Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 924
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(17): 24951-24960, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460038

RESUMO

Solid process fine waste or tailings of a uranium mill is a potential source of release of radiologically significant gaseous radon (222Rn). A number of variables such as radium (226Ra) content, porosity, moisture content, and tailings density can affect the extent of emanation from the tailings. Further, if a cover material is used for remediation purposes, additional challenges due to changes in the matrix characteristics in predicting the radon flux can be anticipated. The uranium mill tailings impoundment systems at Jaduguda have been in use for the long-term storage of fine process waste (tailings). A pilot-scale remediation exercise of one of the tailings ponds has been undertaken with 30 cm soil as a cover material. For the prediction of the radon flux, a numerical model has been developed to account for the radon exhalation process at the remediated site. The model can effectively be used to accommodate both the continuous and discrete variable inputs. Depth profiling and physicochemical characterization for the remediated site have been done for the required input variables of the proposed numerical model. The predicted flux worked out is well below the reference level of 0.74 Bq m-2 s-1 IAEA (2004).


Assuntos
Rádio (Elemento) , Radônio , Poluentes Radioativos do Solo , Urânio , Radônio/análise , Poluentes Radioativos do Solo/análise , Índia , Resíduos Sólidos
2.
Radiat Prot Dosimetry ; 200(6): 544-553, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38446413

RESUMO

Our work investigated the radioprotection implications associated with the possession of a collection of uraniferous minerals. Considering different scenarios, we developed (and applied to an actual collection) specific formulas for radiation doses evaluation. We discussed the shielding necessary to reduce the gamma irradiation down to the required values. A mathematical model was developed to estimate the minimum air flow rate to reduce the radon air concentration below the reference values. The radiation risks associated to the handling of single specimens was also addressed, including hand skin irradiation and shielding capabilities of surgical lead gloves. Finally, we discussed the radiation risks associated to the exhibition of a single specimen. The results, compared to the safety standards of the EU Directive 13/59, show that the exhibition of uraniferous samples with activity of a few MBq do not need specific radioprotection requirements nor for the involved personnel nor for visitors.


Assuntos
Exposição Ocupacional , Monitoramento de Radiação , Proteção Radiológica , Proteção Radiológica/normas , Proteção Radiológica/métodos , Humanos , Exposição Ocupacional/análise , Exposição Ocupacional/prevenção & controle , Monitoramento de Radiação/métodos , Doses de Radiação , Minerais/análise , Raios gama , Radônio/análise , Poluentes Radioativos do Ar/análise , Urânio/análise , Modelos Teóricos
3.
J Environ Radioact ; 273: 107393, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354571

RESUMO

In this paper, the influence of an earthquake on radon exhalation rate of uranium tailings reservoir beach under high temperature environment is studied by using a self-made integrated simulation test device for natural disasters, and a scale model test based on similarity and dimensional laws. The results show that, (1)When the peak acceleration reaches 0.6g, the radon exhalation rate increases sharply with the increase of peak acceleration, and tends to be gentle after 1.0g. (2)Under the action of high temperature, the radon exhalation rate increases rapidly with the increase of high temperature time, and gradually becomes flat after the 4th hour. (3)Compared with loading the earthquake condition only, the coupling effect of high temperatures and earthquakes causes a greater degree of damage to the beach surface of a uranium tailings reservoir under the same acceleration conditions, and the fissure rate and radon exhalation rate of the beach surface are substantially increased.


Assuntos
Terremotos , Monitoramento de Radiação , Radônio , Urânio , Radônio/análise , Temperatura , Urânio/análise , Expiração , Monitoramento de Radiação/métodos
4.
Radiat Environ Biophys ; 63(1): 7-16, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38172372

RESUMO

The Pooled Uranium Miners Analysis (PUMA) study is the largest uranium miners cohort with 119,709 miners, 4.3 million person-years at risk and 7754 lung cancer deaths. Excess relative rate (ERR) estimates for lung cancer mortality per unit of cumulative exposure to radon progeny in working level months (WLM) based on the PUMA study have been reported. The ERR/WLM was modified by attained age, time since exposure or age at exposure, and exposure rate. This pattern was found for the full PUMA cohort and the 1960 + sub-cohort, i.e., miners hired in 1960 or later with chronic low radon exposures and exposure rates. The aim of the present paper is to calculate the lifetime excess absolute risk (LEAR) of lung cancer mortality per WLM using the PUMA risk models, as well as risk models derived in previously published smaller uranium miner studies, some of which are included in PUMA. The same methods were applied for all risk models, i.e., relative risk projection up to <95 years of age, an exposure scenario of 2 WLM per year from age 18-64 years, and baseline mortality rates representing a mixed Euro-American-Asian population. Depending upon the choice of model, the estimated LEAR per WLM are 5.38 × 10-4 or 5.57 × 10-4 in the full PUMA cohort and 7.50 × 10-4 or 7.66 × 10-4 in the PUMA 1960 + sub-cohort, respectively. The LEAR per WLM estimates derived from risk models reported for previously published uranium miners studies range from 2.5 × 10-4 to 9.2 × 10-4. PUMA strengthens knowledge on the radon-related lung cancer LEAR, a useful way to translate models for policy purposes.


Assuntos
Neoplasias Pulmonares , Neoplasias Induzidas por Radiação , Doenças Profissionais , Exposição Ocupacional , Radônio , Urânio , Humanos , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Estudos de Coortes , Radônio/efeitos adversos , Urânio/efeitos adversos , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/etiologia , Exposição Ocupacional/efeitos adversos , Neoplasias Induzidas por Radiação/epidemiologia , Neoplasias Induzidas por Radiação/etiologia , Proteínas Reguladoras de Apoptose , Doenças Profissionais/epidemiologia
5.
J Environ Radioact ; 272: 107346, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38043218

RESUMO

It is well known that one of the most important risk factors in underground environment is the harmful effects of radon. The reasons for strong seasonal fluctuations in radon content in underground environments remain not fully understood. The purpose of this article is to improve existing ideas about this phenomenon. The article presents the results of a study of radon transport in two different underground spaces - the Beshtaugorskiy uranium mine (North Caucasus) and the Kungur Ice Cave (Middle Ural). We have used the direct measurements of the equilibrium equivalent concentration (EEC) of radon progeny in air, as well as the air flow velocity. A very wide range and strong seasonal variations in the radon levels have been recorded in both cases. The EEC has a range of 11-6653 by Bq m-3 and 10-89,020 Bq m-3 in the Kungur cave and the Beshtaugorskiy mine, respectively. It has been established that seasonal fluctuations in radon levels both in the mine and in the cave are caused by the same process - convective air circulation in the underground space due to the temperature difference between the mountain massif and the atmosphere (so called chimney effect). Overall, these results indicate that due to convective air circulation, underground spaces are periodically intensively ventilated with atmospheric air, and then, on the contrary, they are filled with radon-enriched air that seeps into caves or adits from rocks and ores. In both cases, the EEC of radon progeny exceeds the permissible level for the population and workers. The results of this study highlight the need for the development of measures to limit the presence of people in the surveyed underground spaces.


Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Radônio , Urânio , Humanos , Radônio/análise , Poluentes Radioativos do Ar/análise , Estações do Ano , Gelo , Produtos de Decaimento de Radônio , Cavernas
6.
Int J Radiat Biol ; 100(3): 399-410, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37930055

RESUMO

PURPOSE: Assessment of absorbed doses on organs and tissues of miners during radon exposure in the Schneeberg mines in the sixteenth century and calculation of the probability of occurrence of radiation-induced lung cancer and lung fibrosis, considering the life expectancy characteristic and the absence of smoking. MATERIALS AND METHODS: The expected radon concentration at the Schneeberg mines has been estimated using published data. Modeling of the accumulation of radon in the working tunnels of mine workings was carried out using the RESRAD-Build 4.0, based on the radium concentration in soil and geometric parameters of the mining tunnel from the engravings in Agricola's book. The dynamics of radionuclides in the human body were performed using the WinAct software in accordance with data from ICRP Publications 130 and 137. The values of absorbed doses on the tissues of the respiratory tract were obtained using the IDAC 2.1 program. Several models based on the epidemiology of uranium miners have been used to calculate radiation risks from radon exposure. The probability of male survival at birth and the age-specific frequency of spontaneous lung cancer not associated with radiation for miners of the sixteenth century (nonsmoking men aged 20-40 years) were estimated to properly calculate the radiation risks. RESULTS: The expected radon concentration in the Schneeberg mines was assessed in the range of 75-100 kBq m-3. The average value of the equilibrium factor was estimated as 0.49 ± 0.03. The annual exposure of miners to radon decay products was assessed as 125-165 WLM year-1. The annual values of absorbed doses to different sections of the respiratory tract were calculated, the maximum absorbed doses of α-radiation are formed on the bronchial and bronchiolar regions of the lungs (2.23 Gy year-1). The deterministic effects as radiation fibrosis of the lungs with 10 years of experience in the mines of Schneeberg have a probability of occurrence from 60 to 100%. All the models used for radiation risk assessments showed that the lifetime risk of developing lung cancer for nonsmoking Schneeberg miners is many times lower than the risk of developing deterministic radiation effects. In contrast, for the smoking cohort of miners in the nineteenth century lung cancer become the dominant cause of death. CONCLUSIONS: The deterministic radiation effects of Schneeberg miners in sixteenth century, exposed to extremely high levels of radon, such as radiation pneumosclerosis or pulmonary fibrosis, are more likely than the development of radiation-induced lung cancer.


Assuntos
Neoplasias Pulmonares , Neoplasias Induzidas por Radiação , Doenças Profissionais , Exposição Ocupacional , Radônio , Urânio , Recém-Nascido , Humanos , Masculino , Neoplasias Pulmonares/epidemiologia , Síndrome da Fibrose por Radiação , Radônio/efeitos adversos , Pulmão , Mineração , Neoplasias Induzidas por Radiação/epidemiologia , Exposição Ocupacional/efeitos adversos , Urânio/efeitos adversos , Doenças Profissionais/etiologia
7.
Health Phys ; 126(2): 104-116, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37851395

RESUMO

ABSTRACT: To estimate equivalent doses received by eye tissues of patients, contents of uranium ( 238 U), thorium ( 232 Th), radon ( 222 Rn), and thoron ( 220 Rn) were determined inside various optical contact lenses used for vision correction. 238 U, 232 Th, 222 Rn, and 220 Rn contents varied between (3.44 ± 0.24) mBq kg -1 and (18.3 ± 1.28) mBq kg -1 , (0.57 ± 0.04) mBq kg -1 and (3.53 ± 0.25) mBq kg -1 , (3.44 ± 0.24) mBq kg -1 and (18.3 ± 1.28) mBq kg -1 , and (0.57 ± 0.04) mBq kg -1 and (3.53 ± 0.25) mBq kg -1 , respectively. New external dosimetric models, depending on the cornea eye surface of patients, 238 U, 232 Th, and 222 Rn concentrations inside optical contact lenses, half-life of the emitting radionuclides, and exposure time of patients, have been developed. It has been shown that alpha-particles emitted by the 238 U and 232 Th series inside the studied optical lenses transfer their energies essentially to the cornea tissues whereas the emitted beta-particles may reach and lose their energies in the crystalline lens of eyes of patients. Alpha-equivalent doses received by eye tissues of patients due to the diffusion of 222 Rn and 220 Rn gases present in the considered optical lenses were determined. The higher value of the total (alpha plus beta) equivalent dose to the left and right eyes of adult patients wearing optical contact lenses (14 hours per day) has been found equal to 1.32 mSv y -1 cm - 2 . It is recommended for patients to reduce the wearing period of optical contact lenses to reduce eye disease risks such as cataract.


Assuntos
Lentes de Contato , Radônio , Urânio , Adulto , Humanos , Tório/análise , Urânio/análise , Radônio/análise , Córnea
8.
Int J Radiat Biol ; 100(2): 161-175, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37819879

RESUMO

INTRODUCTION: Mallinckrodt Chemical Works was a uranium processing facility during the Manhattan Project from 1942 to 1966. Thousands of workers were exposed to low-dose-rates of ionizing radiation from external and internal sources. This third follow-up of 2514 White male employees updates cancer and noncancer mortality potentially associated with radiation and silica dust. MATERIALS AND METHODS: Individual, annualized organ doses were estimated from film badge records (n monitored = 2514), occupational chest x-rays (n = 2514), uranium urinalysis (n = 1868), radium intake through radon breath measurements (n = 487), and radon ambient measurements (n = 1356). Silica dust exposure from pitchblende processing was estimated (n = 1317). Vital status and cause of death determination through 2019 relied upon the National Death Index and Social Security Administration Epidemiological Vital Status Service. The analysis included standardized mortality ratios (SMRs), Cox proportional hazards, and Poisson regression models. RESULTS: Vital status was confirmed for 99.4% of workers (84.0% deceased). For a dose weighting factor of 1 for intakes of uranium, radium, and radon decay products, the mean and median lung doses were 65.6 and 29.9 mGy, respectively. SMRs indicated a difference in health outcomes between salaried and hourly workers, and more brain cancer deaths than expected [SMR: 1.79; 95% confidence interval (CI): 1.14, 2.70]. No association was seen between radiation and lung cancer [hazard ratio (HR) at 100 mGy: 0.93; 95%CI: 0.78, 1.11]. The relationship between radiation and kidney cancer observed in the previous follow-up was maintained (HR at 100 mGy: 2.07; 95%CI: 1.12, 3.79). Cardiovascular disease (CVD) also increased significantly with heart dose (HR at 100 mGy: 1.11; 95%CI: 1.02, 1.21). Exposures to dust ≥23.6 mg/m3-year were associated with nonmalignant kidney disease (NMKD) (HR: 3.02; 95%CI: 1.12, 8.16) and kidney cancer combined with NMKD (HR: 2.46; 95%CI: 1.04, 5.81), though without evidence of a dose-response per 100 mg/m3-year. CONCLUSIONS: This third follow-up of Mallinckrodt uranium processors reinforced the results of the previous studies. There was an excess of brain cancers compared with the US population, although no radiation dose-response was detected. The association between radiation and kidney cancer remained, though potentially due to few cases at higher doses. The association between levels of silica dust ≥23.6 mg/m3-year and NMKD also remained. No association was observed between radiation and lung cancer. A positive dose-response was observed between radiation and CVD; however, this association may be confounded by smoking, which was unmeasured. Future work will pool these data with other uranium processing worker cohorts within the Million Person Study.


Assuntos
Doenças Cardiovasculares , Neoplasias Renais , Neoplasias Pulmonares , Neoplasias Induzidas por Radiação , Doenças Profissionais , Exposição Ocupacional , Rádio (Elemento) , Radônio , Urânio , Humanos , Masculino , Urânio/efeitos adversos , Seguimentos , Estudos de Coortes , Exposição Ocupacional/efeitos adversos , Neoplasias Induzidas por Radiação/epidemiologia , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/epidemiologia , Neoplasias Renais/complicações , Poeira , Dióxido de Silício , Doenças Profissionais/etiologia
9.
Radiat Prot Dosimetry ; 199(20): 2481-2486, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38126856

RESUMO

The gamma activity of the radionuclides238U, 232Th and 40K were measured in surface soil samples collected from 40 villages of Aland, Afzalpur, Ganaghapur and Kamalapur talukas of Northern Gulbarga district, Karnataka. The gamma activity of natural radionuclides were measured using 4" × 4" NaI (Tl) scintillation detector, the spectrum was analysed using a PC based 1 k MCA (winTMCA 32 scinti SPEC) and the 222Rn activity concentrations in drinking water were determined by the Emanometry method. The activity of 238U, 232Th and 40K was found to be in the range from 14.3 ± 0.3 to 64.5 ± 6.1, 15.4 ± 0.2 to 95.0 ± 4.1 and 21 ± 06 to 323 ± 09 Bq kg-1, respectively. Outdoor AED from 0.023 to 0.07 mSv y-1 and all the radiological hazards indices were well within the safe limit. The 222Rn activity in ground water is found to vary from 1.11 to 66.6 Bq l-1. The total annual effective doses due to 222Rn inhalation and ingestion range from 3.02 to 181.81 µSv y-1, respectively, with an average value of 77.18 µSv y-1.


Assuntos
Água Potável , Radioatividade , Radônio , Urânio , Solo , Tório , Índia
10.
Radiat Prot Dosimetry ; 199(18): 2199-2202, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37934994

RESUMO

Good response was observed in simultaneously using six RAD7 detectors at high radon concentrations, temperatures and relative humidity conditions. RAD7 detectors were tested in laboratory using radon chambers from 13 up to 59.8 kBq m-3, statistical analysis allows to distinct between counting errors and radon variation. RAD7 detectors were exposure to extreme environmental conditions at uranium flat mine. High radon concentration in soil from a confined uranium mineral was 274.3 kBq m-3 at 44°C temperature and 20% relative humidity. Inside uranium mine radon increased from 1.0 up to 88.5 kBq m-3.


Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Radônio , Urânio , Radônio/análise , Urânio/análise , Poluentes Radioativos do Ar/análise , Temperatura
11.
Radiat Environ Biophys ; 62(4): 415-425, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37695330

RESUMO

UNSCEAR recently recommended that future research on the lung cancer risk at low radon exposures or exposure rates should focus on more contemporary uranium miners. For this purpose, risk models in the German Wismut cohort of uranium miners were updated extending the follow-up period by 5 years to 1946-2018. The full cohort (n = 58,972) and specifically the 1960 + sub-cohort of miners first hired in 1960 or later (n = 26,764) were analyzed. The 1960 + sub-cohort is characterized by low protracted radon exposure of high quality of measurements. Internal Poisson regression was used to estimate the excess relative risk (ERR) for lung cancer per cumulative radon exposure in Working Level Months (WLM). Applying the BEIR VI exposure-age-concentration model, the ERR/100 WLM was 2.50 (95% confidence interval (CI) 0.81; 4.18) and 6.92 (95% CI < 0; 16.59) among miners with attained age < 55 years, time since exposure 5-14 years, and annual exposure rates < 0.5 WL in the full (n = 4329 lung cancer deaths) and in the 1960 + sub-cohort (n = 663 lung cancer deaths), respectively. Both ERR/WLM decreased with older attained ages, increasing time since exposure, and higher exposure rates. Findings of the 1960 + sub-cohort are in line with those from large pooled studies, and ERR/WLM are about two times higher than in the full Wismut cohort. Notably, 20-30 years after closure of the Wismut mines in 1990, the estimated fraction of lung cancer deaths attributable to occupational radon exposure is still 26% in the full Wismut cohort and 19% in the 1960 + sub-cohort, respectively. This demonstrates the need for radiation protection against radon.


Assuntos
Neoplasias Pulmonares , Neoplasias Induzidas por Radiação , Doenças Profissionais , Exposição Ocupacional , Radônio , Urânio , Humanos , Pessoa de Meia-Idade , Estudos de Coortes , Risco
12.
Eur Rev Med Pharmacol Sci ; 27(15): 7352-7361, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37606144

RESUMO

OBJECTIVE: Radon (Rn-222) is a noble gas formed in the uranium path (U-238) as a decay product of radium (Ra-226). It is estimated to cause between 3% to 14% of all lung cancers, depending on the national average radon level and smoking prevalence. Radon molecules emit alpha radiation, which is characterized by low permeability through tissues, but due to its remarkably high energy, it has a high potential for DNA damage. The aim of our research was to assess the radon concentration inside the houses of patients with advanced lung cancer and to analyze their socio-economics status. PATIENTS AND METHODS: The measurements of radon concentration were performed in 102 patients with stage 3B or higher lung cancer in the region of Lublin, Poland. One month of radon exposure measurement was performed with alpha-track detectors. In addition, patients filled in a detailed survey about factors that might influence the concentration of radon inside their houses. RESULTS: The average concentration of radon during the exposure of the detector in the residential premises of the respondents was at the level of 69.0 Bq/m3 [37.0-117.0]. A few significant correlations were discovered, e.g., higher levels of radon in countryside houses or in houses equipped with air conditioning. CONCLUSIONS: As radon exposure is a modifiable risk factor for lung cancer, it is extremely important to find factors that may reduce its concentration in dwelling places. Since our research was performed in houses of people with lung cancer, taking corrective actions based on our findings could prevent new lung cancer incidence in patients' flatmates.


Assuntos
Neoplasias Pulmonares , Radônio , Urânio , Humanos , Polônia/epidemiologia , Condições Sociais , Radônio/efeitos adversos , Neoplasias Pulmonares/epidemiologia
13.
Sci Rep ; 13(1): 12752, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550495

RESUMO

The statistics of COVID-19 accumulated in Ukraine show areas with a significantly lower incidence of diseases. The purpose of the study was to identify factors that could influence the pattern of the pandemic in a particular area. Within the study it was assumed that the level of health care is approximately the same throughout the country. Population density was considered the main factor influencing the dynamics of the spread of infection. To reduce the impact of changes in population density across regions, it was normalized by the average population density in the country. The normalization of statistics for the country resulted in a model in the form of a linear relationship between the normalized values of the number of COVID-19 cases in the region and the size of the region. Subsequent analysis of the graphical data made it possible to identify four regions with the lowest incidence of COVID-19. The geographical proximity of these regions Dnipro, Kherson, Vinnytsia and Kirovograd, indicates the presence of a common factor for them, not typical for the rest of Ukraine. Such a factor may be the location of 83% of Ukraine's uranium deposits in the territories around Kirovohrad. Radon is one of the decay products of uranium, so the population of these areas may experience increased exposure to radon. This noble gas has more than a century of medical use, in particular for pulmonary diseases, although there is still no consensus about its effectiveness and side effects. Considering that COVID-19 was often complicated by pulmonary diseases, it can be assumed that the geological specificity of these four regions of Ukraine had an impact on the course of the COVID-19 pandemic in their territories. The study findings are important in terms of further COVID-19 research and prevention strategies.


Assuntos
Poluentes Radioativos do Ar , COVID-19 , Radônio , Urânio , Humanos , Radônio/efeitos adversos , Radônio/análise , Urânio/análise , Pandemias , COVID-19/epidemiologia , Poluentes Radioativos do Ar/análise
14.
Health Phys ; 125(3): 232-237, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37459468

RESUMO

ABSTRACT: Disposal of naturally occurring radioactive material (NORM) and technologically enhanced naturally occurring radioactive material (TENORM) waste in the State of Oregon is prohibited unless it can be demonstrated that the material is nonradioactive as defined by its radionuclide content and potential for emission into the environment. It was determined that a radon flux on the surface of the waste no greater than 0.37 Bq m -2 s -1 would meet this requirement. This article provides a method to estimate the radon flux through indirect measurement of the radon mass exhalation rate. It describes a device that consists of a radon accumulation chamber coupled with a continuous radon monitor and software to process the results and calculate the radon mass exhalation rate and radon flux for an unknown sample of approximately 500 g. The chamber system was tested with a uranium ore sample.


Assuntos
Monitoramento de Radiação , Resíduos Radioativos , Radônio , Poluentes Radioativos do Solo , Urânio , Radônio/análise , Expiração , Monitoramento de Radiação/métodos , Poluentes Radioativos do Solo/análise
15.
Environ Sci Pollut Res Int ; 30(38): 89140-89152, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37442937

RESUMO

The state of Rio Grande do Norte, located in the Northeast region of Brazil, has areas of granites and pegmatites with minerals that have varying concentrations of uranium. Consequently, high concentrations of radon gas, a carcinogenic substance for humans, can occur. The present study aimed to assess the occurrence of cancer and its association with exposure to sources of natural radioactivity using geological and geophysical information in the aforementioned state. The spatial dependence of pulmonary, breast, stomach, leukemia, and skin cancer cases with the location of radioisotope sources were analyzed using geoprocessing tools. The geoprocessing analysis showed a differential pattern of uranium emission throughout the state, with the highest emission from areas with pegmatites outcrops. A spatial dependency of cancer cases was shown (Moran index: 0.43; p < 0.01). Moreover, a higher rate of natural radioactivity-cancer cases was associated with the high-intensity natural radioactivity areas: odds ratio:1.21 (95% CI 1.20; 1.23), following the same pattern when separately compared the different related types of cancer. These results highlight the importance of natural radioactivity as a public health problem in the Brazilian environmental scenario, confirming the need for further studies as the first toward understanding and implementing health management strategies mitigating the exposures, especially in areas of environmental risk.


Assuntos
Neoplasias , Radioatividade , Radônio , Urânio , Humanos , Brasil/epidemiologia
16.
Sci Rep ; 13(1): 10952, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414833

RESUMO

Plants absorb water, nutrients and minerals from the soil through their root. Also, minerals, the radionuclides present in the growing media also are absorbed by plant parts following the same pathway. Consequently, it is important to determine the concentrations of these radionuclides in edible plants to access the associated risk to human health. In the present work, the levels of natural radioactivity and the level of some toxic elements in 17 medicinal plants, commonly used in Egypt, were measured using high-purity germanium gamma spectrometry and atomic absorption, respectively. The investigated plants were sub-grouped according to the edible parts into leave samples (n = 8), roots (n = 3), and seeds (n = 6). Also, the specific activity of both radon and thoron was measured by using alpha emitters registration which is emitted from radon and thoron gases in CR-39 nuclear track detectors. Additionally, the concentration of some toxic elements (Cu, Zn, Cd and, Pb) in six samples of medicinal plants was determined by atomic absorption spectrometry.


Assuntos
Metais Pesados , Plantas Medicinais , Radioatividade , Radônio , Humanos , Plantas Medicinais/química , Metais Pesados/análise , Radônio/análise , Radioisótopos , Minerais
17.
Radiat Prot Dosimetry ; 199(12): 1284-1294, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37337628

RESUMO

In areas with high natural background radiation, underground cavities tend to have high levels of airborne radionuclides. Within mines, occupancy may involve significant exposure to airborne radionuclides like radon (222Rn), thoron (220Rn) and progeny. The Fen carbonatite complex in Norway has legacy mines going through bedrock with significantly elevated levels of uranium (238U) and especially thorium (232Th), and significant levels of their progeny 222Rn and 220Rn. There are also significantly elevated levels of gamma radiation in these mines. These mines are naturally chimney ventilated and release large volumes of air to the outdoors giving a large local outdoor impact. We placed alpha track detectors at several localities within these mines to measure airborne radionuclides and measured gamma radiation of bedrock at each locality. The bedrock within the mines shows levels up to 1900 Bq kg-1 for 238U, 12 000 Bq kg-1 for 232Th and gamma dose rates up to 11 µSv h-1. Maximum levels of airborne radionuclides were 45 000 Bq m-3 for 220Rn and 6900 Bq m-3 for 222Rn. In addition, we measured levels of thoron progeny (TnP). In order to estimate radiation dose contribution, TnP should be assessed rather than 220Rn, but deposition-based detectors may be biased by the airflow of mine-draft. We present dose rate contributions using UNSCEAR dose conversion factors, and correcting for airflow bias, finding a combined cold season dose rate within these mines of 17-24 µSv h-1. Interestingly, fractional dose rate contributions vary from 0.02 to 0.6 for gamma, 0.33 to 0.95 for radon and 0.1 to 0.25 for TnP.


Assuntos
Poluentes Radioativos do Ar , Poluição do Ar em Ambientes Fechados , Monitoramento de Radiação , Radônio , Urânio , Radônio/análise , Tório/análise , Urânio/análise , Raios gama , Radiação de Fundo , Estações do Ano , Poluentes Radioativos do Ar/análise , Produtos de Decaimento de Radônio/análise , Poluição do Ar em Ambientes Fechados/análise
18.
Environ Monit Assess ; 195(6): 673, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37188758

RESUMO

The objective of this research is to assess the impact of radon concentration on workers at certain construction material industries in Erbil, Kurdistan Region of Iraq. The CR-39 solid-state track detector was used in this experiment to monitor radon levels and their daughters. For this purpose, as a case study group, 70 workers were divided into seven subgroups (gypsum, cement plant, lightweight block, marble, red brick 1, crusher stone, and concrete block 2), and 20 healthy volunteers were selected as a control group. The findings demonstrate that the mean concentrations of radon, radium, uranium, and radon daughters deposited on the detector face (POS) and chamber walls (POW) for the case study group were 9.61 ± 1.52 Bq/m3, 0.33 ± 0.05 Bq/Kg, 5.39 ± 0.86 mBq/Kg, 4 ± 0.63, and 16.62 ± 2.64 mBq/m3, whereas for the control group, they were 3.39 ± 0.58 Bq/m3, 0.117 ± 0.03 Bq/Kg, 1.91 ± 0.32 mBq/Kg, 1.41 ± 0.24, and 5.88 ± 1 mBq/m3, respectively. The statistical analysis revealed that radon, radium, uranium, and POW and POS concentrations were statistically significant (p ≤ 0.001) in the samples for the case study groups of cement, lightweight block, red brick 1, marble, and crusher stone factories in comparison to the control group; however, the results for gypsum and concrete block 2 factories were not statistically significant in comparison to the control group. Intriguingly, the radon levels in every blood sample examined were far lower than the 200 Bq/m3 limit established by the International Atomic Energy Agency. Hence, it may be argued that the blood is devoid of contaminants. These results are crucial for determining whether or not an individual is exposed to substantial quantities of radiation and for demonstrating a link between radon, its daughter, uranium, and the prevalence of cancer among workers in the Kurdish region of Iraq.


Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Rádio (Elemento) , Radônio , Urânio , Humanos , Rádio (Elemento)/análise , Urânio/análise , Sulfato de Cálcio/análise , Monitoramento Ambiental , Radônio/análise , Poluentes Radioativos do Ar/análise , Materiais de Construção/análise , Carbonato de Cálcio/análise , Monitoramento de Radiação/métodos
19.
J Radiol Prot ; 43(2)2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37257438

RESUMO

A pilot study was carried out to measure indoor radon concentrations in a uranium mining area of northern Kazakhstan. A total of 80 places at kindergartens, elementary schools, and dwellings were selected in Aqsu village and Astana city as the uranium mining area and background area for comparison, respectively. In Astana and Aqsu, the 3-month radon concentrations from late summer to autumn in 2022 were measured using the RADUET passive radon detectors. Radon concentrations ranged from 4 to >2000 Bq m-3(mean ± standard deviation: 290 ± 173 Bq m-3) throughout the study areas. The concentrations were higher in Aqsu, and 70% of the dwellings there exceeded 300 Bq m-3, whereas only 5% of them exceeded 300 Bq m-3in Astana. Accordingly, the new dose conversion factor for radon recommended by International Commission on Radiological Protection Publication 137 was applied to calculate the annual effective dose. The annual effective dose from the inhalation of radon was estimated to be 3.6 ± 4.6 mSv y-1for Astana and 23.7 ± 15.6 mSv y-1, for Aqsu, which are both higher than the world average value of 2.5 mSv y-1.


Assuntos
Poluentes Radioativos do Ar , Poluição do Ar em Ambientes Fechados , Monitoramento de Radiação , Radônio , Urânio , Poluentes Radioativos do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Cazaquistão , Projetos Piloto , Habitação , Radônio/análise
20.
J Radiol Prot ; 43(2)2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37257439

RESUMO

The outdoor222Rn and220Rn concentrations at 320 sampling points at 1 m above the ground in different sites surrounding rare earth element (REE) and uranium mines from northern Vietnam were measured using the RAD7. Results showed that222Rn concentrations were always higher than220Rn concentrations with large variation ranges from 25.7 to 573 Bq m-3and from 18.5 to 385 Bq m-3, respectively. The high correlation between220Rn and228Ra concentrations in surface soil of the studied sites were observed. The highest220Rn and222Rn concentrations are found at the sampling points of the REE NX-Lai Chau site. The220Rn and222Rn activities surrounding the REE mines were found to be higher than those surrounding the uranium mines. The average annual committed effective doses originated from the inhalation of220Rn and222Rn outdoor concentrations is about five times higher than the worldwide average value.


Assuntos
Monitoramento de Radiação , Radônio , Urânio , Radônio/análise , Urânio/análise , Vietnã , Mineração , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA