Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.164
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
J Hazard Mater ; 470: 134263, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38613951

RESUMO

Nanotechnology offers a promising and innovative approach to mitigate biotic and abiotic stress in crop production. In this study, the beneficial role and potential detoxification mechanism of biogenic selenium nanoparticles (Bio-SeNPs) prepared from Psidium guajava extracts in alleviating antimony (Sb) toxicity in rice seedlings (Oryza sativa L.) were investigated. The results revealed that exogenous addition of Bio-SeNPs (0.05 g/L) into the hydroponic-cultured system led to a substantial enhancement in rice shoot height (73.3%), shoot fresh weight (38.7%) and dry weight (28.8%) under 50 µM Sb(III) stress conditions. Compared to Sb exposure alone, hydroponic application of Bio-SeNPs also greatly promoted rice photosynthesis, improved cell viability and membrane integrity, reduced reactive oxygen species (ROS) levels, and increased antioxidant activities. Meanwhile, exogenous Bio-SeNPs application significantly lowered the Sb accumulation in rice roots (77.1%) and shoots (35.1%), and reduced its root to shoot translocation (55.3%). Additionally, Bio-SeNPs addition were found to modulate the subcellular distribution of Sb and the expression of genes associated with Sb detoxification in rice, such as OsCuZnSOD2, OsCATA, OsGSH1, OsABCC1, and OsWAK11. Overall, our findings highlight the great potential of Bio-SeNPs as a promising alternative for reducing Sb accumulation in crop plants and boosting crop production under Sb stress conditions.


Assuntos
Antimônio , Antioxidantes , Regulação da Expressão Gênica de Plantas , Nanopartículas , Oryza , Selênio , Oryza/efeitos dos fármacos , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/genética , Antimônio/toxicidade , Antioxidantes/metabolismo , Selênio/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Nanopartículas/toxicidade , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/crescimento & desenvolvimento
2.
Plant Physiol Biochem ; 210: 108617, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608504

RESUMO

Considering the importance of Salvia nemorosa L. in the pharmaceutical and food industries, and also beneficial approaches of arbuscular mycorrhizal fungi (AMF) symbiosis and the use of bioelicitors such as chitosan to improve secondary metabolites, the aim of this study was to evaluate the performance of chitosan on the symbiosis of AMF and the effect of both on the biochemical and phytochemical performance of this plant and finally introduced the best treatment. Two factors were considered for the factorial experiment: AMF with four levels (non-inoculated plants, Funneliformis mosseae, Rhizophagus intraradices and the combination of both), and chitosan with six levels (0, 50, 100, 200, 400 mg L-1 and 1% acetic acid). Four months after treatments, the aerial part and root length, the levels of lipid peroxidation, H2O2, phenylalanine ammonia lyase (PAL) activity, total phenol and flavonoid contents and the main secondary metabolites (rosmarinic acid and quercetin) in the leaves and roots were determined. The flowering stage was observed in R. intraradices treatments and the highest percentage of colonization (78.87%) was observed in the treatment of F. mosseae × 400 mg L-1 chitosan. Furthermore, simultaneous application of chitosan and AMF were more effective than their separate application to induce phenolic compounds accumulation, PAL activity and reduce oxidative compounds. The cluster and principal component analysis based on the measured variables indicated that the treatments could be classified into three clusters. It seems that different treatments in different tissues have different effects. However, in an overview, it can be concluded that 400 mg L-1 chitosan and F. mosseae × R. intraradices showed better results in single and simultaneous applications. The results of this research can be considered in the optimization of this medicinal plant under normal conditions and experiments related to abiotic stresses in the future.


Assuntos
Quitosana , Peroxidação de Lipídeos , Micorrizas , Fenóis , Salvia , Quitosana/farmacologia , Micorrizas/fisiologia , Peroxidação de Lipídeos/efeitos dos fármacos , Fenóis/metabolismo , Salvia/metabolismo , Salvia/efeitos dos fármacos , Salvia/crescimento & desenvolvimento , Fenilalanina Amônia-Liase/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Glomeromycota/fisiologia , Glomeromycota/efeitos dos fármacos
3.
Cells ; 12(10)2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37408231

RESUMO

Melatonin (N-acetyl-5-methoxytryptamine) plays an important role in plant growth and development, and in the response to various abiotic stresses. However, its role in the responses of barley to low phosphorus (LP) stress remains largely unknown. In the present study, we investigated the root phenotypes and metabolic patterns of LP-tolerant (GN121) and LP-sensitive (GN42) barley genotypes under normal P, LP, and LP with exogenous melatonin (30 µM) conditions. We found that melatonin improved barley tolerance to LP mainly by increasing root length. Untargeted metabolomic analysis showed that metabolites such as carboxylic acids and derivatives, fatty acyls, organooxygen compounds, benzene and substituted derivatives were involved in the LP stress response of barley roots, while melatonin mainly regulated indoles and derivatives, organooxygen compounds, and glycerophospholipids to alleviate LP stress. Interestingly, exogenous melatonin showed different metabolic patterns in different genotypes of barley in response to LP stress. In GN42, exogenous melatonin mainly promotes hormone-mediated root growth and increases antioxidant capacity to cope with LP damage, while in GN121, it mainly promotes the P remobilization to supplement phosphate in roots. Our study revealed the protective mechanisms of exogenous MT in alleviating LP stress of different genotypes of barley, which can be used in the production of phosphorus-deficient crops.


Assuntos
Hordeum , Melatonina , Fósforo , Raízes de Plantas , Estresse Fisiológico , Melatonina/farmacologia , Melatonina/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Fósforo/deficiência , Hordeum/efeitos dos fármacos , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Genótipo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia
4.
Arq. ciências saúde UNIPAR ; 26(3): 1019-1032, set-dez. 2022.
Artigo em Português | LILACS | ID: biblio-1414336

RESUMO

Arctium lappa L. é indicada no Formulário de Fitoterápicos da Farmacopeia Brasileira para o tratamento de distúrbios urinários leves. Estudos já demonstraram o potencial antioxidante, anti-inflamatório e antidiabético deste extrato, onde foram identificados fenóis, lignanas, taninos e flavonoides. O objetivo deste trabalho foi otimizar o método extrativo de raízes de A. lappa. Realizou-se o preparo de extratos por diferentes métodos: Ultrassom, Soxhlet, maceração e turbo extração. A otimização foi realizada por turbo extração seguindo um planejamento fatorial 23, empregando como fatores: teor alcoólico, concentração da matéria prima e tempo de extração. Os extratos foram avaliados quanto ao resíduo seco, teores de fenóis e flavonoides, e atividade antioxidante. Com relação ao resíduo seco, e aos teores de fenóis e flavonoides, os métodos de ultrassom e turbo extração demonstraram melhor poder extrativo. Devido ao menor tempo e custo operacional, a otimização foi realizada por turbo extração, e o extrato otimizado foi obtido utilizando álcool 60%, em proporção matéria prima solvente 1:10 e tempo de extração de 15 minutos. Estas análises poderão nortear futuros testes de transposição de método para escala industrial, diminuindo mão de obra, tempo e custos, visando obter produtos fitoterápicos mais eficientes, com valor acessível à população.


Arctium lappa L. is indicated in the Brazilian Pharmacopeia Herbal Medicines Form for the treatment of mild urinary disorders. Studies have already demonstrated the antioxidant, anti-inflammatory and antidiabetic potential of this extract, where phenols, lignans, tannins and flavonoids were identified. The objective of this work was to optimize the extractive method of A. lappa roots. Extracts were prepared by different methods: Ultrasound, Soxhlet, maceration and vortical extraction. The optimization was performed by vortical extraction following a 23 full factorial design, using as factors: alcohol content, drug concentration and extraction time. The extracts were evaluated for dry residue, phenols and flavonoids contents, and antioxidant activity. Regarding the dry residue, and the phenols and flavonoids contents, the ultrasound and vortical extraction methods showed better extractive power. Due to the lower operating time and cost, the optimization was performed by vortical extraction, and the optimized extract was obtained using 60% alcohol, in a 1:10 drug solvent ratio and extraction time of 15 minutes. These assessments guide the future tests of transposition of the method to an industrial scale, reducing manpower, time and costs, aiming to obtain more efficient phytotherapic products, with affordable value for the population.


Arctium lappa L. está indicado en la Formulacao de Fitoterápicos da Farmacopeia Brasileira para el tratamiento de trastornos urinarios leves. Los estudios han demostrado el potencial antioxidante, antiinflamatorio y antidiabético de este extracto, donde se identificaron fenoles, lignanos, taninos y flavonoides. El objetivo de este trabajo fue optimizar el método extractivo de las raíces de A. lappa. Los extractos se prepararon por diferentes métodos: Ultrasonido, Soxhlet, maceración y turboextracción. La optimización se realizó mediante turboextracción siguiendo una planificación factorial de 23, empleando como factores: tenor alcohólico, concentración de materia prima y tiempo de extracción. Se evaluaron los extractos para determinar el residuo seco, el contenido de fenoles y flavonoides y la actividad antioxidante. En cuanto al contenido de residuo seco, fenoles y flavonoides, los métodos de extracción por ultrasonidos y turbo demostraron un mejor poder de extracción. Debido al menor tiempo y coste operativo, la optimización se realizó mediante turboextracción, y el extracto optimizado se obtuvo utilizando alcohol 60%, en proporción disolvente-materia 1:10 y tiempo de extracción de 15 minutos. Estos análisis podrán orientar futuros ensayos de transposición del método para escala industrial, reduciendo mano de obra, tiempo y costes, con el objetivo de obtener productos fitoterapéuticos más eficientes, con valor accesible para la población.


Assuntos
Arctium/efeitos dos fármacos , Medicamento Fitoterápico , Otimização de Processos , Flavonoides/uso terapêutico , Preparações Farmacêuticas , Raízes de Plantas/efeitos dos fármacos , Compostos Fenólicos , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico
5.
Ecotoxicol Environ Saf ; 242: 113885, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35849906

RESUMO

Vanadium dioxide nanoparticles (VO2 NPs) have been massively produced due to their excellent metal-insulator transition characteristics for various applications. Pilot studies indicated the toxicity of VO2 NPs to bacteria and mammalian cells, but the environmental hazards of VO2 NPs to plants have been unrevealed to date. In this study, we reported the inhibitive effects of VO2 NPs to the growth and photosynthesis of pea seedlings. Laboratory synthesized monoclinic VO2 NPs (N-VO2), commercial nanosized VO2 NPs (S-VO2), and commercial microsized VO2 particles (M-VO2) were carefully characterized for environmental toxicity evaluations. VO2 particles were supplemented to culture medium for seed germination and seedling growth. All three VO2 samples did not affect the germination rates of pee seeds, while serious growth inhibition of pea seedlings was observed at 10 mg/L for S-VO2 and N-VO2, and 100 mg/L for M-VO2. VO2 particles had no impact on the chlorophyll contents, but the photosynthesis of leaf was significantly decreased following the consequence of N-VO2 > S-VO2 > M-VO2. The inhibition of photosynthesis was attributed to the damage of acceptor side of photosystem II by VO2 particles at high concentrations. Abundant bioaccumulations of vanadium in roots aroused oxidative damage and changed the root structure. Our results collectively indicated that the phytotoxicity of VO2 NPs was related to the concentration, size and crystalline degree.


Assuntos
Nanopartículas Metálicas , Óxidos , Pisum sativum , Plântula , Compostos de Vanádio , Germinação/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Óxidos/toxicidade , Pisum sativum/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Plântula/efeitos dos fármacos , Compostos de Vanádio/toxicidade
6.
Sci Rep ; 12(1): 2195, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140281

RESUMO

The present study aimed to assess the toxic effects of pendimethalin herbicide and protective role of curcumin using the Allium test on cytological, biochemical and physiological parameters. The effective concentration (EC50) of pendimethalin was determined at 12 mg/L by the root growth inhibition test as the concentration reducing the root length by 50%. The roots of Allium cepa L. was treated with tap water (group I), 5 mg/L curcumin (group II), 10 mg/L curcumin (group III), 12 mg/L pendimethalin (group IV), 12 mg/L pendimethalin + 5 mg/L curcumin (group V) and 12 mg/L pendimethalin + 10 mg/L curcumin (group VI). The cytological (mitotic index, chromosomal abnormalities and DNA damage), physiological (rooting percentage, root length, growth rate and weight gain) and oxidative stress (malondialdehyde level, superoxide dismutase level, catalase level and glutathione reductase level) indicators were determined after 96 h of treatment. The results revealed that pendimethalin treatment reduced rooting percentage, root length, growth rate and weight gain whereas induced chromosomal abnormalities and DNA damage in roots of A. cepa L. Further, pendimethalin exposure elevated malondialdehyde level followed by antioxidant enzymes. The activities of superoxide dismutase and catalase were up-regulated and glutathione reductase was down-regulated. The molecular docking supported the antioxidant enzymes activities result. However, a dose-dependent reduction of pendimethalin toxicity was observed when curcumin was supplied with pendimethalin. The maximum recovery of cytological, physiological and oxidative stress parameters was recorded at 10 mg/L concentration of curcumin. The correlation studies also revealed positive relation of curcumin with rooting percentage, root length, weight gain, mitotic activity and glutathione reductase enzyme level while an inverse correlation was observed with chromosomal abnormalities, DNA damage, superoxide dismutase and catalase enzyme activities, and lipid peroxidation indicating its protective effect.


Assuntos
Compostos de Anilina/toxicidade , Curcumina/farmacologia , Herbicidas/toxicidade , Cebolas/genética , Raízes de Plantas/genética , Substâncias Protetoras/farmacologia , Aberrações Cromossômicas/efeitos dos fármacos , Correlação de Dados , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Peroxidação de Lipídeos/efeitos dos fármacos , Simulação de Acoplamento Molecular , Cebolas/efeitos dos fármacos , Cebolas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases/efeitos dos fármacos , Oxirredutases/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo
7.
Int J Mol Sci ; 23(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35216242

RESUMO

Plants have two types of reproduction: sexual, resulting in embryo production, and asexual, resulting in vegetative bodies commonly derived from stems and roots (e.g., bulb, tuber). Dead organs enclosing embryos (DOEEs, such as seed coat and pericarp) are emerging as central components of the dispersal unit acting to nurture the embryo and ensure its survival in the habitat. Here we wanted to investigate the properties of dead organs enclosing plant asexual reproductive bodies, focusing on the garlic (Allium sativum) bulb. We investigated the biochemical and biological properties of the outer peel enclosing the bulb and the inner peel enclosing the clove using various methodologies, including bioassays, proteomics, and metabolomics. The garlic peels differentially affected germination and post-germination growth, with the outer peel demonstrating a strong negative effect on seed germination of Sinapis alba and on post-germination growth of Brassica juncea. Proteome analysis showed that dead garlic peels possess 67 proteins, including chitinases and proteases, which retained their enzymatic activity. Among primary metabolites identified in garlic peels, the outer peel accumulated multiple sugars, including rhamnose, mannitol, sorbitol, and trehalose, as well as the modified amino acid 5-hydroxylysine, known as a major component of collagen, at a higher level compared to the clove and the inner peel. Growth of Escherichia coli and Staphylococcus aureus was promoted by garlic peel extracts but inhibited by clove extract. All extracts strongly inhibited spore germination of Fusarium oxysporum f.sp. melonis. Thus, the garlic peels not only provide physical protection to vegetative offspring but also appear to function as a refined arsenal of proteins and metabolites for enhancing growth and development, combating potential pathogens, and conferring tolerance to abiotic stresses.


Assuntos
Alho/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Germinação/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Plantas/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Sementes/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
8.
Prep Biochem Biotechnol ; 52(3): 283-291, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34154516

RESUMO

Althaea officinalis has been widely used in various pharmaceutical applications. The biological effects and significance of phenylpropanoids in numerous industries are well studied. However, fulfilling consumer demand for these commercially important compounds is difficult. The effect of heavy-metal toxic influence on plants is primarily due to a strong and rapid suppression of growth processes, as well as the decline in activity of the photosynthetic apparatus, also associated with progressing senescence processes. Some of the secondary metabolite production was triggered by the application of heavy metals, but there was not a stress response. In the adventitious root culture of A. officinalis, copper-mediated phenylpropanoid biosynthesis has been investigated in both concentration-and duration-dependent manners. High-performance liquid chromatography (HPLC) analysis revealed a total of nine different phenolic compounds in response to different concentrations of copper chloride. In this study, high productivity of phenolic compounds was observed in the copper chloride treated-adventitious root culture of A. officianalis. In particular, a low concentration of copper chloride led to a significant accumulation of phenolic compounds under optimal conditions. Moreover, all genes responsible for phenylpropanoid biosynthesis may be sensitive to phenolic compound production following copper treatment. Especially, the highest change in transcript level was observed from AoANS at 6 h. According to our findings, treatment with copper chloride (0.5 mM) for 48 or 96 h can be an appropriate method to maximize phenylpropanoid levels in A. officinalis adventitious root culture.


Assuntos
Althaea/efeitos dos fármacos , Cobre/farmacologia , Fenilpropionatos/metabolismo , Raízes de Plantas/efeitos dos fármacos , Althaea/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Fenóis/metabolismo , Raízes de Plantas/metabolismo
9.
Sci Rep ; 11(1): 20683, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34667188

RESUMO

In this paper 13 elements, both physiological and causing toxic effects, were determined by inductively coupled plasma mass spectrometry in roots of 26 species of herbs used in Traditional Chinese Medicine. The herbs were purchased from online shop in two batches 1 year apart to verify the variability of elemental content in time. The multivariate statistical methods-multiple regression, canonical variates and interaction effect analysis-were applied to interpret the data and to show the relationships between elements and two batches of herb roots. The maximum permissible concentration of Cd (0.3 mg kg-1) was exceeded in 7 herb roots which makes 13% of all specimens. The multiple regression analysis revealed the significant relationships between elements: Mg with Sr; V with Pb, As and Ba; Mn with Pb; Fe with As and Ba; Co with Ni and Sr, Cu with Pb, Cd and As; Zn with Pb, Cd, As and Ba. The canonical variates analysis showed that the statistical inference should not be based solely on the type of herb or number of batch because of the underlying interaction effects between those two variables that may be a source of variability of the content of determined elements.


Assuntos
Quimiometria/métodos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Oligoelementos/toxicidade , Análise de Correlação Canônica , Espectrometria de Massas/métodos , Análise Multivariada , Análise de Regressão , Análise Espectral/métodos
10.
Chem Biodivers ; 18(12): e2100701, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34622554

RESUMO

The chemical profile and allelopathic action of the volatiles produced by Artemisia selengensis were studied. Artemisia selengensis was found to release volatile chemicals to the environment to influence other plants' growth, which suppressed the root length of Amaranthus retroflexus and Poa annua by 50.46 % and 87.83 % under 80 g/1.5 L treatment, respectively. GC/MS analysis led to the identification of 41 compounds (by hydrodistillation, HD) and 48 compounds (by headspace solid-phase microextraction, HS-SPME), with eucalyptol (15.45 % by HD and 28.09 % by HS-SPME) being detected as the most abundant constituent. The essential oil (EO) of A. selengensis completely inhibited the seed germination of A. retroflexus and P. annua at 1 mg/mL and 0.5 mg/mL, respectively. However, eucalyptol displayed much weaker activity compared with the EO, indicating that other less abundant constituents might contribute significantly to the EO's activity. Our study is the first report on the phytotoxicity of A. selengensis EO, suggesting that A. selengensis might release allelopathic volatile agents into the environment that negatively affect other plants' development so as to facilitate its own dominance; the potential value of utilizing A. selengensis EO as an environmentally friendly herbicide is also discussed.


Assuntos
Amaranthus/efeitos dos fármacos , Artemisia/química , Desenvolvimento Vegetal/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Poa/efeitos dos fármacos , Compostos Orgânicos Voláteis/farmacologia , Amaranthus/crescimento & desenvolvimento , Poa/crescimento & desenvolvimento , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/isolamento & purificação
11.
Molecules ; 26(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34684788

RESUMO

It is known that Senna obtusifolia has been used in medicine since ancient times due to the content of many valuable compounds with a pro-health effect. One of them is betulinic acid, which is a pentacyclic triterpene with antimalarial, antiviral, anti-inflammatory and anticancer properties. In this work, a continuation of our previous research, an attempt was made to increase the level of betulinic acid accumulation by the cultivation of transgenic hairy roots that overexpress the squalene synthase gene in a 10 L sprinkle bioreactor with methyl jasmonate elicitation. We present that the applied strategy allowed us to increase the content of betulinic acid in hairy root cultures to the level of 48 mg/g dry weight. The obtained plant extracts showed a stronger cytotoxic effect on the U87MG glioblastoma cell line than the roots grown without elicitors. Additionally, the induction of apoptosis, reduction of mitochondrial membrane potential, chromosomal DNA fragmentation and activation of caspase cascades are demonstrated. Moreover, the tested extract showed inhibition of topoisomerase I activity.


Assuntos
Acetatos/farmacologia , Antineoplásicos Fitogênicos/metabolismo , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Triterpenos Pentacíclicos/metabolismo , Senna/efeitos dos fármacos , Senna/metabolismo , Células A549 , Antineoplásicos Fitogênicos/biossíntese , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Reatores Biológicos , Biotecnologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Fragmentação do DNA/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Triterpenos Pentacíclicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plantas Medicinais/efeitos dos fármacos , Plantas Medicinais/crescimento & desenvolvimento , Plantas Medicinais/metabolismo , Senna/crescimento & desenvolvimento , Ácido Betulínico
12.
Biomolecules ; 11(9)2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34572496

RESUMO

The plant hormone jasmonic acid (JA) fine tunes the growth-defense dilemma by inhibiting plant growth and stimulating the accumulation of secondary compounds. We investigated the interactions between JA and phytochrome B signaling on growth and the accumulation of selected secondary metabolites in Hypericum perforatum L., a medically important plant, by spraying plants with methyl jasmonate (MeJA) and by adding far-red (FR) lighting. MeJA inhibited plant growth, decreased fructose concentration, and enhanced the accumulation of most secondary metabolites. FR enhanced plant growth and starch accumulation and did not decrease the accumulation of most secondary metabolites. MeJA and FR acted mostly independently with no observable interactions on plant growth or secondary metabolite levels. The accumulation of different compounds (e.g., hypericin, flavonols, flavan-3-ols, and phenolic acid) in shoots, roots, and root exudates showed different responses to the two treatments. These findings indicate that the relationship between growth and secondary compound accumulation is specific and depends on the classes of compounds and/or their organ location. The combined application of MeJA and FR enhanced the accumulation of most secondary compounds without compromising plant growth. Thus, the negative correlations between biomass and the content of secondary compounds predicted by the growth-defense dilemma were overcome.


Assuntos
Ciclopentanos/farmacologia , Hypericum/crescimento & desenvolvimento , Hypericum/metabolismo , Luz , Oxilipinas/farmacologia , Exsudatos de Plantas/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Acetatos/farmacologia , Biomassa , Vias Biossintéticas/efeitos dos fármacos , Carboidratos/análise , Hypericum/efeitos dos fármacos , Hypericum/efeitos da radiação , Íons , Tamanho do Órgão/efeitos dos fármacos , Fenóis/análise , Pigmentos Biológicos/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/efeitos da radiação , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/efeitos da radiação
13.
Int J Mol Sci ; 22(18)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34576274

RESUMO

Biotransformation of four bioactive phenolic constituents from licorice, namely licoisoflavanone (1), glycyrrhisoflavone (2), echinatin (3), and isobavachalcone (4), was performed by the selected fungal strain Aspergillus niger KCCM 60332, leading to the isolation of seventeen metabolites (5-21). Structures of the isolated compounds were determined on the basis of extensive spectroscopic methods, twelve of which (5-7, 10-17 and 19) have been previously undescribed. A series of reactions including hydroxylation, hydrogenation, epoxidation, hydrolysis, reduction, cyclization, and alkylation was observed in the biotransformation process. All compounds were tested for their cytotoxic activities against three different human cancer cell lines including A375P, MCF-7, and HT-29. Compounds 1 and 12 exhibited most considerable cytotoxic activities against all the cell lines investigated, while compounds 2 and 4 were moderately cytotoxic. These findings will contribute to expanding the chemical diversity of phenolic compounds, and compounds 1 and 12 may serve as leads for the development of potential cancer chemopreventive agents.


Assuntos
Biotransformação , Glycyrrhiza/química , Fenol/química , Anticarcinógenos/farmacologia , Antineoplásicos/química , Aspergillus niger/metabolismo , Linhagem Celular Tumoral , Fermentação , Fungos/metabolismo , Células HT29 , Humanos , Hidrólise , Concentração Inibidora 50 , Células MCF-7 , Fenóis , Extratos Vegetais , Raízes de Plantas/efeitos dos fármacos , Pós , Rizoma/metabolismo , Espectrofotometria , Sais de Tetrazólio/farmacologia , Tiazóis/farmacologia
14.
Molecules ; 26(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34577094

RESUMO

Among rare earth elements, cerium has the unique ability of regulating the growth of plant cells and the biosynthesis of metabolites at different stages of plant development. The signal pathways of Ce3+-mediated ginsenosides biosynthesis in ginseng hairy roots were investigated. At a low concentration, Ce3+ improved the elongation and biomass of hairy roots. The Ce3+-induced accumulation of ginsenosides showed a high correlation with the reactive oxygen species (ROS), as well as the biosynthesis of endogenous methyl jasmonate (MeJA) and ginsenoside key enzyme genes (PgSS, PgSE and PgDDS). At a Ce3+ concentration of 20 mg L-1, the total ginsenoside content was 1.7-fold, and the total ginsenosides yield was 2.7-fold that of the control. Malondialdehyde (MDA) content and the ROS production rate were significantly higher than those of the control. The activity of superoxide dismutase (SOD) was significantly activated within the Ce3+ concentration range of 10 to 30 mg L-1. The activity of catalase (CAT) and peroxidase (POD) strengthened with the increasing concentration of Ce3+ in the range of 20-40 mg L-1. The Ce3+ exposure induced transient production of superoxide anion (O2•-) and hydrogen peroxide (H2O2). Together with the increase in the intracellular MeJA level and enzyme activity for lipoxygenase (LOX), there was an increase in the gene expression level of MeJA biosynthesis including PgLOX, PgAOS and PgJMT. Our results also revealed that Ce3+ did not directly influence PgSS, PgSE and PgDDS activity. We speculated that Ce3+-induced ROS production could enhance the accumulation of ginsenosides in ginseng hairy roots via the direct stimulation of enzyme genes for MeJA biosynthesis. This study demonstrates a potential approach for understanding and improving ginsenoside biosynthesis that is regulated by Ce3+-mediated signal transduction.


Assuntos
Acetatos/metabolismo , Cério/farmacologia , Ciclopentanos/metabolismo , Ginsenosídeos/biossíntese , Oxilipinas/metabolismo , Panax/química , Panax/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Ginsenosídeos/análise , Panax/efeitos dos fármacos , Panax/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
Biomolecules ; 11(8)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34439770

RESUMO

Climate change is a pressing matter of anthropogenic nature to which agriculture contributes by abusing production inputs such as inorganic fertilizers and fertigation water, thus degrading land and water sources. Moreover, as the increase in the demand of food in 2050 is estimated to be 25 to 70% more than what is currently produced today, a sustainable intensification of agriculture is needed. Biostimulant substances are products that the EU states work by promoting growth, resistance to plant abiotic stress, and increasing produce quality, and may be a valid strategy to enhance sustainable agricultural practice. Presented in this review is a comprehensive look at the scientific literature regarding the widely used and EU-sanctioned biostimulant substances categories of silicon, seaweed extracts, protein hydrolysates, and humic substances. Starting from their origin, the modulation of plants' hormonal networks, physiology, and stress defense systems, their in vivo effects are discussed on some of the most prominent vegetable species of the popular plant groupings of cucurbits, leafy greens, and nightshades. The review concludes by identifying several research areas relevant to biostimulant substances to exploit and enhance the biostimulant action of these substances and signaling molecules in horticulture.


Assuntos
Agricultura/métodos , Agricultura/tendências , Cucurbita/crescimento & desenvolvimento , Fertilizantes , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Solanum/efeitos dos fármacos , Verduras , Mudança Climática , Cucurbita/efeitos dos fármacos , Substâncias Húmicas , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Hidrolisados de Proteína , Espécies Reativas de Oxigênio , Alga Marinha , Silicatos , Silício/química
16.
Molecules ; 26(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34443651

RESUMO

Caraway (Carum carvi L.) essential oil is a candidate for botanical herbicides. A hypothesis was formulated that the sand-applied maltodextrin-coated caraway oil (MCEO) does not affect the growth of maize (Zea mays L.). In the pot experiment, pre-emergence application of five doses of MCEO was tested on four maize cultivars up to the three-leaf growth stage. The morphological analyses were supported by the measurements of relative chlorophyll content (SPAD), two parameters of chlorophyll a fluorescence, e.g., Fv/Fm and Fv/F0, and fluorescence emission spectra. The analyzed MCEO contained 6.5% caraway EO with carvone and limonene as the main compounds, constituting 95% of the oil. The MCEO caused 7-day delays in maize emergence from the dose of 0.9 g per pot (equal to 96 g m-2). Maize development at the three-leaf growth stage, i.e., length of roots, length of leaves, and biomass of shoots and leaves, was significantly impaired already at the lowest dose of MCEO: 0.4 g per pot, equal to 44 g m-2. A significant drop of both chlorophyll a fluorescence parameters was noted, on average, from the dose of 0.7 g per pot, equal to 69 g m-2. Among the tested cultivars, cv. Rywal and Pomerania were less susceptible to the MCEO compared to the cv. Kurant and Podole. In summary, maize is susceptible to the pre-emergence, sand-applied MCEO from the dose of 44 g m-2.


Assuntos
Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento , Biomassa , Carum/química , Clorofila A/metabolismo , Monoterpenos Cicloexânicos/química , Monoterpenos Cicloexânicos/farmacologia , Fluorescência , Herbicidas/farmacologia , Limoneno/química , Limoneno/farmacologia , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Zea mays/metabolismo
17.
Methods Mol Biol ; 2289: 301-312, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34270079

RESUMO

Hybrid varieties dominate the red beet market. The breeding process necessary to produce these cultivars is very difficult and time consuming. The application of in vitro gynogenesis can reduce the time needed to produce the corresponding homozygous pure lines to a few months. Our research team has developed a method to obtain red beet doubled haploid plants by gynogenesis. The best medium for gynogenesis induction is the B5 medium with the addition of 0.5 mg/L IAA, 0.2 mg/L BA, and 322 mg/L putrescine, whereas the best medium for shoot induction from embryos proved to be the MS medium supplemented with 0.1 mg/L NAA, 0.1 mg/L BA, and 0.5 mg/L putrescine. The shoots obtained were rooted on MS medium containing half the concentration of microelements and 3 mg/L NAA, 160 mg/L putrescine, and 20 g/L sucrose. Ploidy evaluation of gynogenetic plants was performed by flow cytometry and homozygosity or heterozygosity was determined by two isoenzymatic systems: PGI and AAT.


Assuntos
Beta vulgaris/efeitos dos fármacos , Óvulo Vegetal/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/efeitos dos fármacos , Haploidia , Homozigoto , Melhoramento Vegetal/métodos , Regeneração/efeitos dos fármacos
18.
Plant J ; 107(6): 1616-1630, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34216173

RESUMO

Glutamine is a product of ammonium (NH4+ ) assimilation catalyzed by glutamine synthetase (GS) and glutamate synthase (GOGAT). The growth of NH4+ -preferring paddy rice (Oryza sativa L.) depends on root NH4+ assimilation and the subsequent root-to-shoot allocation of glutamine; however, little is known about the mechanism of glutamine storage in roots. Here, using transcriptome and reverse genetics analyses, we show that the rice amino acid transporter-like 6 (OsATL6) protein exports glutamine to the root vacuoles under NH4+ -replete conditions. OsATL6 was expressed, along with OsGS1;2 and OsNADH-GOGAT1, in wild-type (WT) roots fed with sufficient NH4 Cl, and was induced by glutamine treatment. We generated two independent Tos17 retrotransposon insertion mutants showing reduced OsATL6 expression to determine the function of OsATL6. Compared with segregants lacking the Tos17 insertion, the OsATL6 knock-down mutant seedlings exhibited lower root glutamine content but higher glutamine concentration in the xylem sap and greater shoot growth under NH4+ -replete conditions. The transient expression of monomeric red fluorescent protein-fused OsATL6 in onion epidermal cells confirmed the tonoplast localization of OsATL6. When OsATL6 was expressed in Xenopus laevis oocytes, glutamine efflux from the cell into the acidic bath solution increased. Under sufficient NH4+ supply, OsATL6 transiently accumulated in sclerenchyma and pericycle cells, which are located adjacent to the Casparian strip, thus obstructing the apoplastic solute path, and in vascular parenchyma cells of WT roots before the peak accumulation of GS1;2 and NADH-GOGAT1 occurred. These findings suggest that OsATL6 temporarily stores excess glutamine, produced by NH4+ assimilation, in root vacuoles before it can be translocated to the shoot.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Glutamina/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Amônia/metabolismo , Cloreto de Amônio/farmacologia , Animais , Feminino , Regulação da Expressão Gênica de Plantas , Homeostase , Mutação , Cebolas/citologia , Cebolas/genética , Oócitos/metabolismo , Oryza/efeitos dos fármacos , Oryza/genética , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Vacúolos/metabolismo , Xenopus laevis
19.
Molecules ; 26(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072168

RESUMO

This study aims to investigate whether the in vitro-cultured L. pumila var. alata has higher antioxidant activity than its wild plant. An 8-week-old L. pumila var. alata nodal segment and leaf explants were cultured onto Murashige and Skoog (MS) medium supplemented with various cytokinins (zeatin, kinetin, and 6-benzylaminopurine (BAP)) for shoot multiplication and auxins (2,4-dichlorophenoxyacetic acid (2,4-D) and picloram) for callus induction, respectively. The results showed that 2 mg/L zeatin produced the optimal results for shoot and leaf development, and 0.5 mg/L 2,4-D produced the highest callus induction results (60%). After this, 0.5 mg/L 2,4-D was combined with 0.25 mg/L cytokinins and supplemented to the MS medium. The optimal results for callus induction (100%) with yellowish to greenish and compact texture were obtained using 0.5 mg/L 2,4-D combined with 0.25 mg/L zeatin. Leaves obtained from in vitro plantlets and wild plants as well as callus were extracted and analyzed for their antioxidant activities (DPPH and FRAP methods) and polyphenolic properties (total flavonoid and total phenolic content). When compared with leaf extracts of in vitro plantlets and wild plants of L. pumila var. alata, the callus extract displayed significantly higher antioxidant activities and total phenolic and flavonoid content. Hence, callus culture potentially can be adapted for antioxidant and polyphenolic production to satisfy pharmaceutical and nutraceutical needs while conserving wild L. pumila var. alata.


Assuntos
Calo Ósseo/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Polifenóis/química , Primulaceae/efeitos dos fármacos , Ácido 2,4-Diclorofenoxiacético/química , Antioxidantes/química , Compostos de Benzil/química , Compostos de Bifenilo/química , Meios de Cultura , Suplementos Nutricionais , Flavonoides/química , Técnicas In Vitro , Cinetina/química , Fenol/química , Picloram/química , Picratos/química , Folhas de Planta , Proteínas de Plantas , Raízes de Plantas/efeitos dos fármacos , Plantas/efeitos dos fármacos , Purinas/química , Zeatina/química
20.
Ecotoxicol Environ Saf ; 220: 112411, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34111661

RESUMO

This study focused on the effects of eight medicinal plant extracts on Solanum nigrum L. potential to accumulate Cd and Pb from soil. These medicinal plants were common and relatively cheap. The eight 10% water extracts were made from the peel of Citrus reticulata Blanco (PCR), fruit of Phyllanthus emblica L. (FPE), root of Pueraria Lobata (Willd.) Ohwi (RPL), rhizome of Polygonatum sibiricum Red (RPS), root of Astragalus propinquus Schischkin (RAP), bud of Hemerocallis citrina Baroni (BHC), seed of Nelumbo nucifera Gaertn (SNN) and fruit of Prunus mume (Sieb.) Sieb.etZuce (FPM). The results showed that among all exposures, the treatment with FPE resulted in the significant increase (p < 0.05) of Cd and Pb concentration in shoots and roots of S. nigrum by 32.5% and 65.2% for Cd, and 38.7% and 39.6% for Pb. The biomasses of S. nigrum in all plant extract treatments were not significantly changed (p < 0.05) compared to the control (CK). The Cd and Pb extraction rates of S. nigrum in FPE treatment were increased respectively by 60.5% and 40.5% compared to CK. Though the treatment with EDTA significantly improved (p < 0.05) the concentration of Cd and Pb of S. nigrum, the Cd and Pb masses (ug plant-1) of S. nigrum did not show any significant difference compared to the CK due to the significant decrease in the shoot (20.4%) and root (22.0%) biomasses. The chelative role of FPE might be relation with its higher polyphenolic compounds. However, not sure if the contents of polyphenolic compounds was the only differences between FPE and other additives. Thus, some unknown organic matters might also play active role. This study provided valuable information on improving the phytoremediation potential of hyperaccumulator.


Assuntos
Metais Pesados/metabolismo , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Poluentes do Solo/metabolismo , Solanum nigrum/efeitos dos fármacos , Biodegradação Ambiental/efeitos dos fármacos , Biomassa , Quelantes/química , Quelantes/farmacologia , Extratos Vegetais/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Solanum nigrum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA