This may pose a challenge for its use as a resistance marker. The five new genes associated with resistance are put forward as complementary candidate genes. The most promising was Glp1_v2, an aquaglyceroporin that may serve as a passing channel for H2O2. Lower channel number can reduce the influx or distribution of H2O2 in the salmon louse, being directly involved in the resistance mechanism.


Assuntos
Copépodes , Resistência a Medicamentos/genética , Ectoparasitoses/veterinária , Peróxido de Hidrogênio , Animais , Aquicultura/métodos , Aquaporinas/genética , Aquaporinas/metabolismo , Catalase/genética , Catalase/metabolismo , Copépodes/efeitos dos fármacos , Copépodes/genética , Copépodes/metabolismo , Ectoparasitoses/tratamento farmacológico , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/parasitologia , Marcadores Genéticos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/uso terapêutico , RNA-Seq/métodos , Salmão/parasitologia
11.
Clin Cancer Res ; 26(8): 2011-2021, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31937620

RESUMO

PURPOSE: Pancreatic neuroendocrine tumors (pNETs) are uncommon malignancies noted for their propensity to metastasize and comparatively favorable prognosis. Although both the treatment options and clinical outcomes have improved in the past decades, most patients will die of metastatic disease. New systemic therapies are needed. EXPERIMENTAL DESIGN: Tissues were obtained from 43 patients with well-differentiated pNETs undergoing surgery. Gene expression was compared between primary tumors versus liver and lymph node metastases using RNA-Seq. Genes that were selectively elevated at only one metastatic site were filtered out to reduce tissue-specific effects. Ingenuity pathway analysis (IPA) and the Connectivity Map (CMap) identified drugs likely to antagonize metastasis-specific targets. The biological activity of top identified agents was tested in vitro using two pNET cell lines (BON-1 and QGP-1). RESULTS: A total of 902 genes were differentially expressed in pNET metastases compared with primary tumors, 626 of which remained in the common metastatic profile after filtering. Analysis with IPA and CMap revealed altered activity of factors involved in survival and proliferation, and identified drugs targeting those pathways, including inhibitors of mTOR, PI3K, MEK, TOP2A, protein kinase C, NF-kB, cyclin-dependent kinase, and histone deacetylase. Inhibitors of MEK and TOP2A were consistently the most active compounds. CONCLUSIONS: We employed a complementary bioinformatics approach to identify novel therapeutics for pNETs by analyzing gene expression in metastatic tumors. The potential utility of these drugs was confirmed by in vitro cytotoxicity assays, suggesting drugs targeting MEK and TOP2A may be highly efficacious against metastatic pNETs. This is a promising strategy for discovering more effective treatments for patients with pNETs.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/genética , Avaliação Pré-Clínica de Medicamentos/métodos , Regulação Neoplásica da Expressão Gênica , Terapia de Alvo Molecular , Tumores Neuroendócrinos/genética , Neoplasias Pancreáticas/genética , Adulto , Idoso , Linhagem Celular Tumoral , Biologia Computacional/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Tumores Neuroendócrinos/tratamento farmacológico , Tumores Neuroendócrinos/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Prognóstico , RNA-Seq/métodos
12.
Plant Mol Biol ; 102(3): 287-306, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31872308

RESUMO

KEY MESSAGE: At the early stage of pollination, the difference in gene expression between compatibility and incompatibility is highly significant about the pollen-specific expression of the LRR gene, resistance, and defensin genes. In Rosaceae, incompatible pollen can penetrate into the style during the gametophytic self-incompatibility response. It is therefore considered a stylar event rather than a stigmatic event. In this study, we explored the differences in gene expression between compatibility and incompatibility in the early stage of pollination. The self-compatible pear variety "Jinzhuili" is a naturally occurring bud mutant from "Yali", a leading Chinese native cultivar exhibiting typical gametophytic self-incompatibility. We collected the styles of 'Yali' and 'Jinzhuili' at 0.5 and 2 h after self-pollination and then performed high-throughput sequencing. According to the KEGG analysis of the differentially expressed genes, several metabolic pathways, such as "Plant hormone signal transduction", "Plant-pathogen interaction", are the main pathways was the most represented pathway. Quantitative PCR was used to validate these differential genes. The expression levels of genes related to pollen growth and disease inhibition, such as LRR (Leucine-rich repeat extensin), resistance, defensin, and auxin, differed significantly between compatible and incompatible pollination. Interestingly, at 0.5 h, most of these genes were upregulated in the compatible pollination system compared with the incompatible pollination system. Calcium transport, which requires ATPase, also demonstrated upregulated expression. In summary, the self-incompatibility reaction was initiated when the pollen land on the stigma.


Assuntos
Pólen/genética , Polinização/genética , Polinização/fisiologia , Pyrus/genética , Pyrus/fisiologia , RNA-Seq/métodos , Morte Celular , Técnicas de Reprogramação Celular , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas/genética , Ácidos Indolacéticos , Oxigenases/genética , Reguladores de Crescimento de Plantas , Proteínas de Plantas/genética , Pólen/crescimento & desenvolvimento
13.
Methods Mol Biol ; 2092: 159-186, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31786788

RESUMO

Single-cell RNA sequencing (scRNA-seq) is an emerging technology that can address the challenge of cellular heterogeneity. In the last decade, the cost per cell has been dramatically reduced, and the throughput has been increased by 104-fold. Like many other tissues, the retina is highly heterogeneous with an estimated of over 100 subtypes of neuronal cells. Here, we describe the current techniques to perform scRNA-seq on the adult retinal tissue including retinal dissection, retinal dissociation, assessment of cell population, cDNA synthesis, library construction, and next-generation sequencing. In addition, we introduce a workflow of scRNA-seq data analysis using open-source tools.


Assuntos
RNA/genética , Retina/fisiologia , Transcriptoma/genética , DNA Complementar/genética , Análise de Dados , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , RNA Citoplasmático Pequeno/genética , RNA-Seq/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
14.
Mol Genet Genomics ; 295(1): 233-249, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31673754

RESUMO

In Chinese cabbage, hybrid seed production is performed using male sterility lines, an important approach to heterosis utilization. In this study, a stably inherited male sterile mutant msm was obtained from the 'FT'-doubled haploid line of Chinese cabbage using isolated microspore culture combined with 60Co γ-ray mutagenesis. The genetic backgrounds of 'FT' and msm were highly consistent; however, compared with wild-type 'FT', msm exhibited completely degenerated stamens and no pollen phenotype. Other characters showed no significant differences. Cytological observations revealed that stamen abortion in msm begins during the tetrad period and that tapetum cells were abnormally expanded and highly vacuolated, leading to microspore abortion. Genetic analysis indicated that the msm mutant phenotype is controlled by a single recessive nuclear gene. Comparative transcriptome analysis of 'FT' and msm flower buds using RNA-Seq technology revealed 1653 differentially expressed genes, among which, a large number associated with male sterility were detected, including 64 pollen development- and pollen tube growth-related genes, 94 pollen wall development-related genes, 11 phytohormone-related genes, and 16 transcription factor-related genes. An overwhelming majority of these genes were down-regulated in msm compared with 'FT'. Furthermore, KEGG pathway analysis indicated that a variety of carbohydrate metabolic and lipid metabolic pathways were significantly enriched, which may be related to pollen abortion. The expression patterns of 24 male sterility-related genes were analyzed using qRT-PCR. In addition, 24,476 single-nucleotide polymorphisms and 413,073 insertion-deletion events were specifically detected in msm. These results will facilitate elucidation of the regulatory mechanisms underlying male sterility in Chinese cabbage.


Assuntos
Brassica/genética , Genes de Plantas/genética , Infertilidade das Plantas/genética , Flores/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Genes Recessivos/genética , Reguladores de Crescimento de Plantas/genética , Proteínas de Plantas/genética , Pólen/genética , RNA-Seq/métodos , Transcriptoma/genética , Sequenciamento do Exoma/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA