Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 401
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(17): 24951-24960, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460038

RESUMO

Solid process fine waste or tailings of a uranium mill is a potential source of release of radiologically significant gaseous radon (222Rn). A number of variables such as radium (226Ra) content, porosity, moisture content, and tailings density can affect the extent of emanation from the tailings. Further, if a cover material is used for remediation purposes, additional challenges due to changes in the matrix characteristics in predicting the radon flux can be anticipated. The uranium mill tailings impoundment systems at Jaduguda have been in use for the long-term storage of fine process waste (tailings). A pilot-scale remediation exercise of one of the tailings ponds has been undertaken with 30 cm soil as a cover material. For the prediction of the radon flux, a numerical model has been developed to account for the radon exhalation process at the remediated site. The model can effectively be used to accommodate both the continuous and discrete variable inputs. Depth profiling and physicochemical characterization for the remediated site have been done for the required input variables of the proposed numerical model. The predicted flux worked out is well below the reference level of 0.74 Bq m-2 s-1 IAEA (2004).


Assuntos
Rádio (Elemento) , Radônio , Poluentes Radioativos do Solo , Urânio , Radônio/análise , Poluentes Radioativos do Solo/análise , Índia , Resíduos Sólidos
2.
Radiat Prot Dosimetry ; 200(6): 544-553, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38446413

RESUMO

Our work investigated the radioprotection implications associated with the possession of a collection of uraniferous minerals. Considering different scenarios, we developed (and applied to an actual collection) specific formulas for radiation doses evaluation. We discussed the shielding necessary to reduce the gamma irradiation down to the required values. A mathematical model was developed to estimate the minimum air flow rate to reduce the radon air concentration below the reference values. The radiation risks associated to the handling of single specimens was also addressed, including hand skin irradiation and shielding capabilities of surgical lead gloves. Finally, we discussed the radiation risks associated to the exhibition of a single specimen. The results, compared to the safety standards of the EU Directive 13/59, show that the exhibition of uraniferous samples with activity of a few MBq do not need specific radioprotection requirements nor for the involved personnel nor for visitors.


Assuntos
Exposição Ocupacional , Monitoramento de Radiação , Proteção Radiológica , Proteção Radiológica/normas , Proteção Radiológica/métodos , Humanos , Exposição Ocupacional/análise , Exposição Ocupacional/prevenção & controle , Monitoramento de Radiação/métodos , Doses de Radiação , Minerais/análise , Raios gama , Radônio/análise , Poluentes Radioativos do Ar/análise , Urânio/análise , Modelos Teóricos
3.
J Environ Radioact ; 273: 107393, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354571

RESUMO

In this paper, the influence of an earthquake on radon exhalation rate of uranium tailings reservoir beach under high temperature environment is studied by using a self-made integrated simulation test device for natural disasters, and a scale model test based on similarity and dimensional laws. The results show that, (1)When the peak acceleration reaches 0.6g, the radon exhalation rate increases sharply with the increase of peak acceleration, and tends to be gentle after 1.0g. (2)Under the action of high temperature, the radon exhalation rate increases rapidly with the increase of high temperature time, and gradually becomes flat after the 4th hour. (3)Compared with loading the earthquake condition only, the coupling effect of high temperatures and earthquakes causes a greater degree of damage to the beach surface of a uranium tailings reservoir under the same acceleration conditions, and the fissure rate and radon exhalation rate of the beach surface are substantially increased.


Assuntos
Terremotos , Monitoramento de Radiação , Radônio , Urânio , Radônio/análise , Temperatura , Urânio/análise , Expiração , Monitoramento de Radiação/métodos
4.
J Environ Radioact ; 272: 107346, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38043218

RESUMO

It is well known that one of the most important risk factors in underground environment is the harmful effects of radon. The reasons for strong seasonal fluctuations in radon content in underground environments remain not fully understood. The purpose of this article is to improve existing ideas about this phenomenon. The article presents the results of a study of radon transport in two different underground spaces - the Beshtaugorskiy uranium mine (North Caucasus) and the Kungur Ice Cave (Middle Ural). We have used the direct measurements of the equilibrium equivalent concentration (EEC) of radon progeny in air, as well as the air flow velocity. A very wide range and strong seasonal variations in the radon levels have been recorded in both cases. The EEC has a range of 11-6653 by Bq m-3 and 10-89,020 Bq m-3 in the Kungur cave and the Beshtaugorskiy mine, respectively. It has been established that seasonal fluctuations in radon levels both in the mine and in the cave are caused by the same process - convective air circulation in the underground space due to the temperature difference between the mountain massif and the atmosphere (so called chimney effect). Overall, these results indicate that due to convective air circulation, underground spaces are periodically intensively ventilated with atmospheric air, and then, on the contrary, they are filled with radon-enriched air that seeps into caves or adits from rocks and ores. In both cases, the EEC of radon progeny exceeds the permissible level for the population and workers. The results of this study highlight the need for the development of measures to limit the presence of people in the surveyed underground spaces.


Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Radônio , Urânio , Humanos , Radônio/análise , Poluentes Radioativos do Ar/análise , Estações do Ano , Gelo , Produtos de Decaimento de Radônio , Cavernas
5.
Health Phys ; 126(2): 104-116, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37851395

RESUMO

ABSTRACT: To estimate equivalent doses received by eye tissues of patients, contents of uranium ( 238 U), thorium ( 232 Th), radon ( 222 Rn), and thoron ( 220 Rn) were determined inside various optical contact lenses used for vision correction. 238 U, 232 Th, 222 Rn, and 220 Rn contents varied between (3.44 ± 0.24) mBq kg -1 and (18.3 ± 1.28) mBq kg -1 , (0.57 ± 0.04) mBq kg -1 and (3.53 ± 0.25) mBq kg -1 , (3.44 ± 0.24) mBq kg -1 and (18.3 ± 1.28) mBq kg -1 , and (0.57 ± 0.04) mBq kg -1 and (3.53 ± 0.25) mBq kg -1 , respectively. New external dosimetric models, depending on the cornea eye surface of patients, 238 U, 232 Th, and 222 Rn concentrations inside optical contact lenses, half-life of the emitting radionuclides, and exposure time of patients, have been developed. It has been shown that alpha-particles emitted by the 238 U and 232 Th series inside the studied optical lenses transfer their energies essentially to the cornea tissues whereas the emitted beta-particles may reach and lose their energies in the crystalline lens of eyes of patients. Alpha-equivalent doses received by eye tissues of patients due to the diffusion of 222 Rn and 220 Rn gases present in the considered optical lenses were determined. The higher value of the total (alpha plus beta) equivalent dose to the left and right eyes of adult patients wearing optical contact lenses (14 hours per day) has been found equal to 1.32 mSv y -1 cm - 2 . It is recommended for patients to reduce the wearing period of optical contact lenses to reduce eye disease risks such as cataract.


Assuntos
Lentes de Contato , Radônio , Urânio , Adulto , Humanos , Tório/análise , Urânio/análise , Radônio/análise , Córnea
6.
Radiat Prot Dosimetry ; 199(18): 2199-2202, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37934994

RESUMO

Good response was observed in simultaneously using six RAD7 detectors at high radon concentrations, temperatures and relative humidity conditions. RAD7 detectors were tested in laboratory using radon chambers from 13 up to 59.8 kBq m-3, statistical analysis allows to distinct between counting errors and radon variation. RAD7 detectors were exposure to extreme environmental conditions at uranium flat mine. High radon concentration in soil from a confined uranium mineral was 274.3 kBq m-3 at 44°C temperature and 20% relative humidity. Inside uranium mine radon increased from 1.0 up to 88.5 kBq m-3.


Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Radônio , Urânio , Radônio/análise , Urânio/análise , Poluentes Radioativos do Ar/análise , Temperatura
7.
Sci Rep ; 13(1): 12752, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550495

RESUMO

The statistics of COVID-19 accumulated in Ukraine show areas with a significantly lower incidence of diseases. The purpose of the study was to identify factors that could influence the pattern of the pandemic in a particular area. Within the study it was assumed that the level of health care is approximately the same throughout the country. Population density was considered the main factor influencing the dynamics of the spread of infection. To reduce the impact of changes in population density across regions, it was normalized by the average population density in the country. The normalization of statistics for the country resulted in a model in the form of a linear relationship between the normalized values of the number of COVID-19 cases in the region and the size of the region. Subsequent analysis of the graphical data made it possible to identify four regions with the lowest incidence of COVID-19. The geographical proximity of these regions Dnipro, Kherson, Vinnytsia and Kirovograd, indicates the presence of a common factor for them, not typical for the rest of Ukraine. Such a factor may be the location of 83% of Ukraine's uranium deposits in the territories around Kirovohrad. Radon is one of the decay products of uranium, so the population of these areas may experience increased exposure to radon. This noble gas has more than a century of medical use, in particular for pulmonary diseases, although there is still no consensus about its effectiveness and side effects. Considering that COVID-19 was often complicated by pulmonary diseases, it can be assumed that the geological specificity of these four regions of Ukraine had an impact on the course of the COVID-19 pandemic in their territories. The study findings are important in terms of further COVID-19 research and prevention strategies.


Assuntos
Poluentes Radioativos do Ar , COVID-19 , Radônio , Urânio , Humanos , Radônio/efeitos adversos , Radônio/análise , Urânio/análise , Pandemias , COVID-19/epidemiologia , Poluentes Radioativos do Ar/análise
8.
Health Phys ; 125(3): 232-237, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37459468

RESUMO

ABSTRACT: Disposal of naturally occurring radioactive material (NORM) and technologically enhanced naturally occurring radioactive material (TENORM) waste in the State of Oregon is prohibited unless it can be demonstrated that the material is nonradioactive as defined by its radionuclide content and potential for emission into the environment. It was determined that a radon flux on the surface of the waste no greater than 0.37 Bq m -2 s -1 would meet this requirement. This article provides a method to estimate the radon flux through indirect measurement of the radon mass exhalation rate. It describes a device that consists of a radon accumulation chamber coupled with a continuous radon monitor and software to process the results and calculate the radon mass exhalation rate and radon flux for an unknown sample of approximately 500 g. The chamber system was tested with a uranium ore sample.


Assuntos
Monitoramento de Radiação , Resíduos Radioativos , Radônio , Poluentes Radioativos do Solo , Urânio , Radônio/análise , Expiração , Monitoramento de Radiação/métodos , Poluentes Radioativos do Solo/análise
9.
Sci Rep ; 13(1): 10952, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414833

RESUMO

Plants absorb water, nutrients and minerals from the soil through their root. Also, minerals, the radionuclides present in the growing media also are absorbed by plant parts following the same pathway. Consequently, it is important to determine the concentrations of these radionuclides in edible plants to access the associated risk to human health. In the present work, the levels of natural radioactivity and the level of some toxic elements in 17 medicinal plants, commonly used in Egypt, were measured using high-purity germanium gamma spectrometry and atomic absorption, respectively. The investigated plants were sub-grouped according to the edible parts into leave samples (n = 8), roots (n = 3), and seeds (n = 6). Also, the specific activity of both radon and thoron was measured by using alpha emitters registration which is emitted from radon and thoron gases in CR-39 nuclear track detectors. Additionally, the concentration of some toxic elements (Cu, Zn, Cd and, Pb) in six samples of medicinal plants was determined by atomic absorption spectrometry.


Assuntos
Metais Pesados , Plantas Medicinais , Radioatividade , Radônio , Humanos , Plantas Medicinais/química , Metais Pesados/análise , Radônio/análise , Radioisótopos , Minerais
10.
Radiat Prot Dosimetry ; 199(12): 1284-1294, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37337628

RESUMO

In areas with high natural background radiation, underground cavities tend to have high levels of airborne radionuclides. Within mines, occupancy may involve significant exposure to airborne radionuclides like radon (222Rn), thoron (220Rn) and progeny. The Fen carbonatite complex in Norway has legacy mines going through bedrock with significantly elevated levels of uranium (238U) and especially thorium (232Th), and significant levels of their progeny 222Rn and 220Rn. There are also significantly elevated levels of gamma radiation in these mines. These mines are naturally chimney ventilated and release large volumes of air to the outdoors giving a large local outdoor impact. We placed alpha track detectors at several localities within these mines to measure airborne radionuclides and measured gamma radiation of bedrock at each locality. The bedrock within the mines shows levels up to 1900 Bq kg-1 for 238U, 12 000 Bq kg-1 for 232Th and gamma dose rates up to 11 µSv h-1. Maximum levels of airborne radionuclides were 45 000 Bq m-3 for 220Rn and 6900 Bq m-3 for 222Rn. In addition, we measured levels of thoron progeny (TnP). In order to estimate radiation dose contribution, TnP should be assessed rather than 220Rn, but deposition-based detectors may be biased by the airflow of mine-draft. We present dose rate contributions using UNSCEAR dose conversion factors, and correcting for airflow bias, finding a combined cold season dose rate within these mines of 17-24 µSv h-1. Interestingly, fractional dose rate contributions vary from 0.02 to 0.6 for gamma, 0.33 to 0.95 for radon and 0.1 to 0.25 for TnP.


Assuntos
Poluentes Radioativos do Ar , Poluição do Ar em Ambientes Fechados , Monitoramento de Radiação , Radônio , Urânio , Radônio/análise , Tório/análise , Urânio/análise , Raios gama , Radiação de Fundo , Estações do Ano , Poluentes Radioativos do Ar/análise , Produtos de Decaimento de Radônio/análise , Poluição do Ar em Ambientes Fechados/análise
11.
Environ Monit Assess ; 195(6): 673, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37188758

RESUMO

The objective of this research is to assess the impact of radon concentration on workers at certain construction material industries in Erbil, Kurdistan Region of Iraq. The CR-39 solid-state track detector was used in this experiment to monitor radon levels and their daughters. For this purpose, as a case study group, 70 workers were divided into seven subgroups (gypsum, cement plant, lightweight block, marble, red brick 1, crusher stone, and concrete block 2), and 20 healthy volunteers were selected as a control group. The findings demonstrate that the mean concentrations of radon, radium, uranium, and radon daughters deposited on the detector face (POS) and chamber walls (POW) for the case study group were 9.61 ± 1.52 Bq/m3, 0.33 ± 0.05 Bq/Kg, 5.39 ± 0.86 mBq/Kg, 4 ± 0.63, and 16.62 ± 2.64 mBq/m3, whereas for the control group, they were 3.39 ± 0.58 Bq/m3, 0.117 ± 0.03 Bq/Kg, 1.91 ± 0.32 mBq/Kg, 1.41 ± 0.24, and 5.88 ± 1 mBq/m3, respectively. The statistical analysis revealed that radon, radium, uranium, and POW and POS concentrations were statistically significant (p ≤ 0.001) in the samples for the case study groups of cement, lightweight block, red brick 1, marble, and crusher stone factories in comparison to the control group; however, the results for gypsum and concrete block 2 factories were not statistically significant in comparison to the control group. Intriguingly, the radon levels in every blood sample examined were far lower than the 200 Bq/m3 limit established by the International Atomic Energy Agency. Hence, it may be argued that the blood is devoid of contaminants. These results are crucial for determining whether or not an individual is exposed to substantial quantities of radiation and for demonstrating a link between radon, its daughter, uranium, and the prevalence of cancer among workers in the Kurdish region of Iraq.


Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Rádio (Elemento) , Radônio , Urânio , Humanos , Rádio (Elemento)/análise , Urânio/análise , Sulfato de Cálcio/análise , Monitoramento Ambiental , Radônio/análise , Poluentes Radioativos do Ar/análise , Materiais de Construção/análise , Carbonato de Cálcio/análise , Monitoramento de Radiação/métodos
12.
J Radiol Prot ; 43(2)2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37257438

RESUMO

A pilot study was carried out to measure indoor radon concentrations in a uranium mining area of northern Kazakhstan. A total of 80 places at kindergartens, elementary schools, and dwellings were selected in Aqsu village and Astana city as the uranium mining area and background area for comparison, respectively. In Astana and Aqsu, the 3-month radon concentrations from late summer to autumn in 2022 were measured using the RADUET passive radon detectors. Radon concentrations ranged from 4 to >2000 Bq m-3(mean ± standard deviation: 290 ± 173 Bq m-3) throughout the study areas. The concentrations were higher in Aqsu, and 70% of the dwellings there exceeded 300 Bq m-3, whereas only 5% of them exceeded 300 Bq m-3in Astana. Accordingly, the new dose conversion factor for radon recommended by International Commission on Radiological Protection Publication 137 was applied to calculate the annual effective dose. The annual effective dose from the inhalation of radon was estimated to be 3.6 ± 4.6 mSv y-1for Astana and 23.7 ± 15.6 mSv y-1, for Aqsu, which are both higher than the world average value of 2.5 mSv y-1.


Assuntos
Poluentes Radioativos do Ar , Poluição do Ar em Ambientes Fechados , Monitoramento de Radiação , Radônio , Urânio , Poluentes Radioativos do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Cazaquistão , Projetos Piloto , Habitação , Radônio/análise
13.
J Radiol Prot ; 43(2)2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37257439

RESUMO

The outdoor222Rn and220Rn concentrations at 320 sampling points at 1 m above the ground in different sites surrounding rare earth element (REE) and uranium mines from northern Vietnam were measured using the RAD7. Results showed that222Rn concentrations were always higher than220Rn concentrations with large variation ranges from 25.7 to 573 Bq m-3and from 18.5 to 385 Bq m-3, respectively. The high correlation between220Rn and228Ra concentrations in surface soil of the studied sites were observed. The highest220Rn and222Rn concentrations are found at the sampling points of the REE NX-Lai Chau site. The220Rn and222Rn activities surrounding the REE mines were found to be higher than those surrounding the uranium mines. The average annual committed effective doses originated from the inhalation of220Rn and222Rn outdoor concentrations is about five times higher than the worldwide average value.


Assuntos
Monitoramento de Radiação , Radônio , Urânio , Radônio/análise , Urânio/análise , Vietnã , Mineração , Medição de Risco
14.
Environ Pollut ; 331(Pt 2): 121915, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37257812

RESUMO

Radon-containing water bodies in uranium mining areas inevitably release radon gas, polluting the surrounding environment via radiation. Thus, it is particularly important to develop devices with the ability to retard the radon release from such water bodies. Based upon theories of radon exhalation in water, a radon exhalation retardation device (RERD) with flexible, modular floats (a flexible polyvinyl chloride material module that floats on water) was designed and manufactured. To study the modular surface-covering floats' effectiveness in retarding radon release from water surfaces, an experimental setup was constructed to simulate radon release from water bodies, using a granular uranium ore sample from a uranium mine as sediment material. Closed-loop measurements were taken to determine the radon exhalation rate on the exposed surface of the water in uncovered and covered conditions. Radon retardation rates were also compared for different area coverage (29.6%, 59.1%, and 88.7%) and immersion depths (0.02 m and 0.04 m) in unperturbed and perturbed water bodies. The results show that: 1) the greater the area coverage, the greater the radon retardation rate in both unperturbed and perturbed water bodies; 2) under the same coverage conditions, the surface radon exhalation rate and the radon transfer velocity at the gas-liquid interface of the perturbed water are larger than those of the unperturbed water; 3) The immersion depth of modular surface-covering floats has a stronger effect on the radon retardation rate in unperturbed water bodies than in perturbed water bodies. The study shows that the proposed modular floats are effective in retarding radon release from both perturbed and unperturbed water bodies.


Assuntos
Monitoramento de Radiação , Radônio , Poluentes Radioativos da Água , Mineração , Monitoramento de Radiação/métodos , Radônio/análise , Poluentes Radioativos do Solo/análise , Urânio/análise , Água , Poluentes Radioativos da Água/análise
15.
J Environ Radioact ; 262: 107140, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36947907

RESUMO

Field measurements of Rn-222 fluxes from the tops and bottoms of compacted clay radon barriers were used to calculate effective Rn diffusion coefficients (DRn) at four uranium waste disposal sites in the western United States to assess cover performance after more than 20 years of service. Values of DRn ranged from 7.4 × 10-7 to 6.0 × 10-9 m2/s, averaging 1.42 × 10-7. Water saturation (SW) from soil cores indicated that there was relatively little control of DRn by SW, especially at higher moisture levels, in contrast to estimates from most steady-state diffusion models. This is attributed to preferential pathways intrinsic to construction of the barriers or to natural process that have developed over time including desiccation cracks, root channels, and insect burrows in the engineered earthen barriers. A modification to some models in which fast and slow pathway DRn values are partitioned appears to give a good representation of the data; 4% of the fast pathway was needed to fit the data regression. For locations with high Sw and highest DRn (and fluxes) at each site, the proportion of fast pathway ranged from 1.7% to 34%, but for many locations with lower fluxes, little if any fast pathway was needed.


Assuntos
Monitoramento de Radiação , Radônio , Urânio , Radônio/análise , Difusão , Instalações de Eliminação de Resíduos
16.
Environ Monit Assess ; 195(3): 400, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36790625

RESUMO

This paper presents a comparative study of the quantitative estimation of 222Rn and its health risk from various sources in four underground uranium mines. 222Rn exhalation rates from uranium-bearing rocks and backfill materials were estimated by calculating the 222Rn concentration accumulated in an enclosed chamber into which radon was exhaled. This comparative study indicates a more significant effect of porosity on the exhalation rates. Dissolved 222Rn in mine water was estimated using scintillation cell and bubbler kit. The discrepancy in 222Rn concentration in the mines might be attributed to the variation in geological features, ore grade, and porosity. This study revealed that the maximum radon exposure was produced from the backfill mill tailings, followed by uranium ore and mine water in the mines. The radon dose values in the individual mines remained under the safe dose limit of 20 mSv year-1. The excess lifetime cancer risk (ELCR) and 222Rn-induced lung cancer cases (RnLCC) per million persons per year were also estimated.


Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Radônio , Urânio , Radônio/análise , Urânio/análise , Poluentes Radioativos do Ar/análise , Água
17.
Environ Sci Pollut Res Int ; 30(12): 35223-35237, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36527562

RESUMO

Deep geological disposal of high-level radioactive waste is a feasible method for solving the problem of spent fuel storage in China. High-level radioactive waste releases heat during the decay process, which increases the temperature of the surrounding rock in the repository, resulting in a significant increase in radon concentration. In this study, the surrounding rock (granite) of a high-level radioactive waste repository was taken as the research object and, based on the similarity principle, an orthogonal test designed. Similar materials of uranium-containing granite were prepared in the laboratory and the physical and mechanical properties and cumulative radon concentration of granite samples assessed under different temperatures (25, 50, 100, 150, and 200 °C). The results showed that, with increased temperature, the compressive and tensile strengths of samples gradually increased and their pore volume gradually decreased. After heat treatment, the longitudinal wave velocity and thermal conductivity of samples decreased linearly with increased temperature. The radon exhalation rate first increased and then decreased, with the rate reaching a maximum at 100 °C. The radon exhalation rate of single-sided and double-sided samples was 0.00914 and 0.00460 Bq·m-2·s-1, respectively. When the temperature was 25-100 °C, the dominant stage was pore water. The radon exhalation rates of samples were positively correlated with compressive and tensile strengths and negatively correlated with pore volume, longitudinal wave velocity, and thermal conductivity. The temperature of 100-200 °C was range of the dominant stage of pore structure. The conclusions obtained in this study can provide theoretical support for radon reduction and radon control of granite in high temperature environments.


Assuntos
Monitoramento de Radiação , Resíduos Radioativos , Radônio , Urânio , Radônio/análise , Temperatura , Urânio/análise , Temperatura Alta , Expiração , Monitoramento de Radiação/métodos
18.
Radiat Prot Dosimetry ; 199(2): 134-145, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36484650

RESUMO

In this study, the results of environmental radioactivity studies conducted in Köprübasi, Manisa district, where Türkiye's uranium mineral exploration and processing studies were carried out, are shared. Because this is a populated area, there is a need for radio ecological dosimetry assessment to investigate the possible risk to the population. The region where radiological monitoring is carried out is discussed in two parts as the areas where uranium mineral exploration is performed and the settlements close to these areas. It was observed that 714-4714 nGy/h values were obtained in the outdoor absorbed dose rate in air measurements taken in the areas where mineral exploration was performed and this value reached up to 22 857 nGy/h in open field mining areas. In the residential areas, it was recorded that the outdoor absorbed dose rate in air values ranged between 142 and 242 nGy/h and the indoor values ranged between 171 and 400 nGy/h. The world absorbed dose rate in air average values is 57 nGy/h (outdoor) and 75 nGy/h (indoor). The high 226Ra values in the radioactivity analyses of the soil samples draw attention. The mean values of the activity concentrations of the radionuclides 226Ra, 232Th and 40K in the soil samples are 3169, 55 and 802 Bq/kg and the world averages of these values are 35, 30 and 400 Bq/kg, respectively. It was determined that high 226Ra value in the soil in the areas close to the open field uranium mining area was passed on to the agricultural products. Radioactivity measurement results of drinking water samples did not exceed World Health Organization guidelines. According to the radon gas measurement results of 44 houses in Köprübasi villages, the average radon concentrations in winter, spring, summer and autumn seasons were 72, 61, 50 and 55 Bq/m3, and the annual average value was 60 Bq/m3, respectively. Although these values are greater than the world average of 46 Bq/m3, they are below the recommended limit value (100 Bq/m3). By evaluating the data obtained, the total annual effective equivalent dose values (originating from outdoor-indoor absorbed dose in air, drinking water and indoor radon gas concentration) to which the people in the region are exposed were calculated as a 3.12 mSv.


Assuntos
Água Potável , Monitoramento de Radiação , Radioatividade , Rádio (Elemento) , Radônio , Poluentes Radioativos do Solo , Urânio , Humanos , Tório/análise , Urânio/análise , Rádio (Elemento)/análise , Água Potável/análise , Radônio/análise , Solo , Poluentes Radioativos do Solo/análise , Radioisótopos de Potássio/análise
19.
Sci Total Environ ; 855: 158899, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36165824

RESUMO

Bedrock U has been used as a proxy for local indoor radon exposure. A preliminary assessment of cancer incidence rate in a cohort of 809,939 adult males living in 9 different Swedish counties in 1986 has been used to correlate the cumulative lung cancer and total cancer (excluding lung) incidence rates between 1986 and 2020, respectively with the municipality average value of bedrock U concentration obtained from Swedish geological Survey (SGU). To control for regional difference in tobacco smoking, data on county average smoking prevalence, obtained from a survey conducted by the Public Health Agency of Sweden from 2001 to 2004, was used. Regression analysis shows that there is a significant positive correlation between smoking prevalence adjusted lung cancer incidence rate in males and the municipality bedrock U concentration (R2 = 0.273 with a slope 5.0 ±â€¯0.87·10-3 ppm-1). The correlation is even more significant (R2 = 0.759 with a slope = 4.8 ±â€¯0.25·10-3 ppm-1) when assessed on population weighted cancer incidence data binned in nine intervals of municipality average bedrock U concentration (ranging from 0.97 to 4.9 ppm). When assessing the corresponding correlations for total cancer incidence rate (excluding cancer of the lung) with adjustment for smoking prevalence, there appears to be no or little correlation with bedrock U concentration (R2 = 0.031). We conclude that an expanded future study needs age-standardized cancer incidence data to obtain a more consistent exposure-response model. Such model could be used to predict future lung cancer cases based on geological survey maps of bedrock U as an alternative to laborious indoor radon measurements, and to discern what future lung cancer rates can be expected for a population nearing zero smoking prevalence, with and without radon prevention.


Assuntos
Neoplasias Pulmonares , Neoplasias Induzidas por Radiação , Radônio , Urânio , Humanos , Adulto , Masculino , Radônio/análise , Incidência , Urânio/análise , Suécia/epidemiologia , Cidades , Fumar , Neoplasias Pulmonares/epidemiologia , Fumar Tabaco , Neoplasias Induzidas por Radiação/epidemiologia
20.
Environ Monit Assess ; 195(1): 117, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36396884

RESUMO

The current study is aimed to determine the variation of soil-gas radon concentrations over different rock formations representing diverse lithologies in the district of Karak, Khyber Pakhtunkhwa, Pakistan. The stratigraphic units were grouped on the basis of lithological contents into four categories, i.e., limestone, evaporites, claystone/mudstone, and sandstone. The highest average soil-gas 222Rn concentration (544 Bq/L) was found in the uranium-bearing Dhok Pathan Formation of the Pliocene age, while the lowest radon levels (0.15 Bq/L) were observed in the salt-bearing strata of Bahadurkhel Salt of Eocene age showing the non-uraniferous nature of the salt. High radon potential associated with the Dhok Pathan Formation is likely to be related to the high degree of uranium mineralization which is contributing to the elevated soil-gas radon levels. The study revealed that the soil-gas radon concentration in all lithologies is varying in the order of RnSandstone > RnLimestone > RnClaystone/Mudstone > RnEvaporites with the highest radon levels in the sandstone unit of uranium-bearing Dhok Pathan Formation. High fluctuations of soil-gas radon levels observed in this study evidently show that lithology and uranium mineralization have strong control over the 222Rn concentrations.


Assuntos
Monitoramento de Radiação , Radônio , Urânio , Radônio/análise , Urânio/análise , Solo , Paquistão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA